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Motivation

State of the art for computing APSP:
weights complexity ref

directed real O(mn + n2 lg n) [Johnson ’77]
directed integer O(mn + n2 lg lg n) [Hagerup ’00]
undirected real O(mnα(m, n)) [Pettie-Rama ’01]
undirected integer O(mn) [Thorup ’97]

Given an arbitrary dense graph, find a sparse subgraph that approximates all
pair distances fairly well.
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(α, β)-spanner: definition

Given a graph G(V,E), a subgraph G′(V,E′) of G is a (α, β)-spanner (α > 1)
of G iff for every u, v ∈ V , distG′(u, v) ≤ αdistG(u, v) + β.

* α is the stretch (dilation) factor and β is the surplus or additive factor of
G′
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t-Spanners and +β-spanners: definitions

An (α, β)-spanner G′ with α = t(> 1) and β = 0 is known as a t-spanner of
the given graph G. —← focus of this talk
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2-spanner is in red

An (α, β)-spanner G′ with α = 0 and β > 1 is known as a +β-(additive)
spanner of the given graph G.
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A few applications

• APASP in sub-cubic time/sub-quadratic space

• every algorithm that has m-term gets benefitted

• distributed computing

• reconstructing phylogeny trees
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t-Spanner: another definition

Given a graph G(V,E), a subgraph G′(V,E′) of G is a t-spanner (t > 1)
of G iff for every u, v ∈ V , distG′(u, v) ≤ t.distG(u, v).

⇔

Given a graph G(V,E), a subgraph G′(V,E′) of G is a t-spanner (t > 1)
of G iff for every edge e(u, v) ∈ E, distG′(u, v) ≤ t.distG(u, v).

Ex: A complete graph on n vertices has a 2-spanner of size n− 1.
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A few lower bounds

• No bipartite graph has a 2-spanner except for the same graph itself.

• For a given graph G(V,E) with two integers t,m ≥ 1, deciding whether
G has a t-spanner with < m edges is NP-complete.

— not proved in this talk

• For t > 2, it is NP-hard to approximate the smallest size of t-spanner of a
graph with O(2(1−µ) ln n) apprx factor for any µ > 0.

— not proved in this talk
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Erdös girth conjecture

• Conjecture from [Erdös ’63]: For integer k ≥ 1 and sufficiently large n,
there exist n-node undirected unweighted graphs of girth ≥ 2k + 2 with
Ω(n1+1/k) edges.2.

- proofs exist for k = 1, 2, 3, 5 — not proved in this talk

• Assuming Erdös girth conjecture, a (2k − 1)-spanner with O(n1+1/k)
number of edges for (un)weighted graphs is the best one could hope for.
————– (1)

- Consider a (2k − 1)-spanner G′ of an unweighted graph G. Then,

dG′ (u, v) ≤ (2k − 1)dG(u, v) = 2k − 1. Implying that there is a path of length at most

2k − 1 between u and v in G′. Including edge (u, v) into G′ leads to a cycle of length 2k in

G′. However, G has girth 2k + 2.

2do note (2k − 1)-spanner is also a 2k-spanner
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Lower bounds for directed graphs

• Typically, directed graphs cannot have sparse spanners.

- consider a directed bipartite graph (U,V) with each of its arcs oriented from U to V

Hence, for such graphs, one cannot do any better than taking the entire
graph as its own t-spanner.
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Breadth-first traversal (review)
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breadth-first traversal, respectively rooted at 1, 9 and 11

— takes O(n + m) time

For a connected graph G, breath-first traversal tree rooted at any vertex of G is
a O(n) spanner of G.
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Observation

Partition the vertex set V of G into clusters3 and introduce as few edges as
possible into spanner G′ so that

• the distance between any two nodes in a cluster

• as well as the distance between any two nodes from two distinct clusters

are nicely approximated.

3cluster means a connected component
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Algorithm (from [Peleg, Schaffer ’89]): high-level view

input: undirected unweighted graph G(V,E) and an integer k ≥ 1

(1) partition V into T sets such that for every Si ∈ T , there exists a vertex ci

such that the distance between ci and any vertex of Si in G is ≤ k − 1

(2) Ensure the same in G′ by introducing appropriate edges into G′:
(
⋃

i SSSPTreeci)∪ I′, wherein set I′ comprises of one edge between every
two clusters that have at least one edge between them

output: G′(V,E′) is a O(k)-spanner of G(V,E) with |E′| being O(n1+ 1
k )←

claim
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An example

spanner is in red color
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G′ is a (4k − 3)-spanner of G: case (i)

u

v

ci

≤ k − 1

≤ k − 1

e

both the endpoints of an edge e ∈ E belong to same cluster
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G′ is a (4k − 3)-spanner of G: case (ii)

u

ci

≤ k − 1

≤ k − 1

v

≤ k − 1

≤ k − 1

e

cj

a

b

endpoints of an edge e ∈ E belong to two distinct clusters
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Issue with the above algorithm

How to bound the number of clusters, in turn number of intercluster edges?

(A few spanners for undirected graphs) 18 / 48



Partition V into T

input: undirected unweighted graph G(V,E) and an integer k ≥ 1

(1) do till every vertex of input graph G belong to a cluster:

(i) for an arbitrary vertex c in the remaining graph, set S← {c}

(ii) while |S ∪ Γ(S)| > n1/k|S|

(a) include Γ(S) to S

(iii) add S to T and remove all the vertices in S from G

(2) G′ comprises of
⋃

i SSSPci ∪ I′, wherein set I′ of edges is formed by
choosing one edge between every two clusters that have at least one edge
between them
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Property (i) of T

For every Si ∈ T , G[Si] is a cluster, and V is indeed paritioned into T .
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Property (ii) of T

The cardinality of set I of intercluster edges is upper bounded by n1+ 1
k .

* |I| ≤∑
Si∈T n1/k|Si| = n1+1/k
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Property (iii) of T

For every Si ∈ T , the radius of G[Si] with respect to a special vertex ci ∈ S is
upper bounded by k − 1.

* while building any cluster, number of nodes in it after adding ith layer to
it is > ni/k

* in any cluster, number of layers added to initial vertex ≤ k − 1
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Time complexity

Takes O(m + n1+1/k) time to construct G′.

(A few spanners for undirected graphs) 23 / 48



G′ is a spanner of interest

• G′(V,E′) is a O(k)-spanner of G(V,E) with |E′| being O(n1+1/k).

• From (1), the spanner output by the algorithm is optimal with respect to
size and (asymptotic) spanning ratio.
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Construction

• With a naive greedy algorithm, compute a hitting set H of size O(
√

n)
such that H ∩ N(v) ̸= ϕ for every v in G whose degree(v) ≥ √n. (Here,
N(v) is the closed neighborhood of v.)

• For every s ∈ H, include edges of BFT(s) into G′.

• For every vertex v of G with degree(v) <
√

n, include every edge
incident to v into G′.

The number of edges in G′ is O(n3/2 lg n).
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Correctness

For any two nodes u, v of G,

• if SP(u, v) contains no node with degree >
√

n, then SP(u, v) ∈ G′;

• otherwise, for any node w with degree >
√

n in SP(u, v), there exists a
node w′ ∈ N(w) ∩ H;

dG′(u, v)

≤ dG′(u,w′) + dG′(w′, v)

= dG(w′, u) + dG(w′, v)

≤ (dG(u,w) + 1) + (dG(w, v) + 1)

= dG(u, v) + 2.

Open problem: Computing a +4-spanner with O(n4/3polylg) number of
edges. 4

4+4-spanner with O(n7/5polylg) edges and +6 spanner with O(n4/3polylg) edges are
known
(A few spanners for undirected graphs) 27 / 48



Correctness

For any two nodes u, v of G,

• if SP(u, v) contains no node with degree >
√

n, then SP(u, v) ∈ G′;

• otherwise, for any node w with degree >
√

n in SP(u, v), there exists a
node w′ ∈ N(w) ∩ H;

dG′(u, v)

≤ dG′(u,w′) + dG′(w′, v)

= dG(w′, u) + dG(w′, v)

≤ (dG(u,w) + 1) + (dG(w, v) + 1)

= dG(u, v) + 2.

Open problem: Computing a +4-spanner with O(n4/3polylg) number of
edges. 4

4+4-spanner with O(n7/5polylg) edges and +6 spanner with O(n4/3polylg) edges are
known
(A few spanners for undirected graphs) 27 / 48



Correctness

For any two nodes u, v of G,

• if SP(u, v) contains no node with degree >
√

n, then SP(u, v) ∈ G′;

• otherwise, for any node w with degree >
√

n in SP(u, v), there exists a
node w′ ∈ N(w) ∩ H;

dG′(u, v)

≤ dG′(u,w′) + dG′(w′, v)

= dG(w′, u) + dG(w′, v)

≤ (dG(u,w) + 1) + (dG(w, v) + 1)

= dG(u, v) + 2.

Open problem: Computing a +4-spanner with O(n4/3polylg) number of
edges. 4

4+4-spanner with O(n7/5polylg) edges and +6 spanner with O(n4/3polylg) edges are
known
(A few spanners for undirected graphs) 27 / 48



Correctness

For any two nodes u, v of G,

• if SP(u, v) contains no node with degree >
√

n, then SP(u, v) ∈ G′;

• otherwise, for any node w with degree >
√

n in SP(u, v), there exists a
node w′ ∈ N(w) ∩ H;

dG′(u, v)

≤ dG′(u,w′) + dG′(w′, v)

= dG(w′, u) + dG(w′, v)

≤ (dG(u,w) + 1) + (dG(w, v) + 1)

= dG(u, v) + 2.

Open problem: Computing a +4-spanner with O(n4/3polylg) number of
edges. 4

4+4-spanner with O(n7/5polylg) edges and +6 spanner with O(n4/3polylg) edges are
known
(A few spanners for undirected graphs) 27 / 48



Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions

(A few spanners for undirected graphs) 28 / 48



Minimum spanning tree (review)

Objective: Given an undirected weighted connected graph G(V,E), find a tree
T that spans all the nodes in V such that T has the minimum weight among all
the spanning trees.
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MST properties (review)

• MST cut property: Assuming all the edge weights are distinct, e is the
minimum weighted edge crossing some cut C of G⇔⇔ e ∈ MST .

• MST cycle property: Assuming all the edge weights are distinct, e is the
maximum weighed edge in some cycle O of G⇔ e /∈ MST .
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Kruskal’s MST algorithm (review)

Start with the spanning forest (SF) comprising vertices of G with no edges
included. Consider edges in the order of increasing weight. For an edge
e(u, v):

• If there exists a path from u to v in the current SF, do not add e.

exploits MST cycle property

• Otherwise, add e.

exploits MST cut property
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Kruskal’s algorithm in execution
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Kruskal’s algorithm in execution (cont)
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Output MST

takes O(|E| lg |V|) time
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A few observations from Kruskal’s algorithm

• If two components C′ and C′′ are joined with an edge e during the
algorithm, then e is the heaviest weight among the TC′ ∪ TC′′ ∪ {e}.

• If the algorithm choses an edge e wherein an endpoint of e incident to a
component C′, then e is the lightest edge between C′ and V − C′.
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MST T is a (n− 1)-spanner

let C′,C′′ be two components in the spanning forest F such that s′ ∈ C′ and
s′′ ∈ C′′ just before adding an edge e to F so that C′ and C′′ are merged

dT(s′, s′′)

≤ (|C′|+ |C′′| − 1)we

since e is the heaviest edge in C′ ∪ C′′ ∪ {e}

≤ (n− 1)we

≤ (n− 1)dG(s′, s′′)
since e is the lightest edge between C′ and V − C′
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Lower bound on the stretch of any spanning tree
spanner

For a unit-weighted cycle graph, the stretch t can be as bad as Ω(n).

• hence, Kruskal’s algorithm based MST is an optimal spanner with respect to stretch

Disadv with spanning tree spanners: best possible stretch is a function of n
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An obvious greedy algorithm: from [Althofer et al. ’93]

while considering edges in weight nondecreasing order, introduce an edge
e(u, v) ∈ G in G′ whenever distG′(u, v) > (2k − 1)w(e)

• every iteration ensures that G′ is locally (with respect to u and v) a
t-spanner (hence, greedy)
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G′ is a (2k − 1)-spanner

Just after considering edge (u, v) by the algorithm,

dG′(u, v)

≤∑
(x,y)∈P dG′(x, y), where P is a shortest path between u and v in G

≤∑
(x,y)∈P(2k − 1)dG(x, y) (since w(x, y) < w(u, v), edge (x, y) was considered in the

greedy algorithm)

= (2k − 1)dG(u, v)
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Upper bounding the number of edges of G′

• The spanner G′ has girth > 2k.

- Suppose G′ has a cycle C of length (2k − k′), for an integer k′ ≥ 0. Then, for a maximum

weighted edge e(u, v) of C, the weight of C − e is at most

(2k − k′ − 1)w(u, v) ≤ (2k − 1)w(u, v), contradicting inclusion of e into G′ by the

algorithm.

• The spanner G′ has O(n1+ 1
k ) edges.

- remove every node in G′ that has degree ≤ ⌈n1/k⌉; in the resulting graph G′′, if there is no
cycle of length≤ 2k, edges encountered up till level-k of a breadth-first search of G′′ yields a
tree;

- however, since the minimum degree of G′′ is > ⌈n1/k⌉, this search must have encountered

more than > (n1/k)k = n nodes; this says, G′′ has girth at most 2k, implying, G′ has girth at

most 2k, a contradiction

From (1), the spanner output by the above algorithm is optimal. But, do note
that this algorithm takes O(min(kn2+1/k,mn1+1/k)) time.
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Upper bounding the number of edges of G′
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Observation: MSTG is a subgraph of G′

• Compare this algo with the Kruskal’s algo for MST: after examining
each edge, the number of connected components are same in both; and
each component from this algo contains a corresponding component
from Kruskal’s algo. (proof by induction)
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w(G′) ≤ w(MSTG)(1 + n
2k−2)

v

C

e

e

1

2

a

b

d

Construct skinny polygon P with respect to MSTG; for any vertex v, let Sv be
the set of edges in G′ that have v as one endpoint but do not belong to MSTG;
obtain a planar embedding of Sv during the DFT of MSTG with root as v

• for any cycle C in G′ and for any edge e ∈ C,
w(C − {e}) > (2k − 1)w(e)

• perimeter of P after embedding all the edges in Sv =
2w(MSTG)− ((2k − 1)− 1)

∑
e∈Sv

w(e) > 0
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Significant (2k − 1)-spanner algorithms

size time wei
[Althofer et al. ’93] O(n1+1/k) O(mn1+1/k) w5

[Halperin, Zwick ’96] O(n1+1/k) O(m) u
[Cohen ’98] O(n1+(2+ϵ)/(2k−1)) O(mn(2+ϵ)/(2k−1)) expc pw
[Thorup, Zwick ’05] O(n1+1/k) O(kmn1/k) expc w
[Baswana, Sen ’07] O(kn1+1/k) O(km) expc w

5w: weighted; u: unweighted; p: positive weighted
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Current research (weighted graphs)

• (2k − 1) spanner of size O(n1+1/k) in deterministic linear time

• obtaining < 3 stretch in n2+o(1) time

• purely additive spanners of size o(n4/3)

• pairwise spanners

• fault-tolerant spanners

• minimum-degree spanners

• dynamic spanners

• a combination of the above
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Thanks!
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