
R.K. Bhattacharjya/CE/IITG

Introduction To Genetic Algorithms

Dr. Rajib Kumar Bhattacharjya
Department of Civil Engineering

IIT Guwahati
Email: rkbc@iitg.ernet.in

7 November 2013

1



R.K. Bhattacharjya/CE/IITG

References

7 November 2013

2

� D. E. Goldberg, ‘Genetic Algorithm In Search, 
Optimization And Machine Learning’, New York: 
Addison – Wesley (1989)

� John H. Holland ‘Genetic Algorithms’, Scientific 
American Journal, July 1992.

� Kalyanmoy Deb, ‘An Introduction To Genetic 
Algorithms’, Sadhana, Vol. 24 Parts 4 And 5.



R.K. Bhattacharjya/CE/IITG

Introduction to optimization

7 November 2013

3

Global optima
Local optima

Local optima

Local optima

Local optima

f

X 



R.K. Bhattacharjya/CE/IITG

Introduction to optimization

7 November 2013

4

Multiple  optimal solutions



R.K. Bhattacharjya/CE/IITG

Genetic Algorithms

7 November 2013

5

Genetic Algorithms are the heuristic search

and optimization techniques that mimic the
process of natural evolution.



R.K. Bhattacharjya/CE/IITG

Principle Of Natural Selection

7 November 2013

6

“Select The 
Best, Discard 
The Rest”



R.K. Bhattacharjya/CE/IITG

An Example….

7 November 2013

7

Giraffes have long necks

� Giraffes with slightly longer necks could feed on 
leaves of higher branches when all lower ones had 
been eaten off.

� They had a better chance of survival.

� Favorable characteristic 
propagated through generations 
of giraffes.

� Now, evolved species has long necks.



R.K. Bhattacharjya/CE/IITG

7 November 2013

8

This longer necks may have due to the effect of mutation
initially. However as it was favorable, this was propagated over
the generations.

An Example….



R.K. Bhattacharjya/CE/IITG

Evolution of species

7 November 2013

9

Initial Population of 
animals

Struggle For Existence
Survival Of the Fittest

Surviving Individuals Reproduce, 
Propagate Favorable Characteristics

M
illio

ns O
f 

Ye
a
rs

Evolved Species



R.K. Bhattacharjya/CE/IITG

7 November 2013

10

Thus genetic algorithms implement 
the optimization strategies by 
simulating evolution of species 
through natural selection



R.K. Bhattacharjya/CE/IITG

Simple Genetic Algorithms

7 November 2013

11

Start

population
Initialize 
population

Solution?
Optimum 
Solution?

Evaluate Solutions

YES

Stop

T = 0

T=T+1

Selection

CrossoverCrossover

MutationMutation

NO



R.K. Bhattacharjya/CE/IITG

Simple Genetic Algorithm

7 November 2013

12

function sga ()
{
Initialize population;
Calculate fitness function;

While(fitness value != termination criteria)
{
Selection;

Crossover;

Mutation;

Calculate fitness function;
}

}



R.K. Bhattacharjya/CE/IITG

GA Operators and Parameters

7 November 2013

13

� Selection

� Crossover 

� Mutation

� Now we will discuss about genetic operators



R.K. Bhattacharjya/CE/IITG

Selection

7 November 2013

14

The process that determines which solutions are
to be preserved and allowed to reproduce and
which ones deserve to die out.

The primary objective of the selection operator is
to emphasize the good solutions and eliminate
the bad solutions in a population while keeping
the population size constant.

“Selects the best, discards the rest”



R.K. Bhattacharjya/CE/IITG

Functions of Selection operator

7 November 2013

15

Identify the good solutions in a population

Make multiple copies of the good solutions

Eliminate bad solutions from the population so that 
multiple copies of good solutions can be placed in the 
population

Now how to identify the good solutions?



R.K. Bhattacharjya/CE/IITG

Fitness function

7 November 2013

16

A fitness function value quantifies the optimality of a solution. 
The value is used to rank a particular solution against all the 
other solutions

A fitness value is assigned to each solution depending on how 
close it is actually to the optimal solution of the problem

A fitness value can be assigned to evaluate the solutions



R.K. Bhattacharjya/CE/IITG

Assigning a fitness value

7 November 2013

17

Considering  c = 0.0654

23

d

h



R.K. Bhattacharjya/CE/IITG

Selection operator 

7 November 2013

18

� There are different techniques to implement 
selection in Genetic Algorithms.

� They are: 

� Tournament selection

� Roulette wheel selection

� Proportionate selection 

� Rank selection

� Steady state selection, etc



R.K. Bhattacharjya/CE/IITG

Tournament  selection

7 November 2013

19

� In tournament selection several tournaments 
are played among a few individuals. The 
individuals are chosen at random from the 
population. 

� The winner of each tournament is selected 
for next generation. 

� Selection pressure can be adjusted by changing 
the tournament size. 

� Weak individuals have a smaller chance to be 
selected if tournament size is large.



R.K. Bhattacharjya/CE/IITG

Tournament  selection

7 November 2013

20

22

13 +30

22

40

32

32

25

7 +45

25

25

32

25

22

40

22

13 +30

7 +45

13 +30

22

32

25 13 +30

22

25

Selected

Best solution will have two copies

Worse solution will have no copies

Other solutions will have two, one 
or zero copies



R.K. Bhattacharjya/CE/IITG

Roulette wheel and proportionate 
selection

7 November 2013

21

Chrom # Fitness

1 50

2 6

3 36

4 30

5 36

6 28

186

% of RW

26.88

3.47

20.81

17.34

20.81

16.18

100.00

EC

1.61

0.19

1.16

0.97

1.16

0.90

6

AC

2

0

1

1

1

1

6

1
21%

2
3%

3
21%

4
18%

5
21%

6
16%

Roulet wheel

Parents are selected 

according to their 

fitness values

The better 

chromosomes have 

more chances to be 

selected



R.K. Bhattacharjya/CE/IITG

Rank selection

7 November 2013

22

Chrom # Fitness

1 37

2 6

3 36

4 30

5 36

6 28

Chrom # Fitness

1 37

3 36

5 36

4 30

6 28

2 6

Sort 
according 
to fitness

Assign 
raking

Rank

6

5

4

3

2

1

Chrom #

1

3

5

4

6

2

% of RW

29

24

19

14

10

5

Chrom #

1

3

5

4

6

2

Roulette wheel

6 5 4 3 2 1

EC AC

1.714 2

1.429 1

1.143 1

0.857 1

0.571 1

0.286 0

Chrom #

1

3

5

4

6

2



R.K. Bhattacharjya/CE/IITG

Steady state selection

7 November 2013

23

In this method, a 
few good 
chromosomes are 
used for creating 
new offspring in 
every iteration. 

The rest of 
population migrates 
to the next 
generation without 
going through the 
selection process.

Then some bad 
chromosomes are 
removed and the 
new offspring is 
placed in their 
places

Good

Bad

New 
offspring

Good

New 
offspring



R.K. Bhattacharjya/CE/IITG

How to implement crossover

7 November 2013

24

Source: http://www.biologycorner.com/bio1/celldivision-chromosomes.html

The crossover operator is used to create new solutions from the existing solutions 
available in the mating pool after applying selection operator. 

This operator exchanges the gene information between the solutions in the 
mating pool. 

0 1 0 0 1 1 0 1 1 0

Encoding of solution is necessary so that our 

solutions look like a chromosome



R.K. Bhattacharjya/CE/IITG

Encoding

7 November 2013

25

The process of representing a solution in the 

form of a string that conveys the necessary 
information.

Just as in a chromosome, each gene controls a 
particular characteristic of the individual, 
similarly, each bit in the string represents a 
characteristic of the solution.



R.K. Bhattacharjya/CE/IITG

Encoding Methods

7 November 2013

26

� Most common method of encoding is binary coded.
Chromosomes are strings of 1 and 0 and each position
in the chromosome represents a particular characteristic
of the problem

Decoded value 52 26

Mapping between decimal 

and binary value



R.K. Bhattacharjya/CE/IITG

Encoding Methods

7 November 2013

27

d

h (d,h) = (8,10) cm

Chromosome = [0100001010]

Defining a string [0100001010]

d             h



R.K. Bhattacharjya/CE/IITG

Crossover operator

7 November 2013

28

The most popular 
crossover selects any two 
solutions strings randomly 
from the mating pool and 
some portion of the strings 
is exchanged between the 
strings.

The selection 
point is 
selected 
randomly. 

A probability of crossover is 
also introduced in order to 
give freedom to an individual 
solution string to determine 
whether the solution would go 
for crossover or not.

Solution 1

Solution 2

Child 1

Child 2



R.K. Bhattacharjya/CE/IITG

Binary Crossover

7 November 2013

29

Source: Deb 1999



R.K. Bhattacharjya/CE/IITG

Mutation operator

7 November 2013

30

Though crossover has the main responsibility to search for the
optimal solution, mutation is also used for this purpose.

Mutation is the occasional introduction of new features in to the
solution strings of the population pool to maintain diversity in the
population.

Before mutation After mutation



R.K. Bhattacharjya/CE/IITG

Binary Mutation

7 November 2013

31

� Mutation operator changes a 1 to 0 or vise versa, with a mutation
probability of .

� The mutation probability is generally kept low for steady convergence.

� A high value of mutation probability would search here and there like a
random search technique.

Source: Deb 1999



R.K. Bhattacharjya/CE/IITG

Elitism

7 November 2013

32

� Crossover and mutation may destroy the best 
solution of the population pool

� Elitism is the preservation of few best 
solutions of the population pool

� Elitism is defined in percentage or in number



R.K. Bhattacharjya/CE/IITG

Nature to Computer Mapping

7 November 2013

33

Nature Computer
Population

Individual

Fitness

Chromosome

Gene

Set of solutions

Solution to a problem

Quality of a solution

Encoding for a solution

Part of the encoding solution



R.K. Bhattacharjya/CE/IITG

An example problem

7 November 2013

34

Consider 6 bit string to represent the solution, then
000000 = 0 and 111111 =

Assume population size of 4

Let us solve this problem by hand calculation



R.K. Bhattacharjya/CE/IITG

An example problem

7 November 2013

35

Actual  
count

2

1

0

1

Sol No Binary 
String

1 100101

2 001100

3 111010

4 101110

DV

37

12

58

46

x 
value

0.587

0.19

0.921

0.73

f

0.96

0.56

0.25

0.75

Avg

Max

F

0.96

0.56

0.25

0.75

0.563

0.96

Relative 
Fitness

0.38

0.22

0.10

0.30

Expected 
count

1.53

0.89

0.39

1.19

Initialize 
population

Calculate decoded 
value

Calculate real 
value

Calculate  objective 
function value

Calculate fitness 
value

Calculate relative 
fitness value

Calculate 
expected count

Calculate actual 
count

Selection: Proportionate selectionInitial population
Fitness 

calculation
Decoding



R.K. Bhattacharjya/CE/IITG

An example problem: Crossover

7 November 2013

36

Sol No Matting 
pool

1 100101

2 001100

3 100101

4 101110

f F

0.97 0.97

0.60 0.60

0.75 0.75

0.96 0.96

Avg 0.8223

Max 0.97

CS

3

3

2

2

New Binary 
String

100100

001101

101110

100101

DV

36

13

46

37

x 
value

0.57

0.21

0.73

0.59

Matting pool
Random generation of 

crossover site
New population

Crossover: Single point



R.K. Bhattacharjya/CE/IITG

An example problem: Mutation

7 November 2013

37

Sol No

1

2

3

4

Population 
after crossover

100100

001101

101110

100101

Population 
after mutation

100000

101101

100110

101101

f F

1.00 1.00

0.78 0.78

0.95 0.95

0.78 0.78

Avg 0.878

Max 1.00

DV

32

45

38

45

x 
value

0.51

0.71

0.60

0.71

Mutation



R.K. Bhattacharjya/CE/IITG

Real coded Genetic Algorithms

7 November 2013

38

� Disadvantage of binary coded GA 

� more computation 

� lower accuracy 

� longer computing time

� solution space discontinuity

� hamming cliff



R.K. Bhattacharjya/CE/IITG

Real coded Genetic Algorithms

7 November 2013

39

� The standard genetic algorithms has the following steps

1. Choose initial population

2. Assign a fitness function

3. Perform elitism

4. Perform selection

5. Perform crossover

6. Perform mutation

� In case of standard Genetic Algorithms, steps 5 and 
6 require bitwise manipulation.



R.K. Bhattacharjya/CE/IITG

Real coded Genetic Algorithms

7 November 2013

40

8 6 3 7 6

2 9 4 8 9

8 6 4 8 9

2 9 3 7 6

Simple crossover: similar to binary crossover

P1

P2

C1

C2



R.K. Bhattacharjya/CE/IITG

Real coded Genetic Algorithms

7 November 2013

41

Linear Crossover

• Parents: (x1,…,xn ) and (y1,…,yn )
• Select a single gene (k) at random 

• Three children are created as,

) ..., ,5.05.0 , ..., ,( 1 nkkk xxyxx ⋅+⋅

) ..., ,5.05.1 , ..., ,( 1 nkkk xxyxx ⋅−⋅

) ..., ,5.15.0- , ..., ,( 1 nkkk xxyxx ⋅+⋅

• From the three children, best two are selected for the 

next generation



R.K. Bhattacharjya/CE/IITG

Real coded Genetic Algorithms

7 November 2013

42

Single arithmetic crossover

• Parents: (x1,…,xn ) and (y1,…,yn )
• Select a single gene (k) at random 

• child1 is created as,

• reverse for other child. e.g. with α = 0.5

) ..., ,)1( , ..., ,( 1 nkkk xxyxx ⋅−+⋅ αα

0.1 0.3 0.1 0.3 0.7 0.2 0.5 0.1 0.2

0.5 0.7 0.7 0.5 0.2 0.8 0.3 0.9 0.4

0.1 0.3 0.1 0.3 0.7 0.5 0.5 0.1 0.2

0.5 0.7 0.7 0.5 0.2 0.5 0.3 0.9 0.4



R.K. Bhattacharjya/CE/IITG

Real coded Genetic Algorithms

7 November 2013

43

Simple arithmetic crossover

• Parents: (x1,…,xn ) and (y1,…,yn )
• Pick random gene (k) after this point mix values

• child1 is created as:

• reverse for other child. e.g. with α = 0.5

))1(
n

y ..., ,
1

)1(
1

 , ..., ,
1

(
n

x
k

x
k

y
k

xx ⋅−+⋅
+

⋅−+
+

⋅ αααα

0.1 0.3 0.1 0.3 0.7 0.2 0.5 0.1 0.2

0.5 0.7 0.7 0.5 0.2 0.8 0.3 0.9 0.4

0.1 0.3 0.1 0.3 0.7 0.5 0.4 0.5 0.3

0.5 0.7 0.7 0.5 0.2 0.5 0.4 0.5 0.3



R.K. Bhattacharjya/CE/IITG

Real coded Genetic Algorithms

7 November 2013

44

Whole arithmetic crossover

• Most commonly used

• Parents: (x1,…,xn ) and (y1,…,yn )
• child1 is:

• reverse for other child. e.g. with α = 0.5

yx ⋅−+⋅ )1( αα

0.1 0.3 0.1 0.3 0.6 0.2 0.5 0.1 0.2

0.5 0.7 0.7 0.5 0.2 0.8 0.3 0.9 0.4

0.3 0.5 0.4 0.4 0.4 0.5 0.4 0.5 0.3

0.3 0.5 0.4 0.4 0.4 0.5 0.4 0.5 0.3



R.K. Bhattacharjya/CE/IITG

Simulated binary crossover

7 November 2013

45

� Developed by Deb and Agrawal, 1995)

Where,         a random number

is a parameter that controls the crossover process. A high value 
of the parameter will create near-parent solution



R.K. Bhattacharjya/CE/IITG

Random mutation

7 November 2013

46

Where        is a random number between [0,1]

Where,       is the user defined maximum 
perturbation 



R.K. Bhattacharjya/CE/IITG

Normally distributed mutation

7 November 2013

47

A simple and popular method

Where               is the Gaussian  probability 
distribution with zero mean



R.K. Bhattacharjya/CE/IITG

Polynomial mutation

7 November 2013

48

���,��� = ���,��� + ��
 − ��� �

� = � 2�� �/ ���� − 1        1 − 2 1 − �� �/ ���� If �� < 0.5
If �� ≥ 0.5

Deb and Goyal,1996 proposed



R.K. Bhattacharjya/CE/IITG

Multi-modal optimization

7 November 2013

49

Solve this problem using 
simple Genetic Algorithms



R.K. Bhattacharjya/CE/IITG

After Generation 200

7 November 2013

50

The population are in and around 
the global optimal solution



R.K. Bhattacharjya/CE/IITG

Multi-modal optimization

7 November 2013

51

Niche count

Modified fitness

Sharing function

Simple modification of Simple Genetic Algorithms can capture all the optimal 
solution of the problem including global optimal solutions 

Basic idea is that reduce the fitness of crowded solution, which can be 
implemented using following three steps. 



R.K. Bhattacharjya/CE/IITG

Hand calculation 

7 November 2013

52

Maximize

Sol String Decoded

value

x f

1 110100 52 1.651 0.890

2 101100 44 1.397 0.942

3 011101 29 0.921 0.246

4 001011 11 0.349 0.890

5 110000 48 1.524 0.997

6 101110 46 1.460 0.992



R.K. Bhattacharjya/CE/IITG

Distance table

7 November 2013

53

dij 1 2 3 4 5 6

1 0 0.254 0.73 1.302 0.127 0.191

2 0.254 0 0.476 1.048 0.127 0.063

3 0.73 0.476 0 0.572 0.603 0.539

4 1.302 1.048 0.572 0 1.175 1.111

5 0.127 0.127 0.603 1.175 0 0.064

6 0.191 0.063 0.539 1.111 0.064 0



R.K. Bhattacharjya/CE/IITG

Sharing function values 

7 November 2013

54

sh(dij) 1 2 3 4 5 6 nc

1 1 0.492 0 0 0.746 0.618 2.856

2 0.492 1 0.048 0 0.746 0.874 3.16

3 0 0.048 1 0 0 0 1.048

4 0 0 0 1 0 0 1

5 0.746 0.746 0 0 1 0.872 3.364

6 0.618 0.874 0 0 0.872 1 3.364



R.K. Bhattacharjya/CE/IITG

Sharing fitness value

7 November 2013

55

Sol String Decoded

value

x f nc f’

1 110100 52 1.651 0.890 2.856 0.312

2 101100 44 1.397 0.942 3.160 0.300

3 011101 29 0.921 0.246 1.048 0.235

4 001011 11 0.349 0.890 1.000 0.890

5 110000 48 1.524 0.997 3.364 0.296

6 101110 46 1.460 0.992 3.364 0.295



R.K. Bhattacharjya/CE/IITG

Solutions obtained using modified 
fitness value

7 November 2013

56



R.K. Bhattacharjya/CE/IITG

Evolutionary Strategies

7 November 2013

57

� ES use real parameter value

� ES does not use crossover operator

� It is just like a real coded genetic algorithms with 
selection and mutation operators only



R.K. Bhattacharjya/CE/IITG

Two members ES: (1+1) ES

7 November 2013

58

� In each iteration one parent is used to create 
one offspring by using Gaussian mutation 
operator



R.K. Bhattacharjya/CE/IITG

Two members ES: (1+1) ES 

7 November 2013

59

� Step1: Choose a initial solution     and a mutation 
strength 

� Step2: Create a mutate solution

� Step 3: If                  , replace      with

� Step4: If termination criteria is satisfied, stop, else 
go to step 2



R.K. Bhattacharjya/CE/IITG

Two members ES: (1+1) ES 

7 November 2013

60

� Strength of the algorithm is the proper value of 

� Rechenberg postulate

� The ratio of successful mutations to all the mutations 
should be 1/5. If this ratio is greater than 1/5, increase 
mutation strength. If it is less than 1/5, decrease the 
mutation strength.



R.K. Bhattacharjya/CE/IITG

Two members ES: (1+1) ES 

7 November 2013

61

� A mutation is defined as successful if the mutated 
offspring is better than the parent solution.

� If      is the ratio of successful mutation over n trial, 
Schwefel (1981) suggested a factor                    in 
the following    update rule



R.K. Bhattacharjya/CE/IITG

Matlab code

7 November 2013

62



7 November 2013

63



R.K. Bhattacharjya/CE/IITG

Some results of 1+1 ES

7 November 2013

64

Optimal Solution is
X*= [3.00      1.99]

Objective function value f 
= 0.0031007

1

2
2

5
5

10

10

10

2020

2
0

20

20

50

50

5
0

50

50

1
0

0

100

100
100

10
0

100

2
0

0
2
0

0

200

200
200

X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5



R.K. Bhattacharjya/CE/IITG

Multimember ES

7 November 2013

65

ES

Step1: Choose an initial population of       solutions    
and mutation strength

Step2: Create    mutated solution

Step3: Combine      and     , and choose the best 
solutions 

Step4: Terminate? Else go to step 2



R.K. Bhattacharjya/CE/IITG

Multimember ES

7 November 2013

66

ES

Through mutation

Through selection



R.K. Bhattacharjya/CE/IITG

Multimember ES

7 November 2013

67

ES

O
ff
sp
ri
n
g

Through mutation

Through selection



R.K. Bhattacharjya/CE/IITG

Multi-objective optimization

7 November 2013

68

Price 

C
o
m
fo
rt



R.K. Bhattacharjya/CE/IITG

Multi-objective optimization

7 November 2013

69

Two objectives are

• Minimize weight

• Minimize deflection



R.K. Bhattacharjya/CE/IITG

Multi-objective optimization

7 November 2013

70

� More than one objectives

� Objectives are conflicting in nature

� Dealing with two search space
� Decision variable space

� Objective space

� Unique mapping between the objectives and often the 
mapping is non-linear

� Properties of the two search space are not similar

� Proximity of two solutions in one search space does not 
mean a proximity in other search space



R.K. Bhattacharjya/CE/IITG

Multi-objective optimization

7 November 2013

71



R.K. Bhattacharjya/CE/IITG

Vector Evaluated Genetic Algorithm (VEGA)

7 November 2013

72

f1

f2

f3

f4

…

fn

P1

P2

P3

P4

Pn

…

Crossover 
and 

Mutation

Old population Mating pool New population

Propose by Schaffer (1984)



R.K. Bhattacharjya/CE/IITG

Non-dominated selection heuristic

7 November 2013

73

Give more emphasize on the non-dominated solutions of the population

This can be implemented by subtracting ∈ from the dominated solution fitness value

Suppose �� is the number of sub-population and �� is the non-dominated 
solutions. Then total reduction is �� − �� ∈. 
The total reduction is then redistributed among the non-dominated solution 
by adding an amount �� − �� ∈/��
This method has two main implications

Non-dominated solutions are given more importance

Additional equal emphasis has been given to all the non-dominated solution



R.K. Bhattacharjya/CE/IITG

Weighted based genetic algorithm (WBGA)

7 November 2013

74

� The fitness is calculated

� The spread is maintained using the sharing function 
approach 

Niche count Modified fitness

Sharing function



R.K. Bhattacharjya/CE/IITG

Multiple objective genetic algorithm (MOGA)

7 November 2013

75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x1

x
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

f1

f2

Solution space Objective space



R.K. Bhattacharjya/CE/IITG

Maximize f1

M
a
x
im
iz
e
 f
2

Multiple objective genetic algorithm (MOGA)



R.K. Bhattacharjya/CE/IITG

Multiple objective genetic algorithm (MOGA)

7 November 2013

77

Fonseca and Fleming (1993) first 
introduced multiple objective 
genetic algorithm (MOGA)

The assigned fitness value based on 
the non-dominated ranking. 

The rank is assigned as �� = 1 + ��
where �� is the ranking of the  �!
solution and �� is the number of 
solutions that dominate the solution.  

1

1

1

1

4

4

6



R.K. Bhattacharjya/CE/IITG

7 November 2013

78

� Fonseca and Fleming (1993) maintain the diversity 
among the non-dominated solution using niching
among the solution of same rank.

� The normalize distance was calculated as,

� The niche count was calculated as,

Multiple objective genetic algorithm (MOGA)



R.K. Bhattacharjya/CE/IITG

NSGA

7 November 2013

79

� Srinivas and Deb (1994) proposed NSGA

� The algorithm is based on the non-dominated 
sorting.

� The spread on the Pareto optimal front is 
maintained using sharing function



R.K. Bhattacharjya/CE/IITG

NSGA II

7 November 2013

80

� Non-dominated Sorting Genetic Algorithms

� NSGA II is an elitist non-dominated sorting Genetic 
Algorithm to solve multi-objective optimization problem 
developed by Prof. K. Deb and his student at IIT 
Kanpur. 

� It has been reported that NSGA II can converge to the 
global Pareto-optimal front and can maintain the 
diversity of population on the Pareto-optimal front



R.K. Bhattacharjya/CE/IITG

Non-dominated sorting

7 November 2013

81

 

Objective 1 (Minimize) 

O
b

je
ct

iv
e

 2
 (

M
in

im
iz

e
) 

1 

2 

3 

4 

5 

6 

 

Objective 1 (Minimize) 

O
b

je
ct

iv
e

 2
 (

M
in

im
iz

e
) 

1 

2 
3 

4 

5 
Infeasible Region 

Feasible Region 



R.K. Bhattacharjya/CE/IITG

Calculation crowding distance

7 November 2013

82

Cd, the crowded distance is the 
perimeter of the rectangle 
constituted by the two 
neighboring solutions 

Cd value more means that the 
solution is less crowded

Cd value less means that the 
solution is more crowded

 
 − 1

 + 1

Objective 1

O
b
je
ct
iv
e
 2



R.K. Bhattacharjya/CE/IITG

Crowded tournament operator

7 November 2013

83

� A solution  wins a tournament with another solution ", 
� If the solution  has better rank than ", i.e. �� < �#
� If they have the same rank, but  has a better crowding 
distance than ", i.e. �� = �# and $� > $#.



R.K. Bhattacharjya/CE/IITG

Replacement scheme of NSGA II 

7 November 2013

84

P

Q

���&
�'

�(
�)

���&
�'Selected

Rejected

Rejected based on crowding 
distanceNon dominated sorting



Initialize population of size N

Calculate all the objective functions

Rank the population according to non-

dominating criteria

Selection

Crossover

Mutation

Calculate objective function of the 

new population

Combine old and new population

Non-dominating ranking on the 

combined population

Replace parent population by the better 

members of the combined population

Calculate crowding distance of all 

the solutions

Get the N member from the 

combined population on the basis 

of rank and crowding distance

Termination 

Criteria?

Pareto-optimal solution

Yes

No

7 November 2013

85



R.K. Bhattacharjya/CE/IITG

Constraints handling in GA

7 November 2013

86

-5

5

15

25

35

45

55

0 2 4 6 8 10 12

f(
X

)

X

*(�)



R.K. Bhattacharjya/CE/IITG

Constraints handling in GA

7 November 2013

87

-5

5

15

25

35

45

55

0 2 4 6 8 10 12

f(
X

)

X

*(�) * � + - . �



R.K. Bhattacharjya/CE/IITG

Constraints handling in GA

7 November 2013

88

-5

5

15

25

35

45

55

0 2 4 6 8 10 12

f(
X

)

X

*(�) * � + - . �

*/01 + . �



R.K. Bhattacharjya/CE/IITG

Constrain handling in GA

7 November 2013

89

2 = * 3

Minimize * 3
Subject to .# � ≤ 0ℎ6 � = 0 " = 1,2,3, … , 9: = 1,2,3, … , ;

= */01 + < .# � + < ℎ6 �=
6>�

?
#>�

If 3 is feasible

Otherwise

Deb’s approach



R.K. Bhattacharjya/CE/IITG

THANKS

7 November 2013

90


