

www.uwindsor.ca

(Part 2) Optical Networks – Some research topics

thinking forward

Topics to be covered

- Fault tolerance
- Impairment aware network design
- OFDM networks

- Faults in Optical Networks
- Link failures

the most common type of fault, where the fiber constituting a link between two nodes in the network does not permit data transmission.

- Node failures
- Channel failures
- Software failures
- > Most papers assume *single fault* scenario.

Reasons behind faults in optical layer

- ≻ Fiber cut
- Noise introduced by optical signal regenerators and amplifiers
- Cable inside a site may get disconnected
- Importance of Fault management in optical networks
 - Large amount of traffic carried by optical channels
 - Each fiber carries many channels, each channel having a capacity of 2.5 to 40 GB/sec
 - ➢ Failure may lead to huge data loss

Categorization of fault management schemes

University of Windsor

Protection scheme

- Recovery scheme determined at design time
- > Resources are reserved for each possible failure (link or path).
- Faster recovery time and guaranteed recovery

Restoration scheme

- Recovery scheme determined after the occurrence of fault
- Dynamically search for backup path and available wavelength after failure occurrence.
- Efficient in utilizing capacity

Link protection – backup path reserved around each link

Primary path: N8 \rightarrow N4 \rightarrow N6 \rightarrow N1

The faulty edge N4 \rightarrow N6 is replaced by an alternate route N4 \rightarrow N7 \rightarrow N6.

► Backup path: N8 \rightarrow N4 \rightarrow N7 \rightarrow N6 \rightarrow N1

Primary path

.....

Backup path

Figure 2: Link protection scheme

University of Windsor

Path Protection

- ➢ In the case of a fault, for each primary lightpath using the faulty component, the corresponding backup lightpath will be set up.
- All data carried by each primary lightpath affected by the fault will be switched over to the corresponding backup lightpath.
- > Primary and backup paths must be *edge-disjoint*.

Path Protection – backup path reserved on a end-to-end basis

Figure 3: Path protection scheme

Dedicated path protection

Dedicated Path Protection The channel used by a backup lightpath is always reserved for a *single* primary lightpath.

Figure 4: 1:1 Protection

Shared Path Protection

 (also called backup multiplexing)

 Resources may be shared by two or more backup paths if and only if the corresponding primary paths are edge disjoint.

Physical Layer Impairments

- Causes = Attenuation, Distortion & Noise
- As an optical signal propagates:
 - signal loses strength
 - signal becomes distorted, and
 - signal to noise ratio increases
- Note: PLI are not defects, but characteristics of the fiber

Physical Layer Impairments (PLI)

- Physical layer impairments are broadly classified into 2 types namely: Linear & Non-Linear.
- Linear Impairments: Affect a lightpath individually and are not dependant on other lightpaths in the network. Examples: Amplified Spontaneous Emission (ASE), Chromatic Dispersion (CD), Polarization Mode Dispersion (PMD).
- Non-Linear Impairments: Interference between lightpaths.
 Examples: Cross-Phase Modulation (XPM) and Switch Crosstalk (XT)
- Routing and Wavelength Assignment (RWA) that takes into account the effects of PLI, is termed Impairment-Aware RWA (IA-RWA).

Physical Impairments

- Most of the physical impairments are the characteristics of the optical devices used.
- Affects of a few impairments may be improved during RWA.
 - Inter-channel cross talk
 - Intra-channel cross talk

Same channel interference.

Figure 6: Some non-linear impairments

University of Windsor

Physical Layer Impairments

Signal loses strength and becomes distorted

- Signal to Noise Ratio (SNR)
 - = average signal power/ average noise power
- QoT = Bit Error Rate
- Analytical models vs. Rough estimates

3R-Regeneration

- Optical Reach = distance after which signal QoT becomes unacceptable
- Extending the range of a signal

• 3R-Regeneration restores the signal to its original state.

3R-Regeneration

- The optical signal needs to be **regenerated** before the QOT falls below the **acceptable level** (called **threshold**).
- **Optical regenerators** (i.e. regeneration in the optical domain) still in the research phase.
- 3R-Regeneration (Re-amplification, Re-shaping and Retiming) - performed in the electronic domain. OEO is expensive.

Translucent Lightpath & Wavelength Conversion

• 3R regenerators also provide **wavelength conversion** at no extra cost.

Regenerator Capable Node

Optical Reach = 2000

To regenerate or not to regenerate?

Figure 9: A regeneration-capable node has the option of regenerating signals

Transparent vs. Translucent lightpath

- A lightpath is used for data communication.
- It is characterized by:
 - A route from a source to a destination

• Any lightpath that has to undergo, at least one regeneration. is called a **translucent** lightpath.

Categories of Optical Networks

- Three categories of optical networks.
 - Fully switched (opaque) network.
 - Each lightpath undergoes Optical-Electronic-Optical (OEO) conversion in every node on its route from its source to destination.
 - Network may be of any size.
 - Costlier and slower.

Figure 10: An opaque network

Categories of Optical Networks

- All-optical (transparent) networks.
 - Lightpaths remain in the optical domain from source to destination.
 - Faster and less costly.
 - Suitable only for networks covering relatively small geographical area.
 - High Bit-Error-Rate when the transmission distance is high.

Figure 11: An all-optical network

Categories of Optical Networks

- Translucent networks.
 - Selected nodes have the capacity to "regenerate" optical signals.
 - Some lightpaths using routes longer than the optical reach, undergo OEO conversion at some regenerating nodes on its route from their respective sources to their destinations.
 - Remaining lightpaths remain in the optical domain from their sources to their destinations.

Translucent networks

- Translucent networks:
 - Provide the advantages of both opaque and transparent networks.
 - Less costly than opaque networks.
 - Sufficiently fast.
 - Low Bit-Error-Rate.
 - Suitable for networks covering large or very large geographical area.

Translucent Lightpaths

- May be considered as a concatenation of two or more transparent lightpaths.
- Each transparent part is called a segment.
- Figure 13: Segments in a lightpath

Types of Blocking in translucent networks

Figure 14: A lightpath may be blocked for 2 reasons

- Physical Layer Blocking
- Network Layer Blocking

Lack of available resources (e.g. channel)due to the presence of existing lightpaths

Dynamic and static lightpath allocation

- Dynamic lightpath allocation (DLA)
 - Traffic requests are not known in advance.
 - Traffic patterns change with time.
 - Lightpaths are established as and when a new traffic request arrives.
 - A lightpath exists only for the duration of data communication.
- Static lightpath allocation (SLA)
 - Traffic requests are known in advance.
 - Traffic patterns do not significantly change with time.
 - Lightpaths are established, considering all the traffic requests.
 - Once established, lightpaths exist for a long period of time.

Designing Translucent Networks

- For dynamic traffic: Connection requests arrive randomly and the duration of the connection is not known in advance.
 "Optimal" regenerator placement is not possible.
- A dynamic traffic based, translucent optical network is designed in **2 stages**:
 - 1. Regenerator Placement Problem (RPP) &
 - 2. Routing with Regenerators Problem (RRP)

Regenerator Placement Problem (RPP)

- Given a network physical topology.
 - Identify the minimum numbers of nodes that should have regenerating capacity, so that, for every ordered node-pair (s, d), s may establish a valid connection, using a transparent or a translucent lightpath) to d.

Routing with Regenerator Problem (RRP)

- Given
 - a network topology,
 - the location of regenerator nodes, and
 - details about all existing lightpaths,
 - a new request for a lightpath from s to d,
- Carry out Routing and Wavelength Assignment (RWA) to establish a new lightpath from s to d, using a minimum number of regenerators.

Loops in translucent lightpaths Loops - An interesting feature of translucent lightpaths

- Property :
 - If a translucent lightpath has two segments, S_a and S_b sharing common fiber(s), the same channel cannot be used for both S_a and S_b .
- This property has not been taken into account in the earlier works on RRP.

The limitations of WDM Technology

- Increasing capacity requirements pertaining to the high data-rate applications like video on demand, cloud computing etc.
- The continuous growth of consumers IP traffic => ever increasing requirements for additional channels.
- The need for flexibility and efficiency in the allocation of spectral resources.

Signal Bandwidth = 10 GHz, Channel Spacing = 100 GHz

- If the user requires only
 1GHz, 90% of the spectrum is wasted.
- Further, if the user requires
 12GHz, the user has to be
 assigned 2 lightpaths using

33

Assigned 2 lightpaths using Figure 18: WDM channels different frequencies, which may potentially lead to wastage of space and also the overhead cost of splitting and combining of data.

• The fixed granularity of the current wavelengthrouted networks .

Optical OFDM Technology

- Orthogonal Frequency Division Multiplexing (OFDM) is a scheme that allows
 - Elastic allocation of spectrum according to connection demands.

Figure 19: A simple way to visualize OFDM vs WDM

Optical OFDM Benefits

 Optical OFDM offers good spectral efficiency by elastically allocating the bandwidth, according to the connection demands.

Figure 20: Elastic bandwidth

Notion of Routing and Spectrum Assignment (RSA)

- Assigning a route and bandwidth/spectrum to lightpath requests.
- In this case, the spectrums of L1 and L2 cannot overlap, as they share a common edge.

Figure 21: Spectrum allocation in OFDM networks

L1: $0 \rightarrow 3 \rightarrow 4 \rightarrow 5$ $\rightarrow 7$ L2: $2 \rightarrow 4 \rightarrow 5 \rightarrow 6$

Why the RWA algorithms of WDM don't work for OFDM

- Currently, wavelength-routed networks require full allocation of a wavelength to a connection b/w end nodes.
- However for OFDM, each connection has to be assigned an appropriate bandwidth to obtain increased spectral efficiency.
- Therefore, the wavelength continuity constraint of traditional WDM networks is transformed to a spectrum continuity constraint.
- To address these issues, new routing and spectrum allocation (RSA) algorithms are developed.

Importance of an efficient path selection

The importance of an efficient routing scheme is shown below using a practical example.

1. Inefficient Path Selection

University of Wir

Figure 22: RSA in OFDM networ	Traffic	Source → Destination	
		3 → 5	
3 4 6	12	1 → 4	
Total required spectrum - 37	15	4 → 5	
Iotal required spectrum = 37	6	$4 \rightarrow 6$	
38 thinking forward			ndsor

Importance of an efficient path selection in routing phase

Efficient Path Selection for the same situation Figure 23: Better pa

Source →	Traffi
Destinat ion	С
3 → 5	10
$1 \rightarrow 4$	12
4 → 5	15
$4 \rightarrow 6$	6

Figure 23: Better paths selected

Total required spectrum = 21

Basics of Optical OFDM Technology

- Optical OFDM
- New technology to send multiple signals over a single optical fiber.
- Elastic allocation of bandwidth to each signal, according to the connection demands.

Figure 24: Elastic bandwidth allocation

Benefits of OFDM networks

- Good spectral efficiency
- Elastic allocation of bandwidth.
- Overall guard band usage for signals requiring more than 1 channel for communication is less. (compared to WDM)

Routing and Spectrum Assignment (RSA)

- Given:
 - A network topology,
 - Predefined set of requests,
- The problem is to assign a path and a bandwidth/spectrum to each request, such that the total spectrum need is as small as possible.

Requests to be handled: L1 : 0 to 7 L2 : 2 to 6

- What do we need to do?
- 1)Solve Routing Sub Problem
- 2) Assign a bandwidth to each request

Figure 24: static RSA

2. Spectrum Assignment Sub Problem

 $L1: 0 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 7$ $L2: 2 \rightarrow 4 \rightarrow 5 \rightarrow 6$

Spectrum Clash Constraint

- Any two lightpaths which share a common optical fiber, must be
 - assigned non-overlapping bandwidths
 - separated by at least a guard band.
- This is a little different from wavelength clash constraint in WDM.

Spectrum Continuity Constraint

- Spectrum conversion at optical layer not feasible.
- Assigned spectrum must remain the same all along the path.
- This is similar to wavelength continuity constraint

