MA 102 (Multivariable Calculus)

IIT Guwahati

Date: April 12, 2013

Tutorial Sheet No. 6

R. Alam

Line integrals, Double integrals, Green's Theorem

- (1) Evaluate the line integral $\int_{\Gamma} F \bullet d\mathbf{r}$ of the vector field F given below.
 - (a) $F(x,y) := (x^2 + 2xy, y^2 2xy)$ from (-1,1) to (1,1) along $y = x^2$.
 - (b) $F(x,y) := (x^2 y^2, x y)$ and $\Gamma : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the counterclockwise direction.
- (2) Evaluate the line integral $\int_{\Gamma} \frac{(x+y)dx (x-y)dy}{x^2 + y^2}$ along $\Gamma : x^2 + y^2 = a^2$ traversed once in the counter clockwise direction.
- (3) Evaluate the line integral $\int_{\Gamma} (ydx + zdy + xdz)$, where Γ is the intersection of two surfaces z = xy and $x^2 + y^2 = 1$ traversed once in a direction that appears counter clockwise when viewed from high above the xy-plane.
- (4) Consider the helix $\mathbf{r}(t) = (a \cos t, a \sin t, ct)$, where a > 0. Parametrize the helix in terms of arc length.
- (5) Evaluate the line integral $\int_{\Gamma} \frac{x^2 y dx x^3 dy}{(x^2 + y^2)^2}$, where Γ is the square with vertices $(\pm 1, \pm 1)$ oriented in the counterclockwise direction.
- (6) Evaluate the line integral $\int_{\Gamma} \frac{dx + dy}{|x| + |y|}$, where Γ is the square with vertices (1, 0), (0, 1), (-1, 0) and (0, -1) oriented in the counterclockwise direction.
- (7) The force field $F = (xy, x^6y^2)$ moves a particle from (0,0) to the line x = 1 along $y = ax^b$ where a, b > 0. If the work done is independent of b, find the value of a.
- (8) Determine whether or not the vector field $F(x, y) = (3xy, x^3y)$ is a gradient field (conservative) on any open subset of \mathbb{R}^2 .
- (9) Determine whether the differential form $e^{xy}dx + e^{x+y}dy$ is exact in \mathbb{R}^2 . If so, find a scalar potential f such that $df = e^{xy}dx + e^{x+y}dy$, that is, $F(x,y) = (e^{xy}, e^{x+y}) = \nabla f$.
- (10) Determine which of the following vector fields F in \mathbb{R}^2 is conservative and find a scalar potential when it exists.
 - (a) $F(x,y) = (\cos(xy) xy\sin(xy), x^2\sin(xy)).$

(b)
$$F(x,y) = (xy, xy).$$

(c) $F(x,y) = (x^2 + y^2, 2xy).$ P.T.O

- (11) Let $S = \mathbb{R}^2 \setminus \{(0,0)\}$. Let $F(x,y) = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}) =: (P(x,y), Q(x,y))$. Show that $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial r}$ on S while F is not a gradient of a scalar field on S.
- (12) Evaluate the double integral $\iint_R f(x, y) dxdy$ for f and R given below. (a) f(x, y) := (1 - x) and R is square $[0, 1] \times [0, 1]$.

 - (b) $f(x,y) := x^2 + y^2$ and $R = [-1,1] \times [0,1]$.
 - (c) $f(x, y) := x^2 + y$ and R is the square $[0, 1] \times [0, 1]$.
 - (d) $f(x,y) := \sin(x+y)$ and R is the square $[0,\pi] \times [0,\pi]$.
- (13) Find the volume of the solid enclosed between the graph of $f(x, y) = x^2 + y^2$ and the planes x = 0, x = 3, y = -1, y = 1.
- (14) Verify Green's theorem in each of the following cases:
 - (a) $f(x,y) := -xy^2$; $g(x,y) := x^2y$; the region R is given by $x \ge 0, 0 \le y \le 1 x^2$.
 - (b) $f(x,y) := 2xy; \ g(x,y) := e^x + x^2;$ the region R is the triangle with vertices (0,0), (1,0)and (1, 1).
- (15) Evaluate $\int_{\Gamma} (y^2 dx + x dy)$ using Green's theorem, where Γ is boundary of R and
 - (a) R is the square with vertices (0,0), (0,2), (2,2), (2,0).
 - (b) R is the square with vertices $(\pm 1, \pm 1)$.
 - (c) R is the disc of radius 2 and center (0,0). (Specify the orientation of your curve.)
- (16) Use Green's theorem to show that the area enclosed by a simple closed curve Γ in polar coordinates is given by

$$A = \frac{1}{2} \int_C r^2 d\theta.$$

Use this to compute the area enclosed by the following curves:

- (i) The cardioid: $r = a(1 \cos \theta), \quad 0 \le \theta \le 2\pi.$
- (ii) The lemniscate $r^2 = a^2 \cos 2\theta$, $-\pi/4 \le \theta \le \pi/4$.