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Introduction

� Def1 [Distributed System]: It is a collection of
autonomous nodes (process, computer, sensor etc)
communicating with each other to achieve a
common goal



Email System



Content Distribution Networks (CDN)



Other examples

� World wide web

� Network File Server

� Banking Network

� Railway/Airline Reservation 

� P2P networks, sensor networks, SETI@home



Motivations of Distributed System

� Speed up/concurrency

� Resource Sharing

� Scalability

� Fault-tolerance



Fault-Tolerance in DS

� A fault is the manifestation of an unexpected 
behavior

� A DS should be fault-tolerant

� Should be able to continue functioning in the presence of faults

� Fault-tolerance is important 

� Computers today perform critical tasks (GSLV launch, nuclear 
reactor control, air traffic control, patient monitoring system)

� Cost of failure is high 



Some Stories

� Sep 23, 1999, NASA lost the $125 million Mars
orbiter spacecraft because one team used metric
units while another used English units

15 April 2010, GSLV MK II, First flight test of the� 15 April 2010, GSLV MK II, First flight test of the
ISRO designed and built Cryogenic Upper Stage.
Failed to reach orbit due to malfunction of the Fuel
Booster Turbo Pump (FBTP) of the cryogenic upper
stage



Fault Tolerance

� A DS should be fault-tolerant

� Should be able to continue functioning in the presence of 
faults

� Fault tolerance is related to dependability



Dependability

Dependability Includes

� Availability

� Reliability� Reliability

� Safety

� Maintainability



Availability & Reliability (1)

� Availability: A measurement of whether a system is 
ready to be used immediately

� System is up and running at any given moment

Reliability: A measurement of whether a system can � Reliability: A measurement of whether a system can 
run continuously without failure

� System continues to function for  a long period of time



Availability & Reliability (2)

� A system goes down 1ms/hr has an availability 
of more than 99.99%, but is unreliable

� A system that never crashes but is shut down 
for a week once every year is 100% reliable but for a week once every year is 100% reliable but 
only 98% available



Safety & Maintainability

� Safety: A measurement of how safe failures are

� System fails, nothing serious happens

� For instance, high degree of safety is required for systems 
controlling nuclear power plants

� Maintainability: A measurement of how easy it is � Maintainability: A measurement of how easy it is 
to repair a system

� A highly maintainable system may also show a high degree of 
availability

� Failures can be detected and repaired automatically? Self-
healing systems?



Classification of Faults

� Crash Failure : node ceases to execute its actions

� Synchronous system -> crash can be detected using timeout

� Asynchronous system -> hard to detect crash

� Omission Failures: message sent, but not received� Omission Failures: message sent, but not received

� Core are of research in networking

� Transient Failure: state of a node becomes 
corrupted (by hardware/software failure)



Fault classification (contd.)

� Byzantine Failure: unpredictable behavior of a 
node (complete arbitrary) 

� Temporal failure

� Security failure



Case Studies in the tutorial

� Crash Tolerance

� Transient Failure Tolerance

� Byzantine Failure Tolerance



Types of Fault-tolerance (1)

� Masking tolerance

� Triple-modular redundancy

� N-modular redundancy

� Preserves both safety and liveness properties

� Non-masking tolerance

� Safety may be violated, liveness is not compromised

� Backward error recovery (check-point based)

� Forward error recovery (self-stabilization*)



Types of Fault-tolerance (2)

� Fail-safe tolerance

� Safety is surely preserved 

� No guarantee on liveness

� e.g. mask single fault,  stop at double or more faults

� Graceful degradation

� Neither masking nor full recovery

� Exhibits degraded behavior

� e.g. Shortest-path computation in faulty-environment



Design of Adaptive Distributed Systems by 

Protocol Switching



Adaptive Distributed Algorithms

� Performance of a distributed algorithm depends on 
environment. 

� ex. load, mobility etc

� Environment may change with time

� Need for distributed algorithms that can cope with 
changing environment



Adaptation Techniques

� Modify runtime parameters

� Example – adjusting buffer size in routers with load

� Adaptation by nature� Adaptation by nature

� Adaptive mutual exclusion by Anderson et al. [1]

� Adaptation as a protocol layer
� Snoop protocol by H. Balakrishnan et al. [3]



Motivation of the Work

Existing approaches not sufficient in many cases, 
may need to run different algorithms in 

different conditions

� An Example
� Routing in ad-hoc networks

� AODV

� DSR



Protocol Switching

� P1 and P2 are two protocols for the same problem, 
E1 and E2 are two environments, and M is the 
performance evaluation metricperformance evaluation metric

� P1 is better than P2 under E1 

� P2 is better than P1 under E2 

� Dynamically switch from P1 to P2 as environment 
changes from E1 to E2 and vice-versa



Additional Criteria

� Maintain desirable properties during switching

� Examples of desired properties
� Mutual exclusion

� No more than one process can enter the critical section during 
switching

� Routing

� No loss of packet during switching



Components of Distributed Protocol Switching

� When to switch

� May require global coordination

� How to switch

� Switching algorithm



Solution Approaches

� Centralized switching by two-phase-commit
� Simple and easy to implement

� Large switching overhead

� Global freeze

� Not scalable

� Localized distributed switching
� Switching is based on local information

� Low overhead per node

� Local freeze

� scalable



Overall Motivation

� Proposing localized distributed algorithms for dynamic 

switching from one protocol to another

� Maintaining some desirable property of the system during 

switchingswitching



Related Work

� Ted Herman [11]  � design of adaptive programs from  self-stabilizing 
components.

� Bar-Noy et al. [4] � shifting between different algorithms  on the fly to 

solve byzantine agreementsolve byzantine agreement



Related Work (contd.)

� Arora et al. [2] � fault-tolerant method to switch from one state to 

another  without requiring global freeze. 

� Liu et al. [15] � adaptation by dynamically mapping the state of a � Liu et al. [15] � adaptation by dynamically mapping the state of a 

process in one protocol to the state in another.

� Liu et al. [16] � overview of the communication properties for correct 

functioning of the protocol in [15]

� Mocito and Rodrigues [19] � switching between different total order 

algorithms.



Objective of the Work

� Design of adaptive algorithm by protocol switching 

for single source broadcast problem

� Tolerating node failure

� Crash fault

� Transient fault



Adaptive Broadcast by Switching 

from a BFS tree to a DFS tree



BFS to DFS switching

� Non-fault-tolerant algorithm for dynamic switching from 

a BFS tree to a DFS tree

Fault-tolerant algorithm for dynamic switching from a � Fault-tolerant algorithm for dynamic switching from a 

BFS tree to a DFS tree



System Model

� Asynchronous message passing system

� Reliable and FIFO channels

� Crash fault

� Connected Graph� Connected Graph

� The single source r does not fail



Solution Approach

� Non-fault-tolerant switching algorithms

� Local repair of BFS and DFS

� Faults may happen when no switching is in progress

� Fault-tolerant actions that help tolerate arbitrary crash 

faults during switching



Switching from a BFS tree to a DFS tree

� G = (V, E) is the graph

� T is a BFS tree of G rooted at r� T is a BFS tree of G rooted at r

� T’ is a DFS tree of G rooted at r

� Switch from T to T’



Definitions

� Let Gv= (V’, E’) be some 
subgraph of graph G such 
that 
� V’ ⊆ {v}∪ N(v) 

� E’ ⊆ {(u,v)| u,v ∈V’}

v

� E’ ⊆ {(u,v)| u,v ∈V’}

� If Tv is a DFS spanning 
tree of Gv rooted at v then 
Tv is defined as the local 
DFS subtree of Gv rooted 
at v

G= (V,E)



Local DFS Subtree

v

G= (V,E)



Switching Algorithm for BFS to DFS

� TOKEN based local switching from BFS to DFS

� The root of the BFS tree, r, gets the TOKEN first� The root of the BFS tree, r, gets the TOKEN first

� For a node v, CSet(v) = N(v) – [TSet(v) ∪ {p(v)}]

� On receiving the TOKEN for the first time, a node 
v builds a local DFS subtree, rooted at itself, of 
the graph induced by CSet(v) ∪ {v}.



Switching Algorithm for BFS to DFS (contd.)

� After v builds local DFS subtree, it sends the TOKEN 
to some u∈Child(v) if u has not already got the TOKEN

� ∀u∈Child(v), if u has got the TOKEN, v sends the 
TOKEN to p(v) TOKEN to p(v) 

� If v has already got the TOKEN then it forwards the 
TOKEN to some u using the same rule



Partial DFS Tree

� The nodes that have received the TOKEN at least once form 
a DFS tree.

� partial DFS tree

Tree edges of a local DFS subtree may change with Tree edges of a local DFS subtree may change with 
time but that of partial DFS tree will not change



An Example (BFS to DFS)

� Initially for each node v, 

CSet(v)=TSet(v)=φ

� ‘a’ has got the TOKEN
a

� CSet(a) = {b, c}

� ‘a’ builds a local DFS 

subtree, rooted at ‘a’, of the 

graph induced by the set of 

nodes {a, b, c}

b c

d

f

e



Steps



Steps (contd.)

LDFS(a, {c})LDFS(a, {c})



Steps (contd.)

a

REMOVE_CHILD

b c

d

f

e



Steps (contd.)

a

REMOVE_ACK

b c

d

f

e



Steps (contd.)

a

LDFS(a, φ)

b c

d

f

e



Steps (contd.)

a

b c

d

f

e



The topology after local switching at node a

� Nodes having a green outline 

belong to the partial DFS tree 

of G.a

� Node a sends the TOKEN to its  

only child b

b c

d

f

e



Example (contd.)

� TSet(b) = {a}, TSet(c)={a}

� ‘b’ got the TOKEN

� CSet(b) = {c, d}

‘b’ builds a local DFS subtree, 

a

b c f

� ‘b’ builds a local DFS subtree, 

rooted at ‘b’, of the graph induced 

by the set of nodes {b, c, d }

b c

d

f

e



Example (contd.)

� TSet(c)={a, b}, TSet(d)={b}

� ‘d’ has got the TOKEN

� CSet(d) = {c, e, f}

a

b c f
� CSet(d) = {c, e, f}

� ‘d’ builds a local DFS subtree, 

rooted at ‘d’, of the graph 

induced by {c, d, e, f}

d

e



Example (contd.)

� TSet(c)={a, b, d}, TSet(e)={d}, 
TSet(f)={d}

� ‘e’ has got the TOKEN

� CSet(e) = {f}

a

b c f
� CSet(e) = {f}

� ‘e’ builds a local DFS subtree, 
rooted at ‘e’, of the graph 
induced by {e, f}

After this there will be no change 
in the spanning tree

d

e



Example (contd.)

� TSet(f)={d, e}

� ‘f’ has got the TOKEN

� CSet(f) = {c}

a

b c f � CSet(f) = {c}

� ‘f’ builds a local DFS subtree, 

rooted at ‘f’, of the graph 

induced by {c, f}

d

e



Example (contd.)

� TSet(c) = {a, b, d, f}

� CSet(c) = ϕ

� ‘c’ builds a local DFS subtree, 

a

b c f � ‘c’ builds a local DFS subtree, 

rooted at ‘c’, of the graph 

induced by {c}

� Now ‘c’ sends the TOKEN back 

to ‘f’

d

e



Example (contd.)

� Now ‘f’ sends the TOKEN back 

to ‘e’ and so on.

a

b c f

� Algorithm stops when TOKEN 

comes to ‘a’

d

e



Properties

� Switching eventually completes.

� The algorithm terminates with a DFS tree topology

� The message complexity of the switching algorithm is 

O(|E|) for no fault case.

� Each broadcast message is eventually correctly delivered in 

spite of switching provided no failure occurs.



Fault-tolerant Switching from a BFS Tree to a DFS 

Tree

� When a node fails?

� No switching in progress

Switching in progress� Switching in progress



Fault in No Switching

� A node v in a tree (BFS/DFS) 

may crash when no switching is 

in progresss

The tree must be repaired to 

X

� The tree must be repaired to 

continue the broadcast

� We do local repair of trees as it 

is attractive for limited failures 

in terms of time and message 

complexity

V

U1 U2
Un



Local Repair of BFS

� Let node v crash

� Each of u1, u2, … , un � Each of u1, u2, … , un 

and node x executes 

BfsCrashAction(v) X

V

U1 U2
Un



Local Repair of DFS

� Let node v crash

� Each of u1, u2, … , un � Each of u1, u2, … , un 

and node x executes 

DfsCrashAction(v) X

V

U1 U2
Un



ResetLevelAction(v) and ChangePathAction(v)



Fault during Switching

� At any intermediate state during 

switching, there is a partial DFS tree 

and a partial BFS tree of the graph G

TOKEN holding node may belong to 

a

b c f
� TOKEN holding node may belong to 

either partial DFS or partial BFS

� A fault may occur in 

� partial BFS tree

� partial DFS tree

b c

d

f

e



Case Study

� Suppose a node b belonging to partial 

DFS tree crashes.
a

b c fb c

d

f

e



Case Study (contd.)

� Resultant structure  after the crash of b

� Note that node a, c, d have detected the 

crash of b

a

c f

� TOKEN is at e

� Node a, c, d remove b from theirs’ 

neighborhood

c

d

f

e



Case Study (contd.)

� Node d execute DfsCrashAction(b)

� Node a may generate another TOKEN 

at a to restart switching at a

a

c f

� Another switching due to TOKEN at e

� Node c, e, f may execute 

ChangePathAction(b) 

c

d

f

e



Case Study (contd.)

� Node c eventually changes it parent to 

a either by ChangePathAction(b) or 

due to fresh switching from a
a

c fc

d

f

e



Case Study (contd.)

� Eventually d, e, f reassign theirs’ 

parents  as shown in figure due to 

ChangePath(b) messages.

TOKENs at e may perish or may result 

a

c f
� TOKENs at e may perish or may result 

in switching 

� Overall, a correct DFS tree of G rooted 

at a results

c

d

f

e



Crash of a Node in Partial BFS Tree

� If f crashes then each neighbor 

belonging to partial BFS tree should 

execute BfsCrashAction(f)

Each neighbor belonging to partial 

a

b c f
� Each neighbor belonging to partial 

BFS tree should execute  

ResetLevelAction(f) on receiving a 

ResetLevel(f) message

b c

d

f

e



Crash of TOKEN Holder

� What happens if TOKEN holding node 

e crashes?
a

b c fb c

d

f

e



Crash of TOKEN Holder (contd.)

� Suppose the TOKEN holding node e 

crashes.

� TOKEN can be generated at any of a, 

b, d to continue the switching

a

b c f
b, d to continue the switching

� TOKEN is actually generated at the 

nearest ancestor d

b c

d

f



Crash of TOKEN Holder (contd.)

� A fresh local DFS subtree formation 

starts at d

� Eventually a DFS tree rooted at a 

results.

a

b c f
results.

b c

d

f



Special Case

� Suppose d is currently doing the local 

switching.

� d creahses, already covered

� Some member of Cset(d) crashes

a

b c f

� Cset(d) = {c,e,f}

� In this case the local switching is just 

restarted at d

d

e



Fault-tolerant Actions for Switching from BFS to 

DFS



Properties 

� Under arbitrary crash failures, the BFS to DFS switching algorithm eventually 

terminates with a DFS tree as the broadcast topology.  No specific broadcast 

delivery guarantee in this case.



Broadcast Properties under Single Crash 

Fault

� Under single crash fault, each broadcast message having 

timestamp less than or equal to ϒ is eventually correctly 

delivered to all the non-faulty nodes where 

ϒ = and   is the timestamp of the ϒ = and   is the timestamp of the 

last message received by ui before it detects the crash of v.



Broadcast Properties under Single Crash Fault (contd.)

� Under single crash failure, each message broadcast by the single 

source r after the system reaches a state of Z is eventually 

correctly delivered to all the nodes where Z is the set of states of 

the system where any node w ∈ V does not change p(w) anymore 

due to receipt of ChangePath(v) or ResetLevel(v) message, but 

w may change p(w) due to the receipt of an LDFS messages.w may change p(w) due to the receipt of an LDFS messages.



Adaptive Broadcast by switching 

from a DFS tree to a BFS tree



DFS to BFS switching

� Non-fault-tolerant algorithm for dynamic switching from a DFS 

tree to a BFS tree

� Fault-tolerant algorithm for dynamic switching from a DFS tree � Fault-tolerant algorithm for dynamic switching from a DFS tree 

to a BFS tree

Approach is similar to BFS to DFS case but algorithms are 

different



Adaptive broadcast by Self-Stabilizing 

Spanning Tree Switching



Self-Stabilization

� Automatic handling of transient failure in a distributed 
environment

� Convergence: a system, in an illegitimate state, eventually reaches a 
legitimate statelegitimate state

� Closure: once in a legitimate state, the system remains in some 
legitimate state until further failure



State Transition

fault

legit illegit

stabilization



Dijkstra’s Self-stabilization in a Ring

� Data may become corrupted

� Code is not corrupted

� Problem: Given a unidirectional ring, design a 
scheme so that exactly one node has the privilege 
eventually in spite of arbitrary initial state

� Safety: Number of nodes with enabled guard is exactly one

� Liveness: Each node gets its guard enabled infinitely often



Pseudocode

S[0] = S[n-1]  -> S[0] = S[0]+1 mod k    // process 0

S[i] ≠ S[i-1]  -> S[i] = S[i-1]         // process i≠0S[i] ≠ S[i-1]  -> S[i] = S[i-1]         // process i≠0



Self-Stabilizing Spanning Tree Switching

� A self-stabilizing distributed algorithm for dynamic 

switching between arbitrary trees T and T’

� Under no failure, each broadcast message is correctly delivered to all 
the nodes, in spite of switchingthe nodes, in spite of switching

� Under arbitrary failure, switching eventually completes with the 
desired tree as output

� Investigate the broadcast properties under single transient failure



System Model

� System as connected graph G = (V, E)

� Shared memory model; each node has unique ID

� Each node reads from 2-hop neighborhood but writes 

only in local memory (relaxed later)only in local memory ( )

� Local FIFO buffer Bi for broadcast

� Transient failure

� Both T and T’ are pre-computed (relaxed later)



Definitions

� Ni is the neighborhood of node i

� bi as protocol variable

� Ti
M as message timestamp� T M as message timestamp

� max(Bi ) denote index of last message placed in Bi

� read(Bj , n) function executed by i



Definitions (contd.)

� pi is the parent of  node i in T

� Ci is the children of i in Ti 



Illustration of Broadcast

a

0
Ba=φφφφ

TM
a=0

B =φφφφ

b
c

d e

0
0

0
0

Bb=φφφφ

TM
b=0

TM
c=0

Bc=φφφφ

Bd=φφφφ

Ba=φφφφTM
d=0

Be=φφφφ

TM
e=0



Illustration of Broadcast (contd.)

a

0
Ba={m1,m2}

TM
a=2

B =φφφφ

b
c

d e

0
0

0
0

Bb=φφφφ

TM
b=0

TM
c=0

Bc=φφφφ

Bd=φφφφ

Ba=φφφφTM
d=0

Be=φφφφ

TM
e=0



Illustration of Broadcast (contd.)

a

0
Ba={m1,m2}

TM
a=2

B ={m1,m2}

b
c

d e

0
0

0
0

Bb={m1,m2}

TM
b=2

TM
c=2

Bc={m1,m2}

Bd=φφφφ

Ba=φφφφTM
d=0

Be=φφφφ

TM
e=0



Illustration of Broadcast (contd.)

a

0
Ba={m1,m2}

TM
a=2

B ={m1,m2}

b
c

d e

0
0

0
0

Bb={m1,m2}

TM
b=2

TM
c=2

Bc={m1,m2}

Bd={m1,m2}

TM
d=2

Be={m1,m2}

Tm
e=2



Self-Stabilizing Switching from T to T’

� bi=0 � i uses T for broadcast

� bi=1 � i uses T’ for broadcast

� At r , bi = f(L) where L is load of the network 
monitored by T or T’

� Let p(bi) denote the parent of i as per the current 
value of bi



Switching (contd.)



Switching (contd.)

� Suppose r is ready to switch and 

has two messages 1,2 in buffer. 

� r is not allowed to switch until 

its all neighbors has read those 

0
{1,2}

r

its all neighbors has read those 

messages

0 0

0 0
0

0



Switching (contd.)

� Now r has switched. Node a,b 

are ready to switch.

� a,b are not allowed to switch 

until its theirs’ neighbors have 

1
{1,2,3,4}

r

until its theirs’ neighbors have 

read those messages

0 0

0 0
0

0

{1,2}
{1,2}

a

b



Switching (contd.)

� Now r has switched. Node a,b 

are ready to switch.

� a,b are not allowed to switch 

until its theirs’ neighbors have 

1
{1,2,3,4}

r

until its theirs’ neighbors have 

read those messages

1 1

0 0
0

0

{1,2}
{1,2}

a

b

{1,2}

{1,2}

{1,2}

{1,2}



Switching (contd.)

� Let U(i) ≡ bi ≠ bpi

� Let X(i) ≡ U(i) ∧ [(∀j∈ Ci) ¬U(j)] ∧ ¬U(pi )

� Let Y(i) ≡ (∀j∈ Ni) (T
j
M ≥ Ti

M )



Switching Protocol



Legitimate State

� U(i)=false at each node i

� Y(i)=true at each node i� Y(i)=true at each node i



Properties

� Under no failure, each broadcast message m is eventually 
correctly read by all the nodes

� Under arbitrary transient failure, switching eventually terminates 
and each node eventually uses either T and T’
Under arbitrary transient failure, switching eventually terminates 
and each node eventually uses either T and T’



Important Parameters for Single Transient 

Fault

� Ts is the time when the faulty behavior of a node starts

� Tss is the time when the faulty behavior of a node stops

� Tr is the time when a node recovers from its faulty behavior  (i.e. 
legitimate state is reached)



Properties

� Under single transient failure, each broadcast message m read by 
each child of the faulty node i before time Ts is eventually 
correctly read by all the non-faulty nodes

Under single transient failure, each broadcast message m that has � Under single transient failure, each broadcast message m that has 
not yet been read by the faulty node i before time Tss is eventually 
correctly read by all the nodes



Self-Stabilizing Switching with Self-

Stabilizing T and T’

� What happens if T and T’ are not pre-computed but 

obtained by some self-stabilizing algorithm

� A general self-stabilizing algorithm is given for A general self-stabilizing algorithm is given for 

dynamic switching between T and T’



Properties

� From any arbitrary state the algorithm eventually 

terminates.

� On termination the system uses either T or T’ for 

broadcast.broadcast.



Consensus

� When to switch

� How to agree on that

� Every node proposes a value (0/1)

� The problem is to agree on a particular value

� It is fault that makes it challenging



Fundamental Properties of Consensus

� Termination: every non-faulty process must 
eventually decide

� Agreement: the final value decided by every non-
faulty process must be samefaulty process must be same

� Validity: if every non-faulty process starts with a 
value v then the final decision must be v

[Note: no one knows who is behaving bad, but 
it is known that some are bad]



Consensus in asynchronous system

� Impossibility result by FLP  (JACM 1985, 32(2))

� Concept of Failure Detectors for asynchronous 
consensus



Consensus in synchronous system

� Byzantine Genrals Problem

� Result1: If simple message passing is used then 
there is no solution to the byzantine generals 
problem with 3 generals out of whom 1 is traitorproblem with 3 generals out of whom 1 is traitor

� Result2: There exist a solution for 4 generals out of 
whom 1 is traitor

� General solution with n >= 3f+1 



Future Work

� Distributed switching in time-varying networks

� Designing multiple initiator based distributed switching 

algorithms
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