MA 102 (Multivariable Calculus)

IIT Guwahati

Date: April 05, 2013 Tutorial Sheet No. 5 R. Alam

Implicit derivative, constrained extrema, vector fields, arclength

- (1) Consider the equation $e^{2x-y} + \cos(x^2 + xy) 2 2y = 0$ for $(x, y) \in \mathbb{R}^2$. Can the solutions be written as $y = \phi(x)$ and $x = \psi(y)$ in a neighbourhood of 0? If so, compute the derivatives $\phi'(0)$ and $\psi'(0)$.
- (2) Show that around the point (0,1,1), the equation $xy-z\log y+e^{xz}=1$ can be solved locally as y = f(x, z) but cannot be solved locally as z = g(x, y). Find $f_x(0, 1)$ and $f_z(0, 1)$.
- (3) Let S be a surface given by $x^3 + 3y^2 + 8xz^2 3z^3y 1 = 0$. Find all points $(x_0, y_0, z_0) \in \mathbb{R}^3$ such that S is represented as a graph of a differentiable function z = f(x, y) in a neighbourhood of (x_0, y_0, z_0) .
- (4) Let $f,g:\mathbb{R}^n\to\mathbb{R}$ be C^1 scalar fields. Show that (a) $\nabla(fg)=f\nabla g+g\nabla f,$ (b) $\nabla f^m = m f^{m-1} \nabla f$ and (c) $\nabla (f/g) = (g \nabla f - f \nabla g)/g^2$ whenever $g \neq 0$.
- (5) Let F and G be vector fields in \mathbb{R}^3 and $f:\mathbb{R}^3\to\mathbb{R}$ be a C^1 scalar field. Then show that:
 - (a) $\operatorname{div}(F+G) = \operatorname{div} F + \operatorname{div} G$ and $\operatorname{curl}(F+G) = \operatorname{curl} F + \operatorname{curl} G$,
 - (b) $\operatorname{div}(fG) = f\operatorname{div}G + G \bullet \nabla f$ and $\operatorname{curl}(fG) = f\operatorname{curl}G + \nabla f \times G$,
 - (c) div $(F \times G) = G \bullet \text{curl } F F \bullet \text{curl } G$ and curl curl $F = \nabla \text{div } F \nabla^2 F$.
- (6) Let ${\bf r} = (x, y, z)$ and $r = ||{\bf r}|| = \sqrt{x^2 + y^2 + z^2}$. Then show that
 - (a) $\nabla r = \frac{\mathbf{r}}{r}$ and $\nabla(\frac{1}{r}) = \frac{-\mathbf{r}}{r^3}$ for $r \neq 0$. (b) $\operatorname{div}(r^m \mathbf{r}) = (m+3)r^m$

 - (c) curl $(r^m \mathbf{r}) = 0$ and div $\left(\nabla \frac{1}{r}\right) = 0$ for $r \neq 0$.
- (7) Find the extrema of the function $f(x,y) = x^2 + 2y^2$ on the disk $x^2 + y^2 \le 1$.
- (8) Find a point on the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ that is closest to (0,0,0).
- (9) Find the maximum and minimum of f(x,y) = 5x 3y subject to the constraint $x^2 + y^2 = 136.$
- (10) Find the global maximum (also called absolute maximum) of f(x,y) := xy on the unit $\operatorname{disk} x^2 + y^2 \le 1.$
- (11) Assume that among all rectangular boxes with fixed surface area of 10 square meters there is a box of largest possible volume. Find the dimensions of the optimum box.

- (12) Find the arclength of parabolic arc $\gamma(t) := (t, t^2)$ for $t \in [0, 4]$.
- (13) Find the velocity, the speed and the arclength of the cycloid $\gamma(t) := (t \sin t, 1 \cos t)$ for $t \in [0, 2\pi]$.
- (14) A billiard ball on a square table follows the path $\gamma:[-1,1]\to\mathbb{R}^3$ given by $\gamma(t):=(|t|,|t-1/2|,0)$. Find the distance travelled by the ball.
- (15) Find the arclength of the path $\gamma(t) := (t, t \sin t, t \cos t)$ between (0, 0, 0) and $(\pi, 0, -\pi)$.

**** End ****