
DR. SUSHANTA KARMAKAR

Fault-Tolerant Distributed
Systems

ASSISTANT PROFESSOR

DEPT . OF COMPUTER SC . AND ENGG.

I IT GUWAHATI

Outline

� Introduction

� Importance of Fault-Tolerance in DS

� Classification of Faults

� Fault-Tolerant Algorithms: A few case study� Fault-Tolerant Algorithms: A few case study

� Conclusion and future directions

Introduction

� Def1 [Distributed System]: It is a collection of
autonomous nodes (process, computer, sensor etc)
communicating with each other to achieve a
common goal

Email System

Content Distribution Networks (CDN)

Other examples

� World wide web

� Network File Server

� Banking Network

� Railway/Airline Reservation

� P2P networks, sensor networks, SETI@home

Motivations of Distributed System

� Speed up/concurrency

� Resource Sharing

� Scalability

� Fault-tolerance

Fault-Tolerance in DS

� A fault is the manifestation of an unexpected
behavior

� A DS should be fault-tolerant

� Should be able to continue functioning in the presence of faults

� Fault-tolerance is important

� Computers today perform critical tasks (GSLV launch, nuclear
reactor control, air traffic control, patient monitoring system)

� Cost of failure is high

Some Stories

� Sep 23, 1999, NASA lost the $125 million Mars
orbiter spacecraft because one team used metric
units while another used English units

15 April 2010, GSLV MK II, First flight test of the� 15 April 2010, GSLV MK II, First flight test of the
ISRO designed and built Cryogenic Upper Stage.
Failed to reach orbit due to malfunction of the Fuel
Booster Turbo Pump (FBTP) of the cryogenic upper
stage

Fault Tolerance

� A DS should be fault-tolerant

� Should be able to continue functioning in the presence of
faults

� Fault tolerance is related to dependability

Dependability

Dependability Includes

� Availability

� Reliability� Reliability

� Safety

� Maintainability

Availability & Reliability (1)

� Availability: A measurement of whether a system is
ready to be used immediately

� System is up and running at any given moment

Reliability: A measurement of whether a system can � Reliability: A measurement of whether a system can
run continuously without failure

� System continues to function for a long period of time

Availability & Reliability (2)

� A system goes down 1ms/hr has an availability
of more than 99.99%, but is unreliable

� A system that never crashes but is shut down
for a week once every year is 100% reliable but for a week once every year is 100% reliable but
only 98% available

Safety & Maintainability

� Safety: A measurement of how safe failures are

� System fails, nothing serious happens

� For instance, high degree of safety is required for systems
controlling nuclear power plants

� Maintainability: A measurement of how easy it is � Maintainability: A measurement of how easy it is
to repair a system

� A highly maintainable system may also show a high degree of
availability

� Failures can be detected and repaired automatically? Self-
healing systems?

Classification of Faults

� Crash Failure : node ceases to execute its actions

� Synchronous system -> crash can be detected using timeout

� Asynchronous system -> hard to detect crash

� Omission Failures: message sent, but not received� Omission Failures: message sent, but not received

� Core are of research in networking

� Transient Failure: state of a node becomes
corrupted (by hardware/software failure)

Fault classification (contd.)

� Byzantine Failure: unpredictable behavior of a
node (complete arbitrary)

� Temporal failure

� Security failure

Case Studies in the tutorial

� Crash Tolerance

� Transient Failure Tolerance

� Byzantine Failure Tolerance

Types of Fault-tolerance (1)

� Masking tolerance

� Triple-modular redundancy

� N-modular redundancy

� Preserves both safety and liveness properties

� Non-masking tolerance

� Safety may be violated, liveness is not compromised

� Backward error recovery (check-point based)

� Forward error recovery (self-stabilization*)

Types of Fault-tolerance (2)

� Fail-safe tolerance

� Safety is surely preserved

� No guarantee on liveness

� e.g. mask single fault, stop at double or more faults

� Graceful degradation

� Neither masking nor full recovery

� Exhibits degraded behavior

� e.g. Shortest-path computation in faulty-environment

Design of Adaptive Distributed Systems by

Protocol Switching

Adaptive Distributed Algorithms

� Performance of a distributed algorithm depends on
environment.

� ex. load, mobility etc

� Environment may change with time

� Need for distributed algorithms that can cope with
changing environment

Adaptation Techniques

� Modify runtime parameters

� Example – adjusting buffer size in routers with load

� Adaptation by nature� Adaptation by nature

� Adaptive mutual exclusion by Anderson et al. [1]

� Adaptation as a protocol layer
� Snoop protocol by H. Balakrishnan et al. [3]

Motivation of the Work

Existing approaches not sufficient in many cases,
may need to run different algorithms in

different conditions

� An Example
� Routing in ad-hoc networks

� AODV

� DSR

Protocol Switching

� P1 and P2 are two protocols for the same problem,
E1 and E2 are two environments, and M is the
performance evaluation metricperformance evaluation metric

� P1 is better than P2 under E1

� P2 is better than P1 under E2

� Dynamically switch from P1 to P2 as environment
changes from E1 to E2 and vice-versa

Additional Criteria

� Maintain desirable properties during switching

� Examples of desired properties
� Mutual exclusion

� No more than one process can enter the critical section during
switching

� Routing

� No loss of packet during switching

Components of Distributed Protocol Switching

� When to switch

� May require global coordination

� How to switch

� Switching algorithm

Solution Approaches

� Centralized switching by two-phase-commit
� Simple and easy to implement

� Large switching overhead

� Global freeze

� Not scalable

� Localized distributed switching
� Switching is based on local information

� Low overhead per node

� Local freeze

� scalable

Overall Motivation

� Proposing localized distributed algorithms for dynamic

switching from one protocol to another

� Maintaining some desirable property of the system during

switchingswitching

Related Work

� Ted Herman [11] � design of adaptive programs from self-stabilizing
components.

� Bar-Noy et al. [4] � shifting between different algorithms on the fly to

solve byzantine agreementsolve byzantine agreement

Related Work (contd.)

� Arora et al. [2] � fault-tolerant method to switch from one state to

another without requiring global freeze.

� Liu et al. [15] � adaptation by dynamically mapping the state of a � Liu et al. [15] � adaptation by dynamically mapping the state of a

process in one protocol to the state in another.

� Liu et al. [16] � overview of the communication properties for correct

functioning of the protocol in [15]

� Mocito and Rodrigues [19] � switching between different total order

algorithms.

Objective of the Work

� Design of adaptive algorithm by protocol switching

for single source broadcast problem

� Tolerating node failure

� Crash fault

� Transient fault

Adaptive Broadcast by Switching

from a BFS tree to a DFS tree

BFS to DFS switching

� Non-fault-tolerant algorithm for dynamic switching from

a BFS tree to a DFS tree

Fault-tolerant algorithm for dynamic switching from a � Fault-tolerant algorithm for dynamic switching from a

BFS tree to a DFS tree

System Model

� Asynchronous message passing system

� Reliable and FIFO channels

� Crash fault

� Connected Graph� Connected Graph

� The single source r does not fail

Solution Approach

� Non-fault-tolerant switching algorithms

� Local repair of BFS and DFS

� Faults may happen when no switching is in progress

� Fault-tolerant actions that help tolerate arbitrary crash

faults during switching

Switching from a BFS tree to a DFS tree

� G = (V, E) is the graph

� T is a BFS tree of G rooted at r� T is a BFS tree of G rooted at r

� T’ is a DFS tree of G rooted at r

� Switch from T to T’

Definitions

� Let Gv= (V’, E’) be some
subgraph of graph G such
that
� V’ ⊆ {v}∪ N(v)

� E’ ⊆ {(u,v)| u,v ∈V’}

v

� E’ ⊆ {(u,v)| u,v ∈V’}

� If Tv is a DFS spanning
tree of Gv rooted at v then
Tv is defined as the local
DFS subtree of Gv rooted
at v

G= (V,E)

Local DFS Subtree

v

G= (V,E)

Switching Algorithm for BFS to DFS

� TOKEN based local switching from BFS to DFS

� The root of the BFS tree, r, gets the TOKEN first� The root of the BFS tree, r, gets the TOKEN first

� For a node v, CSet(v) = N(v) – [TSet(v) ∪ {p(v)}]

� On receiving the TOKEN for the first time, a node
v builds a local DFS subtree, rooted at itself, of
the graph induced by CSet(v) ∪ {v}.

Switching Algorithm for BFS to DFS (contd.)

� After v builds local DFS subtree, it sends the TOKEN
to some u∈Child(v) if u has not already got the TOKEN

� ∀u∈Child(v), if u has got the TOKEN, v sends the
TOKEN to p(v) TOKEN to p(v)

� If v has already got the TOKEN then it forwards the
TOKEN to some u using the same rule

Partial DFS Tree

� The nodes that have received the TOKEN at least once form
a DFS tree.

� partial DFS tree

Tree edges of a local DFS subtree may change with Tree edges of a local DFS subtree may change with
time but that of partial DFS tree will not change

An Example (BFS to DFS)

� Initially for each node v,

CSet(v)=TSet(v)=φ

� ‘a’ has got the TOKEN
a

� CSet(a) = {b, c}

� ‘a’ builds a local DFS

subtree, rooted at ‘a’, of the

graph induced by the set of

nodes {a, b, c}

b c

d

f

e

Steps

Steps (contd.)

LDFS(a, {c})LDFS(a, {c})

Steps (contd.)

a

REMOVE_CHILD

b c

d

f

e

Steps (contd.)

a

REMOVE_ACK

b c

d

f

e

Steps (contd.)

a

LDFS(a, φ)

b c

d

f

e

Steps (contd.)

a

b c

d

f

e

The topology after local switching at node a

� Nodes having a green outline

belong to the partial DFS tree

of G.a

� Node a sends the TOKEN to its

only child b

b c

d

f

e

Example (contd.)

� TSet(b) = {a}, TSet(c)={a}

� ‘b’ got the TOKEN

� CSet(b) = {c, d}

‘b’ builds a local DFS subtree,

a

b c f

� ‘b’ builds a local DFS subtree,

rooted at ‘b’, of the graph induced

by the set of nodes {b, c, d }

b c

d

f

e

Example (contd.)

� TSet(c)={a, b}, TSet(d)={b}

� ‘d’ has got the TOKEN

� CSet(d) = {c, e, f}

a

b c f
� CSet(d) = {c, e, f}

� ‘d’ builds a local DFS subtree,

rooted at ‘d’, of the graph

induced by {c, d, e, f}

d

e

Example (contd.)

� TSet(c)={a, b, d}, TSet(e)={d},
TSet(f)={d}

� ‘e’ has got the TOKEN

� CSet(e) = {f}

a

b c f
� CSet(e) = {f}

� ‘e’ builds a local DFS subtree,
rooted at ‘e’, of the graph
induced by {e, f}

After this there will be no change
in the spanning tree

d

e

Example (contd.)

� TSet(f)={d, e}

� ‘f’ has got the TOKEN

� CSet(f) = {c}

a

b c f � CSet(f) = {c}

� ‘f’ builds a local DFS subtree,

rooted at ‘f’, of the graph

induced by {c, f}

d

e

Example (contd.)

� TSet(c) = {a, b, d, f}

� CSet(c) = ϕ

� ‘c’ builds a local DFS subtree,

a

b c f � ‘c’ builds a local DFS subtree,

rooted at ‘c’, of the graph

induced by {c}

� Now ‘c’ sends the TOKEN back

to ‘f’

d

e

Example (contd.)

� Now ‘f’ sends the TOKEN back

to ‘e’ and so on.

a

b c f

� Algorithm stops when TOKEN

comes to ‘a’

d

e

Properties

� Switching eventually completes.

� The algorithm terminates with a DFS tree topology

� The message complexity of the switching algorithm is

O(|E|) for no fault case.

� Each broadcast message is eventually correctly delivered in

spite of switching provided no failure occurs.

Fault-tolerant Switching from a BFS Tree to a DFS

Tree

� When a node fails?

� No switching in progress

Switching in progress� Switching in progress

Fault in No Switching

� A node v in a tree (BFS/DFS)

may crash when no switching is

in progresss

The tree must be repaired to

X

� The tree must be repaired to

continue the broadcast

� We do local repair of trees as it

is attractive for limited failures

in terms of time and message

complexity

V

U1 U2
Un

Local Repair of BFS

� Let node v crash

� Each of u1, u2, … , un � Each of u1, u2, … , un

and node x executes

BfsCrashAction(v) X

V

U1 U2
Un

Local Repair of DFS

� Let node v crash

� Each of u1, u2, … , un � Each of u1, u2, … , un

and node x executes

DfsCrashAction(v) X

V

U1 U2
Un

ResetLevelAction(v) and ChangePathAction(v)

Fault during Switching

� At any intermediate state during

switching, there is a partial DFS tree

and a partial BFS tree of the graph G

TOKEN holding node may belong to

a

b c f
� TOKEN holding node may belong to

either partial DFS or partial BFS

� A fault may occur in

� partial BFS tree

� partial DFS tree

b c

d

f

e

Case Study

� Suppose a node b belonging to partial

DFS tree crashes.
a

b c fb c

d

f

e

Case Study (contd.)

� Resultant structure after the crash of b

� Note that node a, c, d have detected the

crash of b

a

c f

� TOKEN is at e

� Node a, c, d remove b from theirs’

neighborhood

c

d

f

e

Case Study (contd.)

� Node d execute DfsCrashAction(b)

� Node a may generate another TOKEN

at a to restart switching at a

a

c f

� Another switching due to TOKEN at e

� Node c, e, f may execute

ChangePathAction(b)

c

d

f

e

Case Study (contd.)

� Node c eventually changes it parent to

a either by ChangePathAction(b) or

due to fresh switching from a
a

c fc

d

f

e

Case Study (contd.)

� Eventually d, e, f reassign theirs’

parents as shown in figure due to

ChangePath(b) messages.

TOKENs at e may perish or may result

a

c f
� TOKENs at e may perish or may result

in switching

� Overall, a correct DFS tree of G rooted

at a results

c

d

f

e

Crash of a Node in Partial BFS Tree

� If f crashes then each neighbor

belonging to partial BFS tree should

execute BfsCrashAction(f)

Each neighbor belonging to partial

a

b c f
� Each neighbor belonging to partial

BFS tree should execute

ResetLevelAction(f) on receiving a

ResetLevel(f) message

b c

d

f

e

Crash of TOKEN Holder

� What happens if TOKEN holding node

e crashes?
a

b c fb c

d

f

e

Crash of TOKEN Holder (contd.)

� Suppose the TOKEN holding node e

crashes.

� TOKEN can be generated at any of a,

b, d to continue the switching

a

b c f
b, d to continue the switching

� TOKEN is actually generated at the

nearest ancestor d

b c

d

f

Crash of TOKEN Holder (contd.)

� A fresh local DFS subtree formation

starts at d

� Eventually a DFS tree rooted at a

results.

a

b c f
results.

b c

d

f

Special Case

� Suppose d is currently doing the local

switching.

� d creahses, already covered

� Some member of Cset(d) crashes

a

b c f

� Cset(d) = {c,e,f}

� In this case the local switching is just

restarted at d

d

e

Fault-tolerant Actions for Switching from BFS to

DFS

Properties

� Under arbitrary crash failures, the BFS to DFS switching algorithm eventually

terminates with a DFS tree as the broadcast topology. No specific broadcast

delivery guarantee in this case.

Broadcast Properties under Single Crash

Fault

� Under single crash fault, each broadcast message having

timestamp less than or equal to ϒ is eventually correctly

delivered to all the non-faulty nodes where

ϒ = and is the timestamp of the ϒ = and is the timestamp of the

last message received by ui before it detects the crash of v.

Broadcast Properties under Single Crash Fault (contd.)

� Under single crash failure, each message broadcast by the single

source r after the system reaches a state of Z is eventually

correctly delivered to all the nodes where Z is the set of states of

the system where any node w ∈ V does not change p(w) anymore

due to receipt of ChangePath(v) or ResetLevel(v) message, but

w may change p(w) due to the receipt of an LDFS messages.w may change p(w) due to the receipt of an LDFS messages.

Adaptive Broadcast by switching

from a DFS tree to a BFS tree

DFS to BFS switching

� Non-fault-tolerant algorithm for dynamic switching from a DFS

tree to a BFS tree

� Fault-tolerant algorithm for dynamic switching from a DFS tree � Fault-tolerant algorithm for dynamic switching from a DFS tree

to a BFS tree

Approach is similar to BFS to DFS case but algorithms are

different

Adaptive broadcast by Self-Stabilizing

Spanning Tree Switching

Self-Stabilization

� Automatic handling of transient failure in a distributed
environment

� Convergence: a system, in an illegitimate state, eventually reaches a
legitimate statelegitimate state

� Closure: once in a legitimate state, the system remains in some
legitimate state until further failure

State Transition

fault

legit illegit

stabilization

Dijkstra’s Self-stabilization in a Ring

� Data may become corrupted

� Code is not corrupted

� Problem: Given a unidirectional ring, design a
scheme so that exactly one node has the privilege
eventually in spite of arbitrary initial state

� Safety: Number of nodes with enabled guard is exactly one

� Liveness: Each node gets its guard enabled infinitely often

Pseudocode

S[0] = S[n-1] -> S[0] = S[0]+1 mod k // process 0

S[i] ≠ S[i-1] -> S[i] = S[i-1] // process i≠0S[i] ≠ S[i-1] -> S[i] = S[i-1] // process i≠0

Self-Stabilizing Spanning Tree Switching

� A self-stabilizing distributed algorithm for dynamic

switching between arbitrary trees T and T’

� Under no failure, each broadcast message is correctly delivered to all
the nodes, in spite of switchingthe nodes, in spite of switching

� Under arbitrary failure, switching eventually completes with the
desired tree as output

� Investigate the broadcast properties under single transient failure

System Model

� System as connected graph G = (V, E)

� Shared memory model; each node has unique ID

� Each node reads from 2-hop neighborhood but writes

only in local memory (relaxed later)only in local memory ()

� Local FIFO buffer Bi for broadcast

� Transient failure

� Both T and T’ are pre-computed (relaxed later)

Definitions

� Ni is the neighborhood of node i

� bi as protocol variable

� Ti
M as message timestamp� T M as message timestamp

� max(Bi) denote index of last message placed in Bi

� read(Bj , n) function executed by i

Definitions (contd.)

� pi is the parent of node i in T

� Ci is the children of i in Ti

Illustration of Broadcast

a

0
Ba=φφφφ

TM
a=0

B =φφφφ

b
c

d e

0
0

0
0

Bb=φφφφ

TM
b=0

TM
c=0

Bc=φφφφ

Bd=φφφφ

Ba=φφφφTM
d=0

Be=φφφφ

TM
e=0

Illustration of Broadcast (contd.)

a

0
Ba={m1,m2}

TM
a=2

B =φφφφ

b
c

d e

0
0

0
0

Bb=φφφφ

TM
b=0

TM
c=0

Bc=φφφφ

Bd=φφφφ

Ba=φφφφTM
d=0

Be=φφφφ

TM
e=0

Illustration of Broadcast (contd.)

a

0
Ba={m1,m2}

TM
a=2

B ={m1,m2}

b
c

d e

0
0

0
0

Bb={m1,m2}

TM
b=2

TM
c=2

Bc={m1,m2}

Bd=φφφφ

Ba=φφφφTM
d=0

Be=φφφφ

TM
e=0

Illustration of Broadcast (contd.)

a

0
Ba={m1,m2}

TM
a=2

B ={m1,m2}

b
c

d e

0
0

0
0

Bb={m1,m2}

TM
b=2

TM
c=2

Bc={m1,m2}

Bd={m1,m2}

TM
d=2

Be={m1,m2}

Tm
e=2

Self-Stabilizing Switching from T to T’

� bi=0 � i uses T for broadcast

� bi=1 � i uses T’ for broadcast

� At r , bi = f(L) where L is load of the network
monitored by T or T’

� Let p(bi) denote the parent of i as per the current
value of bi

Switching (contd.)

Switching (contd.)

� Suppose r is ready to switch and

has two messages 1,2 in buffer.

� r is not allowed to switch until

its all neighbors has read those

0
{1,2}

r

its all neighbors has read those

messages

0 0

0 0
0

0

Switching (contd.)

� Now r has switched. Node a,b

are ready to switch.

� a,b are not allowed to switch

until its theirs’ neighbors have

1
{1,2,3,4}

r

until its theirs’ neighbors have

read those messages

0 0

0 0
0

0

{1,2}
{1,2}

a

b

Switching (contd.)

� Now r has switched. Node a,b

are ready to switch.

� a,b are not allowed to switch

until its theirs’ neighbors have

1
{1,2,3,4}

r

until its theirs’ neighbors have

read those messages

1 1

0 0
0

0

{1,2}
{1,2}

a

b

{1,2}

{1,2}

{1,2}

{1,2}

Switching (contd.)

� Let U(i) ≡ bi ≠ bpi

� Let X(i) ≡ U(i) ∧ [(∀j∈ Ci) ¬U(j)] ∧ ¬U(pi)

� Let Y(i) ≡ (∀j∈ Ni) (T
j
M ≥ Ti

M)

Switching Protocol

Legitimate State

� U(i)=false at each node i

� Y(i)=true at each node i� Y(i)=true at each node i

Properties

� Under no failure, each broadcast message m is eventually
correctly read by all the nodes

� Under arbitrary transient failure, switching eventually terminates
and each node eventually uses either T and T’
Under arbitrary transient failure, switching eventually terminates
and each node eventually uses either T and T’

Important Parameters for Single Transient

Fault

� Ts is the time when the faulty behavior of a node starts

� Tss is the time when the faulty behavior of a node stops

� Tr is the time when a node recovers from its faulty behavior (i.e.
legitimate state is reached)

Properties

� Under single transient failure, each broadcast message m read by
each child of the faulty node i before time Ts is eventually
correctly read by all the non-faulty nodes

Under single transient failure, each broadcast message m that has � Under single transient failure, each broadcast message m that has
not yet been read by the faulty node i before time Tss is eventually
correctly read by all the nodes

Self-Stabilizing Switching with Self-

Stabilizing T and T’

� What happens if T and T’ are not pre-computed but

obtained by some self-stabilizing algorithm

� A general self-stabilizing algorithm is given for A general self-stabilizing algorithm is given for

dynamic switching between T and T’

Properties

� From any arbitrary state the algorithm eventually

terminates.

� On termination the system uses either T or T’ for

broadcast.broadcast.

Consensus

� When to switch

� How to agree on that

� Every node proposes a value (0/1)

� The problem is to agree on a particular value

� It is fault that makes it challenging

Fundamental Properties of Consensus

� Termination: every non-faulty process must
eventually decide

� Agreement: the final value decided by every non-
faulty process must be samefaulty process must be same

� Validity: if every non-faulty process starts with a
value v then the final decision must be v

[Note: no one knows who is behaving bad, but
it is known that some are bad]

Consensus in asynchronous system

� Impossibility result by FLP (JACM 1985, 32(2))

� Concept of Failure Detectors for asynchronous
consensus

Consensus in synchronous system

� Byzantine Genrals Problem

� Result1: If simple message passing is used then
there is no solution to the byzantine generals
problem with 3 generals out of whom 1 is traitorproblem with 3 generals out of whom 1 is traitor

� Result2: There exist a solution for 4 generals out of
whom 1 is traitor

� General solution with n >= 3f+1

Future Work

� Distributed switching in time-varying networks

� Designing multiple initiator based distributed switching

algorithms

References

� [1] J. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local
spinning. In 14th International Symposium on Distributed Computing
(DISC), Toledo, Spain, October 2000.

� [2] A. Arora and M. Gouda. Distributed reset. IEEE Transactions on
Computers, 43(9):1026–1038,September 1994.Computers, 43(9):1026–1038,September 1994.

� [3] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz. Improving
TCP/IP performance overwireless networks. In The ACM Annual
International Conference on Mobile Computing and Networking
(MobiCom), Berkeley, California, USA, November 1995.

� [4] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong. Shifting gears:
Changing algorithms on the fly to expedite byzantine agreement.
Information and Computation, 97(2):205–233, 1992.

References (contd.)

� [5] W. K. Chen, M. Hiltunen, and R. Schlichting. Constructing adaptive
software in distributed systems. In 21st International Conference on
Distributed Computing Systems (ICDCS), Phoenix (Mesa), Arizona,
USA, April 2001.

� [6] Z. Collin and S. Dolev. Self-stabilizing depth-first search.
Information Processing Letters, 49(6):297–301, March 1994.

� [6] Z. Collin and S. Dolev. Self-stabilizing depth-first search.
Information Processing Letters, 49(6):297–301, March 1994.

� [7] S. R. Das, C. E. Perkins, and E. M. Royer. Performance comparison
of two on-demand routing protocols for ad hoc networks. In 19th
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), Tel-Aviv, Israel, March 2000.

� [8] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11):643–644, November
1974.

References (contd.)

� [9] Shiwa S. Fu, Nian-Feng Tzeng, and Zhiyuan Li. Empirical
evaluation of distributed mutual exclusion algorithms. In 11th
International Symposium on Parallel Processing (IPPS),
Geneva,Switzerland, April 1997.

� [10] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols
for information dissemination in wireless sensor networks. In 5th

� [10] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols
for information dissemination in wireless sensor networks. In 5th
Annual ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), Seattle, Washington, USA, August 1999.

� [11] T. Herman. Adaptivity through distributed convergence. Ph.D.
Thesis, Department of Computer Science, University of Texas at
Austin, 1991.

� [12] S. T. Huang and N. S. Chen. A self-stabilizing algorithm for
constructing breadth-first trees. Information Processing Letters,
41(2):109–117, February 1992.

References (contd.)

� [13] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM
Symposium on Communications Architectures and Protocols, Stanford,
California, USA, August 1988.

� [14] A. Jain, S. Karmakar, and A. Gupta. Adaptive connected dominating
set – an exercise in distributed output switching. In 8th International
Conference on Distributed Computing and Networking (ICDCN), Conference on Distributed Computing and Networking (ICDCN),
Guwahati, India, December 2006.

� [15] X. Liu and R. van Renesse. Brief announcement: Fast protocol
transition in a distributed environment. In 19th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC),
Portland, Oregon, USA, July 2000.

� [16] X. Liu, R. van Renesse, M. Bickford, C. Kreitz, and R. Constable.
Protocol switching: Exploiting meta-properties. In IEEE International
Workshop on Applied Reliable Group Communication, Phoenix, Arizona,
April 2001.

References (contd.)

� [17] A. J. Martin. Distributed mutual exclusion on a ring of processes.
Science of Computer Programming, 5(3):265–276, October 1985.

� [18] R.M. Metcalfe and D.R. Boggs. Ethernet: Distributed packet
switching for local computer networks. Communications of the ACM,
26(1):90–95, January 1983.26(1):90–95, January 1983.

� [19] J. Mocito and L. Rodrigues. Run-time switching between total
order algorithms. In 12th European Conference on Parallel Computing
(Euro-Par), Dresden, Germany, August 2006.

� [20] Venugopalan Ramasubramanian, Zygmunt J. Haas, and Emin G¨un
Sirer. SHARP: a hybrid adaptive routing protocol for mobile ad hoc
networks. In 4th ACM International Symposium on Mobile Ad Hoc
Networking & Computing (MobiHoc), Annapolis, Maryland, USA,
June 2003.

References (contd.)

� [21] K. Raymond. A tree-based algorithm for distributed mutual
exclusion. ACM Transactions on Computer Systems, 7(1):61–77,
February 1989.

� [22] O. Rutti, P.Wojciechowski, and A. Schiper. Structural and
algorithmic issues of dynamic protocol update. In 20th International
Parallel and Distributed Processing Symposium (IPDPS), Rhodes
algorithmic issues of dynamic protocol update. In 20th International
Parallel and Distributed Processing Symposium (IPDPS), Rhodes
Island, Greece, April 2006.

� [23] Sang H. Son. An adaptive checkpointing scheme for distributed
databases with mixed types of transactions. IEEE Transactions on
Knowledge and Data Engineering, 1(4):450–458, December 1989.

� [24] B. Williams and T. Camp. Comparison of broadcasting techniques
for mobile ad hoc networks. In 3rd ACM International Symposium on
Mobile Ad Hoc Networking & Computing (MobiHoc), Lausanne,
Switzerland, June 2002.

