MA642: Real Analysis -1

(Assignment 1: Metric and Normed Linear Spaces)
January - April, 2023

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) There does not exist a monotone function $f: \mathbb{R} \rightarrow \mathbb{Q}$ which is onto.
(b) There exists a monotone function $f:(0, \infty) \rightarrow \mathbb{R}$ such that each $c \in(0, \infty)$ satisfies $|f(c+)-f(c-)|=\frac{1}{c}$.
(c) There exists a sequence of differential functions f_{n} on $(0, \infty)$ such that f_{n}^{\prime} is uniformly convergent on $(0, \infty)$ but f_{n} is nowhere point-wise convergent.
(d) There exists a metric space having exactly 36 open sets.
(e) It is impossible to define a metric d on \mathbb{R} such that only finitely many subsets of \mathbb{R} are open in (\mathbb{R}, d).
(f) If A and B are open (closed) subsets of a normed vector space X, then $A+B=\{a+b$: $a \in A, b \in B\}$ is open (closed) in X.
(g) If A and B are closed subsets of $[0, \infty)$ (with the usual metric), then $A+B$ is closed in $[0, \infty)$.
(h) It is possible to define a metric d on \mathbb{R} such that the sequence $(1,0,1,0, \ldots)$ converges in (\mathbb{R}, d).
(i) It is possible to define a metric d on \mathbb{R}^{2} such that $\left(\left(\frac{1}{n}, \frac{n}{n+1}\right)\right)$ is not a Cauchy sequence in $\left(\mathbb{R}^{2}, d\right)$.
(j) It is possible to define a metric d on \mathbb{R}^{2} such that in $\left(\mathbb{R}^{2}, d\right)$, the sequence $\left(\left(\frac{1}{n}, 0\right)\right)$ converges but the sequence $\left(\left(\frac{1}{n}, \frac{1}{n}\right)\right)$ does not converge.
(k) Let $A \subset(1, \infty)$ be a closed set. Then $A^{2}:=\left\{a^{2}: a \in A\right\}$ is a closed set.
(l) Let $A_{n}=\left\{(x, y) \in \mathbb{R}^{2}: 0<\frac{1}{x}<y<\frac{1}{n}\right\}$. Whether the set $\bigcap_{n=1}^{\infty} A_{n}$ is open/closed?
(m) There exist a set $A \subset(\mathbb{R}, u)$ such that $\delta\left(A^{o} \cup\{0\}\right)=0$ but $\delta\left((\bar{A})^{o}\right)=1$, where δ stands for diameter.
(n) If (x_{n}) is a sequence in a complete normed vector space X such that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\left(x_{n}\right)$ must converge in X.
(o) If $\left(f_{n}\right)$ is a sequence in $C[0,1]$ such that $\left|f_{n+1}(x)-f_{n}(x)\right| \leq \frac{1}{n^{2}}$ for all $n \in \mathbb{N}$ and for all $x \in[0,1]$, then there must exist $f \in C[0,1]$ such that $\int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x \rightarrow 0$ as $n \rightarrow \infty$.
(p) If $\left(x_{n}\right)$ is a Cauchy sequence in a normed vector space, then $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|$ must exist.
(q) $\left\{f \in C[0,1]:\|f\|_{1} \leq 1\right\}$ is a bounded subset of the normed vector space $\left(C[0,1],\|\cdot\|_{\infty}\right)$.
(r) The space $\left(C^{1}[0,1],\|\|.\right)$, where $\|f\|=\left(\|f\|_{2}^{2}+\left\|f^{\prime}\right\|_{2}^{2}\right)^{\frac{1}{2}}$ is complete.
(s) Let $f \in C^{1}[0,1]$ and $\|f\|=\left\|f^{\prime}\right\|_{2}+\|f\|_{\infty}$. Then $\left(C^{1}[0,1],\|\|.\right)$ is complete.
(t) Let $f \in C^{1}[0,1]$. Then $\|f\|=\min \left(\left\|f^{\prime}\right\|_{2},\|f\|_{\infty}\right)$ defines a norm on $C^{1}[0,1]$.
(u) Let $X=\left\{f \in C^{1}[0,1]: f(0)=0\right\}$. Then $\|f\|=\left\|f^{\prime}\right\|_{2}$ is a norm on $C^{1}[0,1]$ but not complete
(v) For $x, y \in l^{\infty}, d(x, y)=\min \left\{1, \lim \sup \left|x_{n}-y_{n}\right|\right\}$ define a metric on l^{∞}.
(w) The sequence $f_{n}(t)=e^{-n^{2} \sin \pi t}$ converge uniformly to 0 on $(0,1)$.
2. What is the cardinality of the set $\{f: \mathbb{R} \rightarrow \mathbb{R}, f$ is nowhere continuous $\}$?
3. For a monotone increasing function $f:[a, b] \rightarrow \mathbb{R}$, define $g(x)=\sup \{f(y): y<x\}$. If f has limit at c, then show that $f(c)=g(c)$.
4. Examine whether (X, d) is a metric space, where
(a) $X=\mathbb{R}$ and $d(x, y)=\frac{|x-y|}{1+|x y|}$ for all $x, y \in \mathbb{R}$.
(b) $X=\mathbb{R}$ and $d(x, y)=|x-y|^{p}$ for all $x, y \in \mathbb{R}(0<p<1)$.
(c) $X=\mathbb{R}$ and $d(x, y)=\min \left\{\sqrt{|x-y|},|x-y|^{2}\right\}$ for all $x, y \in \mathbb{R}$.
(d) $X=\mathbb{R}$ and for all $x, y \in \mathbb{R}, d(x, y)=\left\{\begin{array}{cl}1+|x-y| & \text { if exactly one of } x \text { and } y \text { is positive, } \\ |x-y| & \text { otherwise. }\end{array}\right.$
(e) $X=\mathbb{R}^{2}$ and $d(x, y)=\left(\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}}$ for all $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.
(f) $X=\mathbb{R}^{n}$ and $d(x, y)=\left[\left(x_{1}-y_{1}\right)^{2}+\frac{1}{2}\left(x_{2}-y_{2}\right)^{2}+\cdots+\frac{1}{n}\left(x_{n}-y_{n}\right)^{2}\right]^{\frac{1}{2}}$ for all $x=\left(x_{1}, \ldots, x_{n}\right)$, $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
(g) $X=\mathbb{C}$ and for all $z, w \in \mathbb{C}, d(z, w)=\left\{\begin{array}{cl}\min \{|z|+|w|,|z-1|+|w-1| & \text { if } z \neq w, \\ 0 & \text { if } z=w .\end{array}\right.$
(h) $X=\mathbb{C}$ and for all $z, w \in \mathbb{C}, d(z, w)= \begin{cases}|z-w| & \text { if } \frac{z}{|z|}=\frac{w}{|w|}, \\ |z|+|w| & \text { otherwise. }\end{cases}$
(i) $X=\mathbb{C}$ and $d(z, w)=\frac{2|z-w|}{\sqrt{1+|z|^{2}} \sqrt{1+|w|^{2}}}$ for all $z, w \in \mathbb{C}$.
(j) $X=$ The class of all finite subsets of a nonempty set and $d(A, B)=$ The number of elements of the set $A \triangle B$ (the symmetric difference of A and B).
5. Let $1 \leq p \leq \infty$ and $d_{i} ; i=1,2$ be two metric on a non-emply set X. Show that $d_{p}=\left(d_{1}^{p}+d_{2}^{p}\right)^{1 / p}$ is a metric on X for $1 \leq p<\infty$. Whether $d_{\infty}=\max \left\{d_{1}, d_{2}\right\}$ is a metric on X ?
6. Examine whether $\|\cdot\|$ is a norm on \mathbb{R}^{2}, where for each $(x, y) \in \mathbb{R}^{2}$,
(a) $\|(x, y)\|=\left(|x|^{p}+|y|^{p}\right)^{\frac{1}{p}}$, where $0<p<1$.
(b) $\|(x, y)\|=\sqrt{\frac{x^{2}}{9}+\frac{y^{2}}{4}}$.
(c) $\|(x, y)\|=\left\{\begin{array}{cl}\sqrt{x^{2}+y^{2}} & \text { if } x y \geq 0 \text {, } \\ \max \{|x|,|y|\} & \text { if } x y<0 .\end{array}\right.$
7. Let $\|f\|=\min \left\{\|f\|_{\infty}, 2\|f\|_{1}\right\}$ for all $f \in C[0,1]$. Prove that $\|\cdot\|$ is not a norm on $C[0,1]$.
8. Let $D=\{z \in \mathbb{C}:|z|<1\}$. Let X be the class of all functions f which are analytic on D and continuous on \bar{D}. Define $\|f\|=\sup \left\{\left|f\left(e^{i t}\right)\right|: 0 \leq t \leq 2 \pi\right\}$. Show that $(X,\|\|$.$) is complete.$
9. Let X be a normed linear space. Prove that norm of any $x \in X$, can be expressed as $\|x\|=$ $\inf \{|\alpha|: \alpha \in \mathbb{C} \backslash\{0\}$ with $\|x\| \leq|\alpha|\}$.
10. If $\mathbf{x} \in \mathbb{R}^{n}$, then show that $\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}=\|\mathbf{x}\|_{\infty}$.
11. Let $(X,\|\cdot\|)$ be a normed linear space. Show that $\|x\|=\sup \{|\alpha|:|\alpha|<\|x\|\}$.
12. Let d be a metric on a real vector space X satisfying the following two conditions:
(i) $d(x+z, y+z)=d(x, y)$ for all $x, y, z \in X$,
(ii) $d(\alpha x, \alpha y)=|\alpha| d(x, y)$ for all $x, y \in X$ and for all $\alpha \in \mathbb{R}$.

Show that there exists a norm $\|\cdot\|$ on X such that $d(x, y)=\|x-y\|$ for all $x, y \in X$.
13. Let f be a non-negative function on a linear space X such that $f(\alpha x)=|\alpha| f(x)$ for all $\alpha \in \mathbb{C}$. Show that f is norm on X if and only if f is a convex map which can vanish at most at one point.
14. Let $f:(X, d) \rightarrow[0,1]$ be continuous map. Show that $f^{-1}(0)$ is a closed G_{δ} set.
15. If $1 \leq p<q \leq \infty$, then show that $\|x\|_{q} \leq\|x\|_{p}$ for all $x \in \ell^{p}$.
16. For $x=\left(x_{n}\right) \in l^{2}$, write $\|x\|=\left(\sum_{n=1}^{\infty} a_{n}\left|x_{n}\right|^{2}\right)^{1 / 2}$. Find all possible sequences $\left(a_{n}\right)$ such that $\|\cdot\|$ is a norm on l^{2}.
17 . Let \mathbb{R}^{∞} be the real vector space of all sequences in \mathbb{R}, where addition and scalar multiplication are defined componentwise. Let $d\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot \frac{\left|x_{n}-y_{n}\right|}{1+\left|x_{n}-y_{n}\right|}$ for all $\left(x_{n}\right),\left(y_{n}\right) \in \mathbb{R}^{\infty}$. Show that d is a metric on \mathbb{R}^{∞} but that no norm on \mathbb{R}^{∞} induces d.
18. Let $(X,\|\cdot\|)$ be a nonzero normed vector space. Consider the metrics d_{1}, d_{2} and d_{3} on X :

$$
\begin{aligned}
& d_{1}(x, y):=\min \{1,\|x-y\|\} \\
& d_{2}(x, y):=\frac{\|x-y\|}{1+\|x-y\|}, \\
& d_{3}(x, y)
\end{aligned}=\left\{\begin{array}{ll}
1+\|x-y\| & \text { if } x \neq y, \\
0 & \text { if } x=y,
\end{array},\right.
$$

for all $x, y \in X$. Prove that none of d_{1}, d_{2} and d_{3} is induced by any norm on X.
19. Let X be a normed vector space containing more than one point, let $x, y \in X$ and let $\varepsilon, \delta>0$. If $B_{\varepsilon}[x]=B_{\delta}[y]$, show that $x=y$ and $\varepsilon=\delta$. Does the result remain true if X is assumed to be a metric space? Justify.
20. Let $A=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}<1\right\}$ and $B=\left\{(x, y, z) \in \mathbb{R}^{3}: z=0\right\}$. Examine whether $A \cap B$ is a closed/an open subset of \mathbb{R}^{3} with respect to the usual metric on \mathbb{R}^{3}.
21. Let F_{n} be a sequence of closed sets in \mathbb{R} such that $F_{n} \subset(n, n+1]$ and $F_{n} \cap F_{m}=\emptyset$, whenever $m \neq n$. Show that $F=\bigcup_{n=1}^{\infty} F_{n}$ is a closed set in \mathbb{R}.
22. For all $x, y \in \mathbb{R}$, let $d_{1}(x, y)=|x-y|, d_{2}(x, y)=\min \{1,|x-y|\}$ and $d_{3}(x, y)=\frac{|x-y|}{1+|x-y|}$. If G is an open set in any one of the three metric spaces $\left(\mathbb{R}, d_{i}\right)(i=1,2,3)$, then show that G is also open in the other two metric spaces.
23. Let X be a normed vector space and let $Y(\neq X)$ be a subspace of X. Show that Y is not open in X.
24. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be Cauchy sequences in a metric space (X, d). Show that the sequence $\left(d\left(x_{n}, y_{n}\right)\right)$ is convergent.
25. Let d_{o} be the discrete metric on non-empty set X. Show that $\left(X, d_{o}\right)$ is complete.
26. Let $\left(x_{n}\right)$ be a sequence in a complete metric space (X, d) such that $\sum_{n=1}^{\infty} d\left(x_{n}, x_{n+1}\right)<\infty$. Show that $\left(x_{n}\right)$ converges in (X, d).
27. Let $\left(x_{n}\right)$ be a sequence in a metric space X such that each of the subsequences $\left(x_{2 n}\right),\left(x_{2 n-1}\right)$ and $\left(x_{3 n}\right)$ converges in X. Show that $\left(x_{n}\right)$ converges in X.
28. Show that the following are incomplete metric spaces.
(a) (\mathbb{N}, d), where $d(m, n)=\left|\frac{1}{m}-\frac{1}{n}\right|$ for all $m, n \in \mathbb{N}$
(b) $((0, \infty), d)$, where $d(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|$ for all $x, y \in(0, \infty)$
(c) (\mathbb{R}, d), where $d(x, y)=\left|\frac{x}{1+|x|}-\frac{y}{1+|y|}\right|$ for all $x, y \in \mathbb{R}$
(d) (\mathbb{R}, d), where $d(x, y)=\left|e^{x}-e^{y}\right|$ for all $x, y \in \mathbb{R}$
29. Examine whether the following metric spaces are complete.
(a) $([0,1), d)$, where $d(x, y)=\left|\frac{x}{1-x}-\frac{y}{1-y}\right|$ for all $x, y \in[0,1)$
(b) $((-1,1), d)$, where $d(x, y)=\left|\tan \frac{\pi x}{2}-\tan \frac{\pi y}{2}\right|$ for all $x, y \in(-1,1)$
(c) $((0,2], d)$, where $d(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|$
30. For $X(\neq \emptyset) \subset \mathbb{R}$, let $d(x, y)=\frac{|x-y|}{1+|x-y|}$ for all $x, y \in X$. Examine the completeness of the metric space (X, d), where X is
(a) $[0,1] \cap \mathbb{Q}$.
(b) $[-1,0] \cup[1, \infty)$.
(c) $\left\{n^{2}: n \in \mathbb{N}\right\}$.
31. Examine whether the sequence $\left(f_{n}\right)$ is convergent in $\left(C[0,1], d_{\infty}\right)$, where for all $n \in \mathbb{N}$ and for all $t \in[0,1]$,
(a) $f_{n}(t)=\frac{n t^{2}}{1+n t}$.
(b) $f_{n}(t)=1+t+\frac{t^{2}}{2!}+\cdots+\frac{t^{n}}{n!}$.
(c) $f_{n}(t)=\left\{\begin{array}{cl}n t & \text { if } 0 \leq t \leq \frac{1}{n}, \\ \frac{1}{n t} & \text { if } \frac{1}{n}<t \leq 1 .\end{array}\right.$
(d) $f_{n}(t)=\left\{\begin{array}{cl}n t & \text { if } 0 \leq t \leq \frac{1}{n}, \\ \frac{n}{n-1}(1-t) & \text { if } \frac{1}{n}<t \leq 1 .\end{array}\right.$
32. Let K and F be two non-empty subsets of a metric space (X, d). If K is compact and F closed, then show that $\operatorname{dist}(K, F)>0$, whenever $K \cap F=\emptyset$.
33. Find the point-wise limit of the sequence $f_{n}(t)=e^{-n t^{2}} \sin n t$. Examine for uniform convergence of f_{n} on \mathbb{R}.
34. Let $f_{n}, f: \mathbb{R} \rightarrow(0, \infty)$ be such that $f_{n} \rightarrow f$ uniformly on \mathbb{R}. Examine for $e^{f_{n}} \rightarrow e^{f}$ uniformly on \mathbb{R}.
35. Let $f_{n}(t)=\sqrt{t^{2}+n}$. Examine for the uniform convergence of f_{n}^{\prime} on \mathbb{R}.
36. Let X be the class of all continuous functions $f: \mathbb{R} \rightarrow \mathbb{C}$ such that for each $\epsilon>0$, there exists a compact set $K \subset \mathbb{R}$ such that $|f(x)|<\epsilon$, for all $x \in \mathbb{R} \backslash K$. Show that $\left(X,\|.\|_{\infty}\right)$ is complete.
37. Let $\left(x_{n}\right)$ be a sequence in a normed linear space X which converges to a non-zero vector $x \in X$. Show that $\frac{x_{1}+\cdots+x_{n}}{n^{\alpha}} \rightarrow x$ if and only if $\alpha=1$. What are admissible values of α if $x_{n} \rightarrow 0$?
38. Let $X=C[0,1]$ be the space all the continuous functions on interval $[0,1]$. Prove that norms $\|.\|_{\infty}$ and $\|.\|_{1}$ on X are not equivalent.
39. Let $C^{1}[0,1]$ denote the space of all continuously differentiable functions on $[0,1]$. For $f \in$ $C^{1}[0,1]$, define $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$. Show that space $\left(C^{1}[0,1],\|\cdot\|\right)$ is a Banach space.
40. Let $1 \leq p<\infty$. Let X_{p} be a class of all the Riemann integrable functions on $[0,1]$. Prove that $\|f\|_{p}=\left(\int_{0}^{1}|f|^{p}\right)^{\frac{1}{p}}<\infty$. Prove that $\left(X_{p},\|.\|_{p}\right)$ is a normed linear space but not complete.
41. Let M be a subspace of a normed linear space X. Then show that M is closed if and only if $\{y \in M:\|y\| \leq 1\}$ is closed in X.
42. Let $T:\left(C\left[0, \frac{\pi}{2}\right],\|\cdot\|_{\infty}\right) \rightarrow\left(C\left[0, \frac{\pi}{2}\right],\|\cdot\|_{\infty}\right)$ be defined by $(T f)(x)=\int_{s=0}^{x} f(s) \sin s d s$. Show that T is not a contraction but T^{2} is a contraction.
43. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous and let there exist $\alpha>0$ such that $\|f(\mathbf{x})-f(\mathbf{y})\| \geq \alpha\|\mathbf{x}-\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Show that $f\left(\mathbb{R}^{n}\right)$ is complete.
44. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a contraction and let $g(\mathbf{x})=\mathbf{x}-f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Show that $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-one and onto. Also, show that both g and $g^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are continuous.

