Linear Problem (LP)

Rajib Bhattacharjya

Department of Civil Engineering IIT Guwahati

Linear programming

It is an optimization method applicable for the solution of optimization problem where objective function and the constraints are linear

It was first applied in 1930 by economist, mainly in solving resource allocation problem

During World War II, the US Air force sought more effective procedure for allocation of resources

George B. Dantzig, a member of the US Air Force formulate general linear problem for solving the resources allocation problem.

The devised method is known as Simplex method

Linear programming

It is considered as a revolutionary development that helps in obtaining optima decision in complex situation

Some of the great contributions are

George B. Dantzig : Devised simplex method
Kuhn and Tucker : Duality theory in LP
Charnes and Cooper: Industrial application of LP
Karmarkar : Karmarkar's method

Nobel prize awarded for contribution related to LP

Nobel prize in economics was awarded in 1975 jointly to L.V. Kantorovich of the former Soviet Union and T.C. Koopmans of USA on the application of LP to the economic problem of resource allocation.

Linear programming

Standard form of Linear Problem (LP)

Minimize $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}$ Subject to

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=b_{3} \\
& \vdots \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}=b_{m} \\
& x_{1}, x_{2}, x_{3}, \ldots, x_{n} \geq 0
\end{aligned}
$$

Linear programming

Standard form of Linear Problem (LP) in Matrix form

Minimize $f(X)=c^{T} X$
Subject to

$$
\begin{gathered}
a X=b \\
X \geq 0
\end{gathered}
$$

Where

$$
X=\left\{\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right\} \quad b=\left\{\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right\} \quad c=\left\{\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right\} \quad a=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right\}
$$

Linear programming

Characteristic of linear problem are

1. The objective function is minimization type
2. All constraints are equality type
3. All the decision variables are non-negative

Linear programming

Characteristic of linear problem are

1. The objective function is minimization type

For maximization problem

$$
\text { Maximize } f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}
$$

Equivalent to

$$
\text { Minimize } F=-f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=-c_{1} x_{1}-c_{2} x_{2}-c_{3} x_{3}-\ldots-c_{n} x_{n}
$$

Linear programming

Characteristic of linear problem are
2. All constraints are equality type

$$
a_{k 1} x_{1}+a_{k 2} x_{2}+a_{k 3} x_{3}+\cdots+a_{k n} x_{n}=b_{k}
$$

If it is less than type

$$
a_{k 1} x_{1}+a_{k 2} x_{2}+a_{k 3} x_{3}+\cdots+a_{k n} x_{n} \leq b_{k}
$$

It can be converted to

$$
a_{k 1} x_{1}+a_{k 2} x_{2}+a_{k 3} x_{3}+\cdots+a_{k n} x_{n}+x_{n+1}=b_{k}
$$

If it is greater than type

$$
a_{k 1} x_{1}+a_{k 2} x_{2}+a_{k 3} x_{3}+\cdots+a_{k n} x_{n} \geq b_{k}
$$

It can be converted to

$$
a_{k 1} x_{1}+a_{k 2} x_{2}+a_{k 3} x_{3}+\cdots+a_{k n} x_{n}-x_{n+1}=b_{k}
$$

as variable

Linear programming

Characteristic of linear problem are
3. All the decision variables are non-negative

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{n} \geq 0
$$

Is any variable x_{j} is unrestricted in sign, it can be expressed as

$$
x_{j}=x_{j}^{\prime}-x_{j}^{\prime \prime}
$$

Where, $x_{j}^{\prime}, x_{j}^{\prime \prime} \geq 0$

Linear programming

There are m equations and n decision variable
Now see the conditions
If $m>n$, there will be $m-n$ redundant equations which can be eliminated
If $m=n$, there will be an unique solution or there may not be any solution
If $m<n$, a case of undetermined set of linear equations, if they have any solution, there may be innumerable solutions

The problem of linear programming is to find out the best solution that satisfy all the constraints

$$
\begin{array}{lr}
\text { Maximize } & z=c_{1} x+c_{2} y \\
\text { Subject to } & a_{1} x+b_{1} y \leq d_{1} \\
& a_{2} x+b_{2} y \leq d_{2} \\
& x, y \geq 0
\end{array}
$$

$$
\begin{aligned}
& \text { Maximize } \quad z=c_{1} x+c_{2} y \\
& \text { Subject to } \\
& a_{1} x+b_{1} y \leq d_{1} \\
& a_{2} x+b_{2} y \leq d_{2} \\
& x, y \geq 0
\end{aligned}
$$

[^0]

Search space

Convex Search space

Non Convex Search space
CE 602: Optimization Method

Some definitions

Point of n-Dimensional space
A point X in an n-dimensional space is characterized by an ordered set of n values or coordinates. The coordinate of X are also called the component of X.

Line segment in n-Dimensions (L)
If coordinates of two pints X^{1} and X^{2} are given, the line segment (L) joining these points is the collection of points $X(\lambda)$ whose coordinates are given by

$$
\begin{array}{lccc}
X(\lambda)=\lambda X^{1}+(1-\lambda) X^{2} & \vdash & \mid \\
\text { Thus } \mathrm{L}=\left\{X \mid X=\lambda X^{1}+(1-\lambda) X^{2}\right\} & X^{1} & X(\lambda) & X^{2}
\end{array}
$$

$$
0 \geq \lambda \geq 1
$$

Some definitions

Hyperplane
In n-dimensional space, the set of points whose coordinate satisfy a linear equation

$$
a_{1} x_{1}+a_{2} x_{1}+a_{3} x_{1}+\cdots+a_{n} x_{n}=a^{T} X=b
$$

is called a hyperplane
A hyperplane is represented by

$$
H(a, b)=\left\{X \mid a^{T} X=b\right\}
$$

A hyperplane has $n-1$ dimensions in an n-dimensional space
It is a plane in three dimensional space
It is a line in two dimensional space

Plane

$$
\begin{aligned}
H^{+} & =\left\{X \mid a^{T} X \geq b\right\} \\
H^{-} & =\left\{X \mid a^{T} X \leq b\right\}
\end{aligned}
$$

Line

Convex Set

A convex set is a collection of points such that if X^{1} and X^{2} are any two points in the collection, the line segment joining them is also in the collection, which can be defined as follows

If $X^{1}, X^{2} \in S$, then $X \in S$
Where $X(\lambda)=\lambda X^{1}+(1-\lambda) X^{2}$
$0 \geq \lambda \geq 1$
Vertex or Extreme point

Feasible solution

In a linear programming problem, any solution that satisfy the conditions

$$
\begin{aligned}
& a X=b \\
& X \geq 0
\end{aligned}
$$

is called feasible solution

Basic solution

A basic solution is one in which $n-m$ variable are set equal to zero and solution can be obtained for the m number variable

Basis

The collection of variables not set equal to zero to obtain the basic solution is called the basis.

Basic feasible solution
This is the basic solution that satisfies the non-negativity conditions
Nondegenerate basic feasible solution
This is a basic feasible solution that has got exactly m positive x_{i}
Optimal solution
A feasible solution that optimized the objective function is called an optimal solution

Solution of system of linear simultaneous equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \longrightarrow \mathrm{E}_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \longrightarrow \mathrm{E}_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=b_{3} \longrightarrow \mathrm{E}_{3} \\
\vdots \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\cdots+a_{n n} x_{n}=b_{n} \longrightarrow \mathrm{E}_{n}
\end{gathered}
$$

Elementary operation

1. Any equation E_{r} can be replaced by $k E_{r}$, where k is a non zero constant
2. Any equation E_{r} can be replaced by $E_{r}+k E_{S}$, where E_{S} is any other equation

Using these elementary row operation, a particular variable can be eliminated from all but one equation. This operation is known as Pivot operation

Using pivot operation, we can transform the set of equation to the following form

$$
\begin{gathered}
1 x_{1}+0 x_{2}+0 x_{3}+\cdots+0 x_{n}=b_{1}^{\prime} \\
0 x_{1}+1 x_{2}+0 x_{3}+\cdots+0 x_{n}=b_{2}^{\prime} \\
0 x_{1}+0 x_{2}+1 x_{3}+\cdots+0 x_{n}=b_{3}^{\prime} \\
\vdots \\
\vdots \\
0 x_{1}+0 x_{2}+0 x_{3}+\cdots+1 x_{n}=b_{n}^{\prime}
\end{gathered}
$$

Now the solution are

$$
x_{i}=b_{i}^{\prime} \quad i=1,2,3, \ldots, n
$$

General system of equations

$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2}$
Pivotal variables
Non pivotal variables

$$
a_{m 1} x_{1}+a_{m 2} x_{1}+a_{m 3} x_{1}+\cdots+a_{m n} x_{n}=b_{m}
$$

And $n>m$

$1 x_{1}+0 x_{2}+\cdots+0 x_{m}+a_{1 m+1}^{\prime} x_{m+1}+\cdots+a_{1 n}^{\prime} x_{n}$	$=b_{1}^{\prime}$
$0 x_{1}+1 x_{2}+\cdots+0 x_{m}+a_{2 m+1}^{\prime} x_{m+1}+\cdots+a_{2 n}^{\prime} x_{n}$	$=b_{2}^{\prime}$
$0 x_{1}+0 x_{2}+\cdots+0 x_{m}+$	
\vdots	$a_{3 m+1}^{\prime} x_{m+1}+\cdots+a_{3 n}^{\prime} x_{n}$ \vdots \vdots $0 x_{1}+0 x_{2}+\cdots+1 x_{m}+a_{m m+1}^{\prime} x_{m+1}+\cdots+a_{m n}^{\prime} x_{n}$$=b_{3}^{\prime}=b_{m}^{\prime}$

$$
\begin{gathered}
1 x_{1}+0 x_{2}+\cdots+0 x_{m}+a_{1 m+1}^{\prime} x_{m+1}+\cdots+a_{1 n}^{\prime} x_{n}=b_{1}^{\prime} \\
0 x_{1}+1 x_{2}+\cdots+0 x_{m}+a_{2 m+1}^{\prime} x_{m+1}+\cdots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime} \\
0 x_{1}+0 x_{2}+\cdots+0 x_{m}+a_{3 m+1}^{\prime} x_{m+1}+\cdots+a_{3 n}^{\prime} x_{n}=b_{3}^{\prime} \\
\vdots \\
\vdots \\
0 x_{1}+0 x_{2}+\cdots+1 x_{m}+a_{m m+1}^{\prime} x_{m+1}+\cdots+a_{m n}^{\prime} x_{n}=b_{m}^{\prime}
\end{gathered}
$$

One solution can be deduced from the system of equations are
$x_{i}=b_{i}^{\prime} \quad$ For $i=1,2,3, \ldots, m$
$x_{i}=0 \quad$ For $i=m+1, m+2, m+3, \ldots, n$
This solution is called basis solution
Basic variable $x_{i} \quad i=1,2,3, \ldots, m$
Non basic variable x_{i}
$i=m+1, m+2, m+3, \ldots, n$
Rajib Bhattacharjya, IITG

Now let's solve a problem

$$
\begin{aligned}
2 x_{1}+3 x_{2}-2 x_{3}-7 x_{4}=1 & R_{0} \\
x_{1}+x_{2}+x_{3}+3 x_{4}=6 & R_{1} \\
x_{1}-x_{2}+x_{3}+5 x_{4}=4 & R_{2}
\end{aligned}
$$

$$
x_{1}+\frac{3}{2} x_{2}-x_{3}-\frac{7}{2} x_{4}=\frac{1}{2}
$$

$$
R_{01}=\frac{1}{2} R_{0}
$$

$$
0-\frac{1}{2} x_{2}+2 x_{3}+\frac{13}{2} x_{4}=\frac{11}{2}
$$

$$
R_{11}=R_{1}-R_{01}
$$

$$
0-\frac{5}{2} x_{2}+2 x_{3}+\frac{17}{2} x_{4}=\frac{7}{2}
$$

$$
R_{21}=R_{2}-R_{01}
$$

Rajib Bhattacharjya, IITG

$$
\begin{array}{ll}
x_{1}+0+5 x_{3}+16 x_{4}=17 & R_{02}=R_{01}-\frac{3}{2} R_{12} \\
0+x_{2}-4 x_{3}-13 x_{4}=-11 & R_{12}=-2 R_{11} \\
0+0-8 x_{3}-24 x_{4}=-24 & R_{22}=R_{21}+\frac{5}{2} R_{12} \\
x_{1}+0+0+x_{4}=2 & R_{02}=R_{02}-5 R_{22} \\
0+x_{2}+0-x_{4}=1 \\
0+0+x_{3}+3 x_{4}=3 & R_{13}=R_{12}+4 R_{23} \\
& R_{23}=-\frac{1}{8} R_{22}
\end{array}
$$

Solution of the problem is

$$
\begin{aligned}
& x_{1}=2-x_{4} \\
& x_{2}=1+x_{4} \\
& x_{3}=3-3 x_{4}
\end{aligned}
$$

The solution obtain by setting independent variable equal to zero is called basic solution.

$$
x_{1}=2 \quad x_{2}=1 \quad x_{3}=3
$$

$$
\begin{array}{rrr}
2 x_{1}+3 x_{2}-2 x_{3}-7 x_{4}=1 & 2 x_{1}+3 x_{2}-2 x_{3}-7 x_{4}=1 \\
x_{1}+x_{2}+x_{3}+3 x_{4}=6 & x_{1}+x_{2}+x_{3}+3 x_{4}=6 \\
x_{1}-x_{2}+x_{3}+5 x_{4}=4 & x_{1}-x_{2}+x_{3}+5 x_{4}=4 \\
x_{1}=2, x_{2}=1, x_{3}=3, x_{4}=0 & x_{1}=1, x_{2}=2, x_{3}=0, x_{4}=1
\end{array}
$$

$$
\begin{array}{rlrl}
2 x_{1}+3 x_{2}-2 x_{3}-7 x_{4} & =1 & 2 x_{1}+3 x_{2}-2 x_{3}-7 x_{4} & =1 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 & x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}-x_{2}+x_{3}+5 x_{4} & =4 & x_{1}-x_{2}+x_{3}+5 x_{4} & =4
\end{array}
$$

$$
x_{1}=3, x_{2}=0, x_{3}=6, x_{4}=-1 \quad x_{1}=0, x_{2}=3, x_{3}=-3, x_{4}=2
$$

How many combinations?
$\binom{n}{m}=\frac{n!}{(n-m)!m!}$
The problem we have just solved has 4 combinations
Now consider a problem of 10 variables and 8 equations, we will have 45 different combinations

If a problem of 15 variables and 10 equations, we will have 3003 different combinations

As such, it is not possible to find solutions for all the combinations Moreover, many combinations, we may get infeasible solutions As such we need some set of rules to switch from one feasible solution another feasible solution

Now before discussing any method, let's try to solve a problem

Minimize $-x_{1}-2 x_{2}-x_{3}$
Subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2}-x_{3} \leq 2 \\
& 2 x_{1}-x_{2}+5 x_{3} \leq 6 \\
& 4 x_{1}+x_{2}+x_{3} \leq 6 \\
& x_{i} \geq 0 \quad i=1,2,3
\end{aligned}
$$

$$
\begin{aligned}
2 x_{1}+x_{2}-x_{3}+x_{4} & =2 \\
2 x_{1}-x_{2}+5 x_{3}+x_{5} & =6 \\
4 x_{1}+x_{2}+x_{3}+x_{6} & =6 \\
-x_{1}-2 x_{2}-x_{3} & -f
\end{aligned}=0
$$

The initial basic solution is

$$
\begin{aligned}
x_{4} & =2 \quad x_{5}=6 \\
x_{1} & =x_{2}=x_{3}=0 \\
f & =0
\end{aligned}
$$

Now look at the objective function
$-x_{1}-2 x_{2}-x_{3} \quad-f=0$
Is it an optimal solution?
Can we improve the objective function value by making one non basic variable as basic?

For this problem, all the coefficients of the objective function is negative, as such making one of them as basic variable, we can improve (reduce) the objective value.

However, making x_{2} as basic variable we will have maximum advantage
So, select the variable with minimum negative coefficient

In our problem, x_{2} is the new entering variable (basic variable) Now, next question is which one will be pivoting element

$2 x_{1}+x_{2}-x_{3}+x_{4}$	$=2$	$2 x_{1}+x_{2}-x_{3}+x_{4}$	$=2$
$2 x_{1}-x_{2}+5 x_{3}+x_{5}$	$=6$	$4 x_{1}+0 x_{2}+4 x_{3}+x_{4}+x_{5}$	$=8$
$4 x_{1}+x_{2}+x_{3}+x_{6}$	$=6$	$2 x_{1}+0 x_{2}+2 x_{3}-x_{4}+x_{6}=4$	
$-x_{1}-2 x_{2}-x_{3}$	$-f$	$=0$	$3 x_{1}+0 x_{2}-3 x_{3}+x_{4}$
$-f$	$=4$		

The initial basic solution is

$$
\begin{aligned}
& x_{2}=2 \quad x_{5}=8 \quad x_{6}=4 \quad \text { Basic variable } \\
& x_{1}=x_{3}=x_{4}=0 \quad \text { Non basic variable } \\
& f=-4
\end{aligned}
$$

The initial basic solution is $\quad x_{2}=-6 \quad x_{4}=8 \quad x_{6}=12$ Basic variable

$$
x_{1}=x_{3}=x_{5}=0 \quad \text { Non basic variable }
$$

$$
f=-12
$$

$$
\begin{aligned}
& 2 x_{1}+x_{2}-x_{3}+x_{4} \quad=24 x_{1}+0 x_{2}+4 x_{3}+x_{4}+x_{5}=8 \\
& 2 x_{1}-x_{2}+5 x_{3}+x_{5} \quad=6-2 x_{1}+x_{2}-5 x_{3}-x_{5}=-6 \\
& 4 x_{1}+x_{2}+x_{3} \\
& -x_{1}-2 x_{2}-x_{3} \\
& +x_{6}=6 \quad 6 x_{1}+0 x_{2}+6 x_{3} \quad+x_{5}+x_{6}=12 \\
& -f=0-5 x_{1}+0 x_{2}-11 x_{3} \quad-2 x_{5}-f=-12
\end{aligned}
$$

$$
\begin{array}{rlrcr}
2 x_{1}+x_{2}-x_{3}+x_{4} & =2 & -2 x_{1}+0 x_{2}-2 x_{3}+x_{4} & -x_{6}=-4 \\
2 x_{1}-x_{2}+5 x_{3}+x_{5} & =6 & 6 x_{1}+0 x_{2}+6 x_{3}+x_{5}+x_{6}=12 \\
4 x_{1}+x_{2}+x_{3}+x_{6} & =6 & 4 x_{1}+x_{2}+x_{3} & +x_{6}=6 \\
-x_{1}-2 x_{2}-x_{3} & -f & =0 & 7 x_{1}+0 x_{2}+x_{3}+2 x_{6}-f=12
\end{array}
$$

The initial basic solution is

$$
\begin{array}{rlrlrl}
x_{2} & =6 & x_{4}=-4 & x_{5}=12 & & \text { Basic variable } \\
x_{1} & =x_{3}=x_{6}=0 & & & \text { Non basic variable } \\
f & =+12 & & &
\end{array}
$$

$$
\begin{aligned}
& 2 x_{1}+x_{2}-x_{3}+x_{4} \quad=2 \\
& 2 x_{1}-x_{2}+5 x_{3}+x_{5}=6 \\
& 4 x_{1}+x_{2}+x_{3} \quad+x_{6}=6 \\
& -x_{1}-2 x_{2}-x_{3} \quad-f=0 \\
& \text { Infeasible } \\
& \text { Infeasible } \\
& \text { solution } \\
& \begin{array}{lllll}
x_{2}=2 & x_{5}=8 & x_{6}=4 & x_{2}=-6 & x,-8 \\
x_{1}=12 & x_{2}=6 & x_{4}=-4 & x_{5}=12 \\
x_{1} & =x_{3}=x_{4}=0 & x_{1}=x_{3}=x_{5}=0 & x_{1}=x_{3}=x_{6}=0 \\
f=-4 & f=-12 & f=+12
\end{array}
\end{aligned}
$$

Now what is the rule, how to select the pivoting element?

What is the maximum value of x_{2} without making x_{2} negative?

Select the minimum one to avoid infeasible solution
Thus the general rule is

1. Calculate the ratio $\frac{b_{i}}{a_{i s}}$ (For $a_{i s} \geq 0$)
2. Pivoting element is $x_{s}^{*}=\stackrel{\text { minimum }}{a_{i s} \geq 0}\left(\frac{b_{i}}{a_{i s}}\right)$

$$
\begin{array}{lr}
2 x_{1}+x_{2}-x_{3}+x_{4} & =2 \\
2 x_{1}-x_{2}+5 x_{3}+x_{5} & =6 \\
4 x_{1}+x_{2}+x_{3} & +x_{6} \\
-x_{1}-2 x_{2}-x_{3} & -f=6
\end{array}
$$

Basic	Variable								
Variable	x 1	x 2	x 3	x 4	x 5	x 6			bi/aij
x 4	2	1	-1	1	0	0	0	2	2
x 5	2	-1	5	0	1	0	0	6	
x 6	4	1	1	0	0	1	0	6	6
f	-1	-2	-1	0	0	0	-1	0	

Basic Variable		Variable					f	bi	bi/aij
	x1	$\times 2$	$\times 3$	x4	$\times 5$	x6			
x2	2	1	-1	1	0	0	0	2	
x5	4	0	4	1	1	0	0	8	2
x6	2	0	2	-1	0	1	0	4	2
f	3	0	-3	2	0	0	-1	4	

Basic		Variable						f	bi
Variable	x 1	x 2	x 3	x 4	x 5	x 6		bij	
x2	3	1	0	1.25	0.25	0	0	4	
x3	1	0	1	0.25	0.25	0	0	2	
x6	0	0	0	-1.5	-0.5	1	0	0	
f	6	0	0	2.75	0.75	0	-1	10	

All c_{j} are positive, so no improvement is possible

Basic		Variable							f
Variable	x 1	x 2	x 3	x 4	$\mathrm{x5}$	x 6	f	bi	bi/aij
x 2	2	1	-1	1	0	0	0	2	
x 5	4	0	4	1	1	0	0	8	2
x 6	2	0	2	-1	0	1	0	4	2
f	3	0	-3	2	0	0	-1	4	

Basic Variable		Variable							f		bi	bi/aij
	x1	$\times 2$	x3		$\times 4$	x5		$\times 6$				
x2	3	1		0	0.5	0		0.5	0		4	
x5	0	0		0	3		1	-2		0		
x3	1	0		1	-0.5		0	0.5		0		
f	6	0			0.5		0	1.5		-1		

Obtain the same solution

SIMPLEX METHOD

$$
\left.\begin{array}{l}
1 x_{1}+0 x_{2}+\cdots+0 x_{m}+a_{1 m+1}^{\prime} x_{m+1}+\cdots+a_{1 n}^{\prime} x_{n}=b_{1}^{\prime} \\
0 x_{1}+1 x_{2}+\cdots+0 x_{m}+a_{2 m+1}^{\prime} x_{m+1}+\cdots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime} \\
0 x_{1}+0 x_{2}+\cdots+0 x_{m}+a_{3 m+1}^{\prime} x_{m+1}+\cdots+a_{3 n}^{\prime} x_{n}=b_{3}^{\prime} \\
\vdots \\
\vdots x_{1}+0 x_{2}+\cdots+1 x_{m}+a_{m m+1}^{\prime} x_{m+1}+\cdots+a_{m n}^{\prime} x_{n}=b_{m}^{\prime} \\
0 x_{1}+0 x_{2}+\cdots+0 x_{m}-f+c_{m+1}^{\prime} x_{m+1}+\cdots+c_{n}^{\prime} x_{n}=-f_{o}^{\prime} \\
x_{i}=b_{i}^{\prime} \\
x_{i}=0 \quad \text { For } i=1,2,3, \ldots, m \\
f=f_{o}^{\prime}
\end{array} \quad \text { For } i=m+1, m+2, m+3, \ldots, n\right)
$$

If the basic solution is feasible , then $b_{i}^{\prime} \geq 0$ for $i=1,2,3, \ldots, m$

From the last row

$$
0 x_{1}+0 x_{2}+\cdots+0 x_{m}-f+c_{m+1}^{\prime} x_{m+1}+\cdots+c_{n}^{\prime} x_{n}=-f_{o}^{\prime}
$$

We can write that

$$
f=f_{o}^{\prime}+\sum_{i=m+1}^{n} c_{i}^{\prime} x_{i}
$$

If all c_{i}^{\prime} are positive, it is not possible to improve (reduce) the objective function value by making a non basic variable as basic variable
Maximum benefit can be obtained by making the non-basic variable with minimum negative coefficient as basic variable
In case of a tie, any one can be selected arbitrarily

$$
\begin{array}{cc}
x_{1}=b_{1}^{\prime}-a_{1 s}^{\prime} x_{s} & b_{1}^{\prime} \geq 0 \\
x_{2}=b_{2}^{\prime}-a_{2 s}^{\prime} x_{s} & b_{2}^{\prime} \geq 0 \\
\vdots & \vdots \quad \vdots \\
x_{m}=b_{m}^{\prime}-a_{m s}^{\prime} x_{s} & b_{m}^{\prime} \geq 0
\end{array}
$$

If $a_{i s}^{\prime}$ is positive, the maximum possible value of x_{s} is $b_{i}^{\prime} / a_{i s}^{\prime}$
If $a_{i s}^{\prime}$ is negative, the maximum possible value of x_{s} is $+\infty$
In this case, the problem has an unbounded solution

Example 1 (Unbounded solution)

Minimize $\mathrm{f}=-3 x_{1}-2 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}-x_{2} \leq 1 \\
& 3 x_{1}-2 x_{2} \leq 6 \\
& x_{i} \geq 0 \quad i=1,2,3
\end{aligned}
$$

$$
\begin{array}{lr}
x_{1}-x_{2}+x_{3} & =1 \\
3 x_{1}-2 x_{2} & +x_{4}=6 \\
x_{i} \geq 0 & i=1,2,3
\end{array}
$$

Basic		Variable			f	bi	bi/aij
Variable	x 1	x 2	x 3	x 4			
x3	1	-1	1	0	0	1	1
x4	3	-2	0	1	0	6	2
f	-3	-2	0	0	-1	0	

Example 2 (Alternate optimal solutions)

Minimize $\mathrm{f}=-40 x_{1}-100 x_{2}$
Subject to

$$
\begin{aligned}
& 10 x_{1}+5 x_{2} \leq 2500 \\
& 4 x_{1}+10 x_{2} \leq 2000 \\
& 2 x_{1}+3 x_{2} \leq 900 \\
& x_{i} \geq 0 \quad i=1,2,3 \\
& \begin{cases}10 x_{1}+5 x_{2}+x_{3} & =2500 \\
4 x_{1}+10 x_{2}+x_{4} & =2000 \\
2 x_{1}+3 x_{2} \\
x_{i} \geq 0 \quad+x_{5} & =900\end{cases}
\end{aligned}
$$

All c_{j} are positive, so no improvement is possible

Basic	Variable							
Variable	x 1	x 2	x 3	x 4	$\mathrm{x5}$	f	b	bi/ais
x1	1	0	0.125	-0.0625	0	0	187.5	
x2	0	1	-0.05	0.125	0	0	125	
x5	0	0	-0.1	-0.25	1	0	150	
f	0	0	0	10	0	-1	20000	

Solution is
$x_{1}=187.5$
$x_{2}=125$
$x_{5}=0$
$x_{3}=x_{4}=0$
$f=-20000$

The problem has infinite number of optimal solutions, which can be obtained using the following equation

$$
X(\lambda)=\lambda X^{1}+(1-\lambda) X^{2}
$$

Example 3 (Artificial variable)

Minimize $\mathrm{f}=2 x_{1}+3 x_{2}+2 x_{3}-x_{4}+x_{5}$
Subject to

$$
\begin{array}{lr}
3 x_{1}-3 x_{2}+4 x_{3}+2 x_{4}-x_{5}+y_{1} & =0 \\
x_{1}+x_{2}+x_{3}+3 x_{4}+x_{5}+y_{2} & =2 \\
2 x_{1}+3 x_{2}+2 x_{3}-x_{4}+x_{5} & -f
\end{array}=0
$$

The Artificial variables have to be remove from the basis initially (Phase I)
This can be remove using the following formulation
Minimize $w=y_{1}+y_{2}$
Now the problem

$$
\begin{array}{rll}
3 x_{1}-3 x_{2}+4 x_{3}+2 x_{4}-x_{5}+y_{1} & =0 \\
x_{1}+x_{2}+x_{3}+3 x_{4}+x_{5} & +y_{2} & =2 \\
2 x_{1}+3 x_{2}+2 x_{3}-x_{4}+x_{5} & -f & =0 \\
y_{1}+y_{2}-w & =0
\end{array}
$$

$$
\begin{array}{lrl}
3 x_{1}-3 x_{2}+4 x_{3}+2 x_{4}-x_{5}+y_{1} & =0 \\
x_{1}+x_{2}+x_{3}+3 x_{4}+x_{5} & +y_{2} & =2 \\
2 x_{1}+3 x_{2}+2 x_{3}-x_{4}+x_{5} & -f=0 \\
-4 x_{1}+2 x_{2}-5 x_{3}-5 x_{4}+0 x_{5}-w & =-2
\end{array}
$$

Basic	Variable										
Variable	x 1	x 2	x 3	x 4	x 5	y 1	y 2	f	w	b	bi/ais
y 1	3	-3	4	2	-1	1	0	0	0	0	0
y 2	1	1	1	3	1	0	1	0	0	2	0.67
f	2	3	2	-1	1	0	0	-1	0	0	
w	-4	2	-5	-5	0	0	0	0	-1	-2	

All c_{j} are positive, so no improvement is possible

Example 4 (Unrestricted in sign)

Minimize $f=4 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}-2 x_{2} \geq 2 \\
& x_{1}+2 x_{2}=8 \\
& x_{1}-x_{2} \leq 11 \\
& x_{1} \geq 0
\end{aligned}
$$

x_{2} is unrestricted in sign

Consider $x_{2}=x_{3}-x_{4}$
Where, $x_{3}, x_{4} \geq 0$
Now, the problem can be written as

Minimize $f=4 x_{1}+2 x_{3}-2 x_{4}$
Subject to

$$
\begin{aligned}
& x_{1}-2 x_{3}+2 x_{4} \geq 2 \\
& x_{1}+2 x_{3}-2 x_{4}=8 \\
& x_{1}-x_{3}+x_{4} \leq 11 \\
& x_{i} \geq 0 \quad i=1,3,4 \\
& \text { CEE © O2 Ofinimation Mentod }
\end{aligned}
$$

$$
\begin{array}{rlr}
x_{1}-2 x_{3}+2 x_{4}-x_{5}+y_{1} & =2 \\
x_{1}+2 x_{3}-2 x_{4}+y_{2} & =8 \\
x_{1}-x_{3}+x_{4} & =x_{6} & =11 \\
4 x_{1}+2 x_{3}-2 x_{4} & -f & =0
\end{array}
$$

Phase I

```
Minimize \(w=y_{1}+y_{2}\)
Or, Minimize \(\quad \omega=-2 x_{1}+0 x_{3}+0 x_{4}+x_{5}=-10\)
```


Phase I problem can be written as

Basic Variable	x1	x3	x4	x5	x6	y1	y2	w	f	bi	bi/aij
x1	1	-2	2	-1	0	1	0	0	0	2	
y2	0	4	-4	1	0	-1	1	0	0	6	1.5
x6	0	1	-1	1	1	-1	0	0	0	9	9
f	0	10	-10	4	0	-4	0	0	-1	-8	
w	0	-4	4	-1	0	2	0	-1	0	-6	

Raib bhetachar

Phase II

Basic Variable		Variable						
	x 1	x 3	x 4	x 5	x 6	f	bi	
x1	1	0	0	-0.50	0	0	5	
x3	0	1	-1	0.25	0	0	1.5	
x6	0	0	0	0.75	1	0	7.5	
f	0	0	0	1.5	0	-1	-23	

It can be noted that all the coefficients of the cost function is positive, hence it is not possible to improve the objective function value
This the optimal solution of the problem is
$x_{1}=5$
$x_{2}=1.5$
$x_{3}=1.5$
$x_{6}=7.5$
$x_{4}=x_{5}=0 \quad f=23$

Example 5

A manufacturer produces, A, B, C, and D, by using two types of machines (lathes and milling machines). The time required on the two machines to manufacture one unit of each of the four products, the profit per unit products and the total time available on the two types of machines per day are given below.

Machine	Time required per unit (min) for product				Available time
	A	B	C	D	(min)

Find the number of units to be manufactured of each product per day for maximizing profit.

LP Formulation

Maximize $f=45 x_{1}+100 x_{2}+30 x_{3}+50 x_{4}$ Subject to

$$
\begin{aligned}
& 7 x_{1}+10 x_{2}+4 x_{3}+9 x_{4} \leq 1200 \\
& 3 x_{1}+40 x_{2}+x_{3}+x_{4} \leq 800 \\
& x_{i} \geq 0 \quad i=1,2,3,4
\end{aligned}
$$

Minimize $f=-45 x_{1}-100 x_{2}-30 x_{3}-50 x_{4}$ Subject to

$$
\begin{aligned}
& 7 x_{1}+10 x_{2}+4 x_{3}+9 x_{4}+x_{5} \quad=1200 \\
& 3 x_{1}+40 x_{2}+x_{3}+x_{4} \quad+x_{6}=800 \\
& x_{i} \geq 0 \quad i=1,2,3,4,5,6
\end{aligned}
$$

Basic Variable		Variable					f	bi	bi/aij
	x1	x2	x3	x4	x5	x6			
x5	7	10	4	9	1	0	0	1200	120
x6	3	40	1	1	0	1	0	800	20
f	-45	-100	-30	-50	0	0	-1	0	
4									
Basic		Variable					f	bi	bi/aij
Variable	x1	x2	x3	x4	x5	x6	f	bi	bi/aij
x5	6.25	0	3.75	8.75	1	-0.25	0	1000	114
x2	0.075	1	0.025	0.025	0	0.025	0	20	800
f	-37.5	0	-27.5	-47.5	0	2.5	-1	2000	

BasicVariable		Variable					f	bi	bi/aij
	$\times 1$	x2	$\times 3$	x4	x5	$\times 6$			
$\times 4$	0.71	0	0.43	1	0.11	-0.03	0	114	266
x2	0.06	1	0.01	0	0.00	0.03	0	17	1200
f	-3.57	0	-7.14	0	5.43	1.14	-1	7428	
							f	bi	bi/aij
Variable	x1	x2	x3	$\times 4$	x5	$\times 6$			
x3	1.67	0	1	2.33	0.27	-0.07	0	267	
x2	0.03	1	0	-0.03	-0.01	0.03	0	13	
f	8.33	0	0	16.67	7.33	0.67	-1	9333	

This the optimal solution of the problem is

$$
x_{1}=0 \quad x_{2}=13 \quad x_{3}=267 \quad x_{4}=0 \quad x_{5}=0 \quad x_{6}=0 \quad f=-9333
$$

[^0]: This problem has infinite number of solutions

