Lecture 4:
Partial and Directional derivatives, Differentiability

Rafikul Alam
Department of Mathematics
IIT Guwahati
Differential Calculus

Task: Extend differential calculus to the functions:

- **Case I:** $f : A \subset \mathbb{R}^n \rightarrow \mathbb{R}$
- **Case II:** $f : A \subset \mathbb{R} \rightarrow \mathbb{R}^n$
- **Case III:** $f : A \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$

Question: What does it mean to say that f is differentiable?
Parametric curve $\mathbf{r} : \mathbb{R} \to \mathbb{R}^n$

A continuous function $\mathbf{r} : [a, b] \subset \mathbb{R} \to \mathbb{R}^n$ is called a **parametric curve** in \mathbb{R}^n. The curve $\Gamma := \mathbf{r}([a, b])$ is parameterized by $\mathbf{r}(t)$.

Examples:

- $\mathbf{r} : \mathbb{R} \to \mathbb{R}^n$ given by $\mathbf{r}(t) := a + t\mathbf{b}$ parameterizes a line in \mathbb{R}^n passing through a in the direction of \mathbf{b}.

- $\mathbf{r} : [0, 2\pi] \to \mathbb{R}^3$ given by $\mathbf{r}(t) := (\cos t, \sin t, t)$ parameterizes a circular helix.

- $\mathbf{r} : [0, 2\pi] \to \mathbb{R}^2$ given by $\mathbf{r}(t) := (\cos t, \sin t)$ parameterizes the circle $x^2 + y^2 = 1$.
Figure: Line $\mathbf{r}(t) = \mathbf{p}_0 + t\mathbf{v}$
Figure: Helix \(r(t) = (4 \cos t, 4 \sin t, t) \)
Figure: Plane curve $r(t) = (t - 2\sin t, t^2)$
Figure: Ellipse $\mathbf{r}(t) = (6 \cos t, 3 \sin t)$
Differentiability of \(\mathbf{r} : \mathbb{R} \to \mathbb{R}^n \)

Definition: Let \(\mathbf{r} : (a, b) \subset \mathbb{R} \to \mathbb{R}^n \) and \(t_0 \in (a, b) \). If

\[
\mathbf{r}'(t_0) = \frac{d\mathbf{r}}{dt}(t_0) := \lim_{t \to t_0} \frac{\mathbf{r}(t) - \mathbf{r}(t_0)}{t - t_0}
\]

exists then \(\mathbf{r} \) is differentiable at \(t_0 \). The derivative \(\mathbf{r}'(t_0) \) is called the velocity vector.

Fact:

- \(\mathbf{r}(t) = (r_1(t), \ldots, r_n(t)) \), where \(r_i : (a, b) \to \mathbb{R} \).

- \(\mathbf{r} \) is differentiable at \(t_0 \) \iff each \(r_i \) is differentiable at \(t_0 \), \(i = 1, 2, \ldots, n \). Further, \(\mathbf{r}'(t_0) = (r'_1(t_0), \ldots, r'_n(t_0)) \).

- \(\mathbf{r} \) differentiable at \(t_0 \Rightarrow \mathbf{r} \) continuous at \(t_0 \).
Sum and product rules

Fact: Let $f, g : (a, b) \subset \mathbb{R} \to \mathbb{R}^n$ be differentiable at $t_0 \in (a, b)$. Then for $\alpha \in \mathbb{R}$

1. $f + g$ and αf are differentiable at t_0. Further, $(f + g)'(t) = f'(t_0) + g'(t_0)$ and $(\alpha f)'(t_0) = \alpha f'(t_0)$.

2. $f \circ g$ defined by $(f \circ g)(t) := \langle f(t), g(t) \rangle$ is differentiable at t_0 and

 $$(f \circ g)'(t_0) = f'(t_0) \circ g(t_0) + f(t_0) \circ g'(t_0).$$
Velocity and tangent vectors

Let \(\mathbf{r} : (a, b) \to \mathbb{R}^n \) be differentiable. Then treating \(\mathbf{r}(t) \) as the position of a moving object at time \(t \), we have

\[
\text{scaled secant} = \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t} \to \mathbf{r}'(t) \quad \text{as} \quad \Delta t \to 0.
\]

But scaled secant \(\to \) tangent vector to the curve at \(\mathbf{r}(t) \) as \(\Delta t \to 0 \).

Thus velocity vector \(\mathbf{v}(t) := \mathbf{r}'(t) \) is tangent to the curve at \(\mathbf{r}(t) \).

If \(\mathbf{r}(t) := (\cos t, \sin t) \) then \(\mathbf{v}(t) = \mathbf{r}'(t) = (-\sin t, \cos t) \).
Partial derivatives of $f : \mathbb{R}^2 \to \mathbb{R}$

Let $f : \mathbb{R}^2 \to \mathbb{R}$ and $(a, b) \in \mathbb{R}^2$. Then

$$\frac{\partial f}{\partial x}(a, b) := \lim_{t \to 0} \frac{f(a + t, b) - f(a, b)}{t},$$

when exists, is called partial derivative of f at (a, b) w.r.t to the first variable.

Other notations for $\frac{\partial f}{\partial x}(a, b)$:

$f_x(a, b), \partial_x f(a, b), \partial_1 f(a, b)$.

Partial derivative $\frac{\partial f}{\partial y}(a, b)$ w.r.t. the second variable is defined similarly.
Partial derivatives of $f : \mathbb{R}^n \to \mathbb{R}$

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$. Then

$$
\frac{\partial f}{\partial x_i}(a) := \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t},
$$

when exists, is called partial derivative of f at a w.r.t to the i-th variable.

Other notations for $\frac{\partial f}{\partial x_i}(a)$:

$f_{x_i}(a), \partial_{x_i}f(a), \partial_i f(a)$.

If $\partial_i f(a)$ exists for $i = 1, 2, \ldots, n$, then f is said to have first order partial derivatives at a.
Examples

- Consider $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(0,0) := 0$ and $f(x,y) := xy/(x^2 + y^2)$ for $(x,y) \neq (0,0)$. Then

$$\partial_1 f(0,0) = \partial_2 f(0,0) = 0$$

even though f is NOT continuous at $(0,0)$.

- Consider $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(0,0) = 0$ and

$$f(x,y) := \begin{cases}
 x \sin(1/y) + y \sin(1/x) & \text{if } x \neq 0, y \neq 0, \\
 x \sin(1/x) & \text{if } x \neq 0, y = 0, \\
 y \sin(1/y) & \text{if } x = 0, y \neq 0.
\end{cases}$$

Then f is continuous at $(0,0)$ but neither $\partial_1 f(0,0)$ nor $\partial_2 f(0,0)$ exists.

Moral: Partial derivatives $\not\Rightarrow$ continuity $\not\Rightarrow$ Partial derivatives
Let \(f, g : \mathbb{R}^n \to \mathbb{R} \) and \(a \in \mathbb{R}^n \). Suppose \(\partial_i f(a) \) and \(\partial_i g(a) \) exist. Then

- \(\partial_i(\alpha f)(a) = \alpha \partial_i f(a) \) for \(\alpha \in \mathbb{R} \),
- \(\partial_i(f + g)(a) = \partial_i f(a) + \partial_i g(a) \),
- \(\partial_i(fg)(a) = \partial_i f(a)g(a) + f(a)\partial_i g(a) \).
- If \(h : \mathbb{R} \to \mathbb{R} \) is differentiable at \(f(a) \) then \(\partial_i(h \circ f)(a) \) exists and \(\partial_i(h \circ f)(a) = h'(f(a))\partial_i f(a) \).
Gradient of $f : \mathbb{R}^n \to \mathbb{R}$

Define $\phi_i : \mathbb{R} \to \mathbb{R}$ by $\phi_i(t) := f(a + t e_i)$. Then

$$\partial_i f(a) = \lim_{t \to 0} \frac{\phi_i(t) - \phi_i(0)}{t} = \phi'_i(0) = \frac{d}{dt} f(a + t e_i) \big|_{t=0},$$

rate of change of f at a in the direction e_i.

Suppose partial derivatives of $f : \mathbb{R}^n \to \mathbb{R}$ exist at $a \in \mathbb{R}^n$. Then the vector

$$\nabla f(a) := (\partial_1 f(a), \ldots, \partial_n f(a)) \in \mathbb{R}^n$$

is called the **gradient** of f at a.
Figure: Graph of $z = f(x, y)$ and geometric interpretation of $\partial_x f(x_0, y_0)$.
Figure: Graph of $z = f(x, y)$ and geometric interpretation of $\partial_y f(x_0, y_0)$.
Directional derivatives of $f : \mathbb{R}^n \to \mathbb{R}$

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$. Also let $u \in \mathbb{R}^n$ with $\|u\| = 1$. Then the limit, when exists,

$$D_uf(a) := \lim_{t \to 0} \frac{f(a + tu) - f(a)}{t} = \frac{d}{dt} f(a + tu) |_{t=0},$$

is called directional derivative of f at a in the direction u.

- $D_uf(a)$, also denoted by $\frac{\partial f}{\partial u}(a)$, is the rate of change of f at a in the direction u.
Properties of directional derivatives

Let \(f : \mathbb{R}^n \to \mathbb{R} \) and \(a \in \mathbb{R}^n \). Also let \(u \in \mathbb{R}^n \) with \(\|u\| = 1 \).

Then

- Sum, product and chain rule similar to those of \(\partial_i f(a) \) hold for \(D_u f(a) \).

- If \(D_u f(a) \) exists for all nonzero \(u \in \mathbb{R}^n \) then \(f \) is said to have directional derivatives in all directions.

- Obviously \(\partial_i f(a) = D_{e_i} f(a) \). Hence \(D_u f(a) \) exists in all directions \(u \Rightarrow \partial_i f(a) \) exist for \(i = 1, 2, \ldots, n \).
Examples

1. Consider $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x, y) := \sqrt{|xy|}$. Then
 $\partial_1 f(0, 0) = 0 = \partial_2 f(0, 0)$ and f is continuous at $(0, 0)$. However, $D_u f(0, 0)$ does NOT exist for $u_1 u_2 \neq 0$.

2. Consider $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(0, 0) = 0$ and

 $f(x, y) := \frac{x^2 y}{x^4 + y^2}$ if $(x, y) \neq (0, 0)$. Then f is NOT continuous at $(0, 0)$, $\partial_1 f(0, 0) = 0 = \partial_2 f(0, 0)$ and $D_u f(0, 0)$ exits for all u. Further, $D_u f(0, 0) = u_1^2 / u_2$ for $u_1 u_2 \neq 0$.

Moral: Partial derivatives $\not\Rightarrow$ Directional derivative $\not\Rightarrow$ Continuity $\not\Rightarrow$ Directional derivative.