MA 102 (Multivariable Calculus)

IIT Guwahati

Date: March 08, 2013

Tutorial Sheet No. 2

R. Alam

Continuity and limits of functions on \mathbb{R}^n

- $\begin{array}{ll} \text{(1) Examine the continuity of } f: \mathbb{R}^2 \to \mathbb{R} \text{ at } (0,0), \text{ where for all } (x,y) \in \mathbb{R}^2, \\ \text{(a) } f(x,y) \coloneqq \left\{ \begin{array}{c} xy \cos(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{array} \right. \\ \text{(b) } f(x,y) \coloneqq \left\{ \begin{array}{c} 1 & \text{if } x > 0 \ \& \ 0 < y < x^2, \\ 0 & \text{otherwise.} \end{array} \right. \\ \text{(c) } f(x,y) \coloneqq \left\{ \begin{array}{c} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right. \\ \text{(d) } f(x,y) \coloneqq \left\{ \begin{array}{c} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right. \\ \text{(e) } f(x,y) \coloneqq \left\{ \begin{array}{c} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right. \\ \text{(f) } f(x,y) \coloneqq \left\{ \begin{array}{c} \frac{x^3y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{array} \right. \end{array} \right. \\ \end{array}$
- (2) Let $f : \mathbb{R}^2 \to \mathbb{R}$. Define $\phi_y : \mathbb{R} \to \mathbb{R}$ by $\phi_y(t) := f(t, y)$ for each fixed y, and $\psi_x : \mathbb{R} \to \mathbb{R}$ by $\psi_x(s) := f(x, s)$ for each fixed x. Prove or disprove: f is continuous if and only if ϕ_y and ψ_x are continuous for each $(x, y) \in \mathbb{R}^2$.
- (3) Let $A \subset \mathbb{R}^n$ be nonempty such that every continuous function $f : A \to \mathbb{R}$ attains its maximum and minumum. Show that A is compact.
- (4) Suppose that f is uniformly continuous on $A \subset \mathbb{R}^n$. If (\mathbf{x}_k) is a Cauchy sequence in A, then show that $(f(\mathbf{x}_k))$ is a Cauchy sequence. Show by an example that if f is continuous on A then $(f(\mathbf{x}_k))$ may not be a Cauchy sequence.
- (5) Examine whether the following limits exist and find their values if they exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 y}{x^4 + y^2}$$
 (b)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - y^3}{x^2 + y^2}$$
 (c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 y^2}{x^2 y^2 + (x^2 - y^2)^2}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{|x|}{y^2} e^{-|x|/y^2}$$
 (e)
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)^2}$$
 (f)
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2y^2+1-1}}{x^2+y^2}$$

(6) For the functions $f : \mathbb{R}^2 \to \mathbb{R}$ given below examine continuity at (0,0) and show that **exactly two** of the following limits exist and are equal:

$$\lim_{(x,y)\to(0,0)} f(x,y), \quad \lim_{x\to 0} \lim_{y\to 0} f(x,y), \quad \lim_{y\to 0} \lim_{x\to 0} f(x,y).$$
(a) $f(x,y) := \begin{cases} \frac{xy}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$
(b) $f(x,y) := \begin{cases} y + x \sin(1/y) & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$
(c) $f(x,y) := \begin{cases} x + y \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$

P.T.O

(7) For the functions $f : \mathbb{R}^2 \to \mathbb{R}$ given below show that **exactly one** of the following limits exists:

$$\lim_{(x,y)\to(0,0)} f(x,y), \quad \lim_{x\to 0} \lim_{y\to 0} f(x,y), \quad \lim_{y\to 0} \lim_{x\to 0} f(x,y).$$
(a) $f(x,y) := \begin{cases} x \sin(1/y) + y \sin(1/x) & \text{if } xy \neq 0, \\ 0 & \text{if } xy = 0. \end{cases}$
(b) $f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} + x \sin(1/y) & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$
(c) $f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} + y \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$

(8) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) := \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$ Show that the iterated limits $\lim_{x \to 0} \lim_{y \to 0} f(x, y)$ and $\lim_{y \to 0} \lim_{x \to 0} f(x, y)$ exist and are unequal.

Moral: Existence of limit does not guarantee existence of iterated limits and vice-versa. Iterated limits when exist may be unequal. However, if limit and iterated limits exist then they are all equal.

**** End ****