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1 Introduction
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Motivation

State of the art for computing APSP:

weights | complexity ref
directed real O(mn + n2 lgn) [Johnson *77]
directed integer | O(mn + n*1glgn) | [Hagerup *00]
undirected | real O(mno(m,n)) [Pettie-Rama *01]
undirected | integer | O(mn) [Thorup *97]

Given an arbitrary dense graph, find a sparse subgraph that approximates all
pair distances fairly well.
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(c, §)-spanner: definition

Given a graph G(V, E), a subgraph G'(V,E’) of G is a («, 3)-spanner (o > 1)
of G iff for every u,v € V, distg: (u,v) < adistg(u,v) + B.

* « is the stretch (dilation) factor and j is the surplus or additive factor of
G/
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r-Spanners and -+ [-spanners: definitions

An (a, B)-spanner G’ with o = (> 1) and 3 = 0 is known as a r-spanner of
the given graph G. — « focus of this talk

u J

2-spanner is in red

An («, B)-spanner G’ with &« = 0 and 3 > 1 is known as a +3-(additive)
spanner of the given graph G.
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A few applications

APASP in sub-cubic time/sub-quadratic space

every algorithm that has m-term gets benefitted

distributed computing

® reconstructing phylogeny trees
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t-Spanner: another definition

Given a graph G(V, E), a subgraph G'(V, E') of G is a t-spanner (t > 1)
of G iff for every u,v € V, distg: (u,v) < t.distg(u,v).

=

Given a graph G(V, E), a subgraph G'(V, E’) of G is a t-spanner (t > 1)
of G iff for every edge e(u,v) € E, distg:(u,v) < t.distg(u,v).
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t-Spanner: another definition

Given a graph G(V, E), a subgraph G'(V, E') of G is a t-spanner (t > 1)
of G iff for every u,v € V, distg: (u,v) < t.distg(u,v).

=

Given a graph G(V, E), a subgraph G'(V, E’) of G is a t-spanner (t > 1)
of G iff for every edge e(u,v) € E, distg:(u,v) < t.distg(u,v).

Ex: A complete graph on n vertices has a 2-spanner of size n — 1.
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A few lower bounds

® No bipartite graph has a 2-spanner except for the same graph itself.
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A few lower bounds

® No bipartite graph has a 2-spanner except for the same graph itself.
® For a given graph G(V, E) with two integers ¢,m > 1, deciding whether
G has a t-spanner with < m edges is NP-complete.

— not proved in this talk
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A few lower bounds

® No bipartite graph has a 2-spanner except for the same graph itself.

® For a given graph G(V, E) with two integers ¢,m > 1, deciding whether
G has a t-spanner with < m edges is NP-complete.

— not proved in this talk
® Fort > 2, itis NP-hard to approximate the smallest size of #-spanner of a

graph with O(2(1=#) 1) apprx factor for any > 0.

— not proved in this talk
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Erdos girth conjecture

® Conjecture from [Erdds *63]: For integer k > 1 and sufficiently large n,
there exist n-node undirected unweighted graphs of girth > 2k + 2 with
Q(n'+1/k) edges.?.

- proofs exist for k = 1,2,3,5 — not proved in this talk

%do note (2k — 1)-spanner is also a 2k-spanner
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Erdos girth conjecture

® Conjecture from [Erdds *63]: For integer k > 1 and sufficiently large n,
there exist n-node undirected unweighted graphs of girth > 2k + 2 with
Q(n'+1/k) edges.?.

- proofs exist for k = 1,2,3,5 — not proved in this talk

e Assuming Erdos girth conjecture, a (2k — 1)-spanner with O(n'*1/¥)
number of edges for (un)weighted graphs is the best one could hope for.
ey
- Consider a (2k — 1)-spanner G’ of an unweighted graph G. Then,
dgr (u,v) < (2k — 1)dg(u, v) = 2k — 1. Implying that there is a path of length at most

2k — 1 between u and v in G’. Including edge (1, v) into G’ leads to a cycle of length 2k in
G’. However, G has girth 2k + 2.

%do note (2k — 1)-spanner is also a 2k-spanner
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Lower bounds for directed graphs

® Typically, directed graphs cannot have sparse spanners.

- consider a directed bipartite graph (U, V) with each of its arcs oriented from U to V

Hence, for such graphs, one cannot do any better than taking the entire
graph as its own f-spanner.
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Outline

2 Based on node clustering (for unweighted graphs)
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Breadth-first traversal (review)

breadth-first traversal, respectively rooted at 1,9 and 11

— takes O(n + m) time
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Breadth-first traversal (review)

breadth-first traversal, respectively rooted at 1,9 and 11

— takes O(n + m) time

For a connected graph G, breath-first traversal tree rooted at any vertex of G is
a O(n) spanner of G.

(A few spanners for undirected graphs) 12/48



Observation

Partition the vertex set V of G into clusters® and introduce as few edges as
possible into spanner G’ so that

® the distance between any two nodes in a cluster
® as well as the distance between any two nodes from two distinct clusters

are nicely approximated.

3cluster means a connected component
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Algorithm (from [Peleg, Schaffer *89]): high-level view

input: undirected unweighted graph G(V, E) and an integer k > 1

(@ partition V into T sets such that for every S; € T, there exists a vertex c;
such that the distance between c; and any vertex of S;in Gis < k — 1

@ Ensure the same in G’ by introducing appropriate edges into G':
(U; SSSPTree.,) UI', wherein set I’ comprises of one edge between every
two clusters that have at least one edge between them

output: G'(V, E') is a O(k)-spanner of G(V, E) with |E’| being O(n”%) —

claim
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G' is a (4k — 3)-spanner of G: case (i)

both the endpoints of an edge e € E belong to same cluster
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G' is a (4k — 3)-spanner of G: case (ii)

endpoints of an edge e € E belong to two distinct clusters
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Issue with the above algorithm

How to bound the number of clusters, in turn number of intercluster edges?

(A few spanners for undirected graphs) 18/48



Partition V into 7

input: undirected unweighted graph G(V, E) and an integer k > 1
@ do till every vertex of input graph G belong to a cluster:
@ for an arbitrary vertex c in the remaining graph, set S < {c}
@i) while |SUT(S)| > n'/¥|S|
(@) include I'(S) to S
@ii) add S to 7 and remove all the vertices in S from G
@ G’ comprises of | J; SSSP., UI', wherein set I’ of edges is formed by

choosing one edge between every two clusters that have at least one edge
between them
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Property (i) of 7

For every S; € T, G[S;] is a cluster, and V is indeed paritioned into 7.
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Property (ii) of 7

The cardinality of set I of intercluster edges is upper bounded by nlti,

* m < ZS,—eTnl/k|Si| _ nl—i—l/k
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Property (iii) of 7

For every S; € T, the radius of G[S;] with respect to a special vertex ¢; € S is
upper bounded by k — 1.

* while building any cluster, number of nodes in it after adding i” layer to
itis > ni/k

* in any cluster, number of layers added to initial vertex < k — 1
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Time complexity

Takes O(m + n'+1/¥) time to construct G'.
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G' is a spanner of interest

® G'(V,E') is a O(k)-spanner of G(V, E) with |E’| being O(n'+1/k).

® From (1), the spanner output by the algorithm is optimal with respect to
size and (asymptotic) spanning ratio.
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Outline

3 Using a hitting set (for unweighted graphs)
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Construction

¢ With a naive greedy algorithm, compute a hitting set H of size O(/n)
such that H N N(v) # ¢ for every v in G whose degree(v) > \/n. (Here,
N(v) is the closed neighborhood of v.)

® Forevery s € H, include edges of BFT(s) into G'.

® For every vertex v of G with degree(v) < \/n, include every edge
incident to v into G'.

The number of edges in G’ is O(n*/? g n).
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Correctness

For any two nodes u, v of G,

® if SP(u,v) contains no node with degree > \/n, then SP(u,v) € G';

*4-4-spanner with O(n’/°polylg) edges and +6 spanner with O(n*/*polylg) edges are
known
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Correctness

For any two nodes u, v of G,

® if SP(u,v) contains no node with degree > \/n, then SP(u,v) € G';

e otherwise, for any node w with degree > /n in SP(u, v), there exists a
node w' € N(w) N H,;

*4-4-spanner with O(n’/°polylg) edges and +6 spanner with O(n*/*polylg) edges are
known
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Correctness

For any two nodes u, v of G,

® if SP(u,v) contains no node with degree > \/n, then SP(u,v) € G';

e otherwise, for any node w with degree > /n in SP(u, v), there exists a
node w' € N(w) N H,;
dor (u,v)
<dg (u,w')+de(w,v)
=de(W,u)+dc(w',v)
< (dg(u,w) + 1) + (dg(w,v) + 1)
=dg(u,v) + 2.

*4-4-spanner with O(n’/°polylg) edges and +6 spanner with O(n*/*polylg) edges are
known
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Correctness

For any two nodes u, v of G,

® if SP(u,v) contains no node with degree > \/n, then SP(u,v) € G';

e otherwise, for any node w with degree > /n in SP(u, v), there exists a
node w' € N(w) N H,;
dor (u,v)
<dg (u,w')+de(w,v)
=de(W,u)+dc(w',v)
< (dg(u,w) + 1) + (dg(w,v) + 1)
=dg(u,v) + 2.

4/3

Open problem: Computing a +4-spanner with O(n*/~polylg) number of

edges. 4

7/5 4/3

4 +-4-spanner with O(n
known

polylg) edges and +6 spanner with O(n*/°polylg) edges are
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4 MST based
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Minimum spanning tree (review)

Objective: Given an undirected weighted connected graph G(V, E), find a tree
T that spans all the nodes in V such that 7" has the minimum weight among all
the spanning trees.
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MST properties (review)

® MST cut property: Assuming all the edge weights are distinct, e is the
minimum weighted edge crossing some cut C of G << e € MST.

® MST cycle property: Assuming all the edge weights are distinct, e is the
maximum weighed edge in some cycle O of G < e ¢ MST.
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Kruskal’s MST algorithm (review)

Start with the spanning forest (SF) comprising vertices of G with no edges
included. Consider edges in the order of increasing weight. For an edge
e(u,v):

® [f there exists a path from u to v in the current SF, do not add e.
exploits MST cycle property

® Otherwise, add e.

exploits MST cut property
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Kruskal’s algorithm in execution
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Kruskal’s algorithm in execution
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Kruskal’s algorithm in execution
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Kruskal’s algorithm in execution
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Kruskal’s algorithm in execution (cont)

Output MST

takes O(|E|lg |V]) time
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A few observations from Kruskal’s algorithm

e [f two components C' and C” are joined with an edge e during the
algorithm, then e is the heaviest weight among the T¢r U T U {e}.

® [f the algorithm choses an edge e wherein an endpoint of e incident to a
component C’, then e is the lightest edge between C’ and V — C'.
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MST T is a (n — 1)-spanner

let C’, C” be two components in the spanning forest F such that s" € C" and
s € C" just before adding an edge e to F so that C' and C” are merged
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MST T is a (n — 1)-spanner

let C’, C” be two components in the spanning forest F such that s" € C" and
s € C" just before adding an edge e to F so that C' and C” are merged

dT(S/, SI/)
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MST T is a (n — 1)-spanner

let C’, C” be two components in the spanning forest F such that s" € C" and
s € C" just before adding an edge e to F so that C' and C” are merged

dT(s’,s”)
< (IC+[C"] = Dw.

since e is the heaviest edge in C’ U C" U {e}
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MST T is a (n — 1)-spanner

let C’, C” be two components in the spanning forest F such that s" € C" and
s € C" just before adding an edge e to F so that C' and C” are merged

dT(s’,s”)
< (IC+[C"] = Dw.

since e is the heaviest edge in C’ U C" U {e}

<(n— 1w,
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MST T is a (n — 1)-spanner

let C’, C” be two components in the spanning forest F such that s" € C" and
s € C" just before adding an edge e to F so that C' and C” are merged

dT<S/,S”)
< (IC'[+1C"] = Dw,

since e is the heaviest edge in C’ U C" U {e}
<(n— 1w,

< (n—1)dg(s',s")

since e is the lightest edge between C’ and V — C’
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Lower bound on the stretch of any spanning tree
spanner

For a unit-weighted cycle graph, the stretch 7 can be as bad as Q(n).

® hence, Kruskal’s algorithm based MST is an optimal spanner with respect to stretch

Disadv with spanning tree spanners: best possible stretch is a function of n
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Outline

5 A greedy algorithm
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An obvious greedy algorithm: from [Althofer et al. *93]

while considering edges in weight nondecreasing order, introduce an edge
e(u,v) € G in G’ whenever distg/ (u,v) > (2k — 1)w(e)

® every iteration ensures that G’ is locally (with respect to u and v) a
t-spanner (hence, greedy)
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G'is a (2k — 1)-spanner

Just after considering edge (u, v) by the algorithm,
dgl (u, V)
< Z(x,y) cpdcr(x,y), where P is a shortest path between u and v in G

< Z(x,y)eP(Zk — l)dG (x, y) (since w(x,y) < w(u,v), edge (x,y) was considered in the
greedy algorithm)

= (2k — 1)dg(u,v)
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Upper bounding the number of edges of G’

® The spanner G’ has girth > 2k.

- Suppose G’ has a cycle C of length (2k — k'), for an integer X’ > 0. Then, for a maximum
weighted edge e(u, v) of C, the weight of C — e is at most
(2k — k' — 1)w(u,v) < (2k — 1)w(u, v), contradicting inclusion of e into G’ by the

algorithm.
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Upper bounding the number of edges of G’

® The spanner G’ has girth > 2k.

- Suppose G’ has a cycle C of length (2k — k'), for an integer X’ > 0. Then, for a maximum
weighted edge e(u, v) of C, the weight of C — e is at most
(2k — k' — 1)w(u,v) < (2k — 1)w(u, v), contradicting inclusion of e into G’ by the

algorithm.

® The spanner G’ has O(nH'%) edges.

- remove every node in G’ that has degree < (nl/ K7 in the resulting graph G”, if there is no
cycle of length < 2k, edges encountered up till level-k of a breadth-first search of G”/ yields a
tree;

- however, since the minimum degree of G”/ is > |'n] / 1‘] , this search must have encountered
more than > (n'/%)% = n nodes; this says, G’ has girth at most 2k, implying, G’ has girth at

most 2k, a contradiction

(A few spanners for undirected graphs) 40/48



Upper bounding the number of edges of G’

® The spanner G’ has girth > 2k.

- Suppose G’ has a cycle C of length (2k — k'), for an integer X’ > 0. Then, for a maximum
weighted edge e(u, v) of C, the weight of C — e is at most
(2k — k' — 1)w(u,v) < (2k — 1)w(u, v), contradicting inclusion of e into G’ by the

algorithm.

® The spanner G’ has O(nH'%) edges.

- remove every node in G’ that has degree < [7!/¥]; in the resulting graph G”', if there is no
cycle of length < 2k, edges encountered up till level-k of a breadth-first search of G”’ yields a
tree;

- however, since the minimum degree of G”/ is > |'n] / 1‘] , this search must have encountered
more than > (n'/%)% = n nodes; this says, G’ has girth at most 2k, implying, G’ has girth at

most 2k, a contradiction

From (1), the spanner output by the above algorithm is optimal. But, do note
that this algorithm takes O(min(kn®>*'/% mn'+1/%)) time.
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Observation: MSTg is a subgraph of G’

® Compare this algo with the Kruskal’s algo for MST: after examining
each edge, the number of connected components are same in both; and
each component from this algo contains a corresponding component
from Kruskal’s algo. (proof by induction)
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Construct skinny polygon P with respect to MSTg; for any vertex v, let S, be
the set of edges in G’ that have v as one endpoint but do not belong to MST;
obtain a planar embedding of S, during the DFT of MSTs with root as v

e for any cycle C in G’ and for any edge e € C,
w(C — {e}) > (2k — 1)w(e)

® perimeter of P after embedding all the edges in S, =
2w(MSTg) — ((2k—1) = 1) > 5 w(e) >0
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Outline

6 Conclusions
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Significant (2k — 1)-spanner algorithms

size time wei
[Althofer et al. 93] | O(n'T1/k) O(mn'+1/¥) w
[Halperin, Zwick "96] | O(n'*+1/k) O(m) u
[Cohen *98] O(n'++)/ =1y | O(mn+9)/ k=1 expc | pw
[Thorup, Zwick 05] | O(n'*+1/k) O(kmn'/*) expc w
[Baswana, Sen *07] | O(kn't1/k) O(km) expc w

Sw: weighted; u: unweighted; p: positive weighted
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Current research (weighted graphs)

® (2k — 1) spanner of size O(n'*!/¥) in deterministic linear time
e obtaining < 3 stretch in n2+°() time

e purely additive spanners of size o(n*/3)

® pairwise spanners

® fault-tolerant spanners

® minimum-degree spanners

® dynamic spanners

® a3 combination of the above
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Thanks!
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