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1 Problem description
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Polygonal domain

® A simple polygon P containing disjoint simple polygonal holes (a.k.a.
obstacles) in R? is termed as the polygonal domain D.

® Polygon P sans interior of the holes is termed as the free space F.

n: number of vertices

h: number of holes
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Shortest paths in polygonal domains

® Given D with two points s, ¢ € F, find a Euclidean shortest path (SP),
say SPy, from s to ¢ such that SPy, lies in F.

Applications in robot motion planning, route planning using GPS, VLSI wire
routing etc.,
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Shortest paths are simple paths

SPy, is a simple path.

- proof by contradiction
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Optimal Substructure: SPs are locally shortest

SPy; contains subpath L from p to ¢ = L must be SP,,

p . t

- proof by contradiction
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SP is polygonal

Every shortest path is a polygonal path.

- proof by contradiction
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Every internal vertex of SP is a vertex of D

No internal vertex of a SP can lie either:

® in the free space, or

® interior to an edge.

- proof by contradiction
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Angle at every internal vertex is outward convex

proof by contradiction
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Unique shortest paths in simple polygons

For two points s, 7 in a simple polygon, SP(s, 7) is unique.

- proof by contradiction
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High Level Description

1 Compute a weighted graph G from D so that an edge e € SP, in D then
e cG.

2 Compute SP in G.

(Euclidean shortest path using visibility graphs 11/34



Outline

2 Characterizations
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Visibility Graph of D

The weighted undirected graph VGp(V, E’) is defined over D such that:

® V is the set of vertices in D,
® anedge e(u,v) € E' whenever u and v are visible to each other in D, and

¢ for every edge e(u, v), the weight of e is the Euclidean distance along the
line segment uv in D.
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Geometric Shortest Paths and Visibility Graphs
Considering s and ¢ as degenerate holes in D, e € SPy, in D < ¢ € SPy,
in VGD.

® SPj is polygonal with the internal vertices chosen from D, and

® Every edge e(u,v) in SPy, belongs to F.

!0
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Time complexity is dominated by VGp computation and |E'|.

(Euclidean shortest path using visibility graphs 14/34



Tangent Visibility Graph

The tangent visibility graph 7VGp(V, E) for D is defined whenever
each hole in D is convex. It is same as VGp(V, E) except that:

an edge e(u,v) € E iff uv is either an edge of a hole in D or a tangent
between two convex holes.

a

f

|E| is Q(h?).
Computing tangents between two convex hulls CH’ and CH” takes
O(lg |CH'| + 1g |CH"|) (from [Edelsbrunner, 1985]).
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Geometric Shortest Paths and Tangent Visibility
Graphs

Considering s and ¢ as degenerate holes in D, e € SP; in D < e € SPy
in TVGD.
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(Yet Another) High Level Description

Suppose that all holes are convex and the boundary of outer polygon is
convex.

1 Compute the weighted tangent visibility graph 7VG corresonding to D.

2 Find a shortest path from s to ¢ in 7VG.

Approach is due to [Rohnert, 1986].
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3 Compute tangents that lie in /' between convex holes
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Computing Tangents between every two Convex Holes

® Divide each convex chain into upper and lower convex chains.

e Compute all the four possible tangents between every two convex holes.

upper tangents of H for H”’

upper chain
of H w.r.ix

lower tangents of H for H”’

Time complexity: O(h?1g (n))
from 37, . O(lg [H'| + 1g [H"])
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One lower tangent vs other lower tangents

The lower tangent ¢ of H; for H3 intesects a hole H; iff ¢ intersects the

lower diagonal of H, for H;.

t intersects H, iff t intersects de.



Computing lower tangents that lie in F

Traverse the boundary of H in counterclockwise order starting from any
vertex a, and at each vertex v of H, add the lower tangents of H incident
at v to the ordered list L according to their counterclockwise angle at v
with the clockwise edge of H at vertex v.

\\\d2
L= {l],lz,.‘. ,t12}
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Computing lower tangents that lie in F (cont)

® Construct a BBST T to reflect the order in which the diagonals intersect
the ray r.

® While exploring each such ray r, remove #; from L if d corresponding to
t; is not the leftmost leaf of 7.

L= {tl,tz,.. . ,l‘]g}
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Computing lower tangents that lie in F (cont)

L:{tz,...,llz}
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Computing lower tangents that lie in F (cont)

L:{tg,,...,tlz}
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Computing lower tangents that lie in F (cont)

/*'r
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Computing lower tangents that lie in F (cont)

e
T
dg
— as
ot ds b
L; {t4,t5, .,llz}
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Computing lower tangents that lie in F (cont)

L= {t4) t57 t67
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Computing lower tangents that lie in F (cont)

g d

Output: L = {t4,15,16,t7,19,110}

e Time to process one hole: O(|Vy| + hlgh)
e Time to process all holes: O(n + h?1g h)
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Computing upper tangents that lie in 7 (cont)

Applying similar procedure as in identifying lower tangents that lie in F:

¢ Time to process one hole: O(|Vy| + hlgh)

e Time to process all holes: O(n + h?1g h)
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4 Apply a graph algorithm to find a SP
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Computing SP in T7VGp(V, E) using Dijkstra’s
Algorithm

@6

2 2 6 3

® |V]isn
® |E|is O(h* 4 n)

e Applying Dijkstra’s Algorithm to compute SP takes O(h> 4+ n 4 nlgn).
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Time complexity of the suggested algorithm

e Computing all possible tangents between every two holes: O(h?1gn)
e Computing all tangents that lie in F: O(n + h*1gh)

e Computing SP over tangent visibility graph: O(h?> + nlgn)

Total time: O(n + (n + h?) Ign).

Assuming h? > n, itis O(n + h*lgn).
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5 Conclusions
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Summary

® Building tangent visibility graph and running SP algorithm for graphs:
O(n+ (n + h*)1gn) and O(n) space.

® Running continous Dijkstra’s algorithm in geometric domain:
O(T + h(1gh)(lgn)) and O(n) space.

® Problem 21 of The Open Problems Project (TOPP) of Computational
Geometry which intends for a solution with O(n + hlgh) time and O(n)
space.
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