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Open and Closed Networks 

of 

M/M/m Type Queues 

(Jackson’s Theorem for Open and 
Closed Networks) 
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Splitting a Poisson process probabilistically (as in 
random, probabilistic routing) leads to processes 
which are also Poisson in nature. 
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1-p

p

Routing Probabilities are p and (1-p)

λ λ

λp λp

λ(1-p) λ(1-p)

Q1

Q2

Q3

Under equilibrium conditions, 
average flow leaving the 
queue will equal the average 
flow entering the queue. 

For M/M/m/∞ queues at equilibrium, Burke’s Theorem assures us 
that the departure process of jobs from the network will also be 
Poisson. From flow balance, the average flow rate leaving the queue 
will also be the same as the average flow rate entering the queue. 
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Poisson Process
Average Rate λ1

Poisson Process
 Average Rate λ2

Poisson Process
 Average Rate λ1+λ2

Combining independent Poisson processes leads to a 
process which will also be Poisson in nature. 
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λ1

λ2Example:   

An Acyclic 
(Feedforward) 
Network of 
M/M/m Queues 

External arrivals with rates 
λ1 and λ2 from Poisson 
processes 

Probabilistic routing with the routing probabilities as 
shown 
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• Applying flow balance to each queue, we get 
 
 λQ1 = Average job arrival rate for Q1 = λ1 
 λQ2 = Average job arrival rate for Q2 = 0.4λ1+λ2 
 λQ3 = Average job arrival rate for Q3 = 0.4λ1 
 λQ4 = Average job arrival rate for Q4 = 0.84λ1+λ2 

• Burke’s Theorem and the earlier quoted results on splitting and 
combining of Poisson processes imply that, under equilibrium 
conditions, the arrival process to each queue will be Poisson. 

• Given the mean service times at each queue and using the 
standard results for M/M/m queues, we can then find the 
individual state probability distribution for each of the queues 

• This process may be done for any system of M/M/m queues as 
long as there are no feedback connections between the queues 
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• It should be noted that this analysis can only give us the 
state distributions for each of the individual queues but 
cannot really say what will be the joint state distribution  
of the number of jobs in all the queues of the network. 

• Jackson’s Theorem, presented subsequently, is needed to 
get the joint state distribution. This gives the simple, and 
elegant result that - 

)()()()(),,,( 443322114321 npnpnpnpnnnnP QQQQ=

Product Form Solution for 
Joint State Distribution of 

the Queueing Network 
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Jackson’s Theorem for Open Networks 

• Jackson’s Theorem is applicable to a Jackson Network. 

This is an arbitrary open network of M/M/m queues where 
jobs arrive from a Poisson process to one or more nodes and 
are probabilistically routed from one queue to another until 
they eventually depart from the system. 

The departures may also happen from one or more queues 

The M/M/m nodes are sometimes referred to as Jackson 
Servers 

• Jackson’s Theorem states that provided the arrival rate at each 
queue is such that equilibrium exists, the probability of the 
overall system state (n1…….nK) for K queues will be given by the 
product-form expression 
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Jackson Network: Network of K (M/M/m) queues, arbitrarily 
      connected 

External Arrival to Qi:      Poisson process with average rate Λi 
At least one queue Qi must be such that Λi≠ 0. Note that Λj=0 
if there are no external arrivals to Qj. This is because we are 
considering an Open Network. (Closed Networks are considered 
later). 

Routing Probabilities:  pij = P{a job served at Qi is routed to Qj} 
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1 = P{a job served at Qi exits from the network} 
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Arrival Process of Jobs to Qi 

 = [External Arrivals, if any, to Qi] 

      
∑

=

+
K

j 1

Jobs which finish service at Qj and are 
then routed to Qi for the next stage of 
service 

Let λi = Average Arrival Rate of Jobs to Qi {external and rerouted} 

Given the external arrival rates to each of the K queues in the 
system and the routing probabilities from each queue to 
another, the effective job arrival rate to each queue (at 
equilibrium) may be obtained by solving the flow balance 
equations for the network. 
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Flow Balance Conditions at Equilibrium imply that - 

∑
=

+Λ=
K

i
ijijj p

1

λλ for j=1,….., K (5.2) 

• For an Open Network, at least one of the Λj’s will be non-
zero (positive) 

• The set of K equations in (5.2) can therefore be solved to 
find the effective job arrival rate to each of the K queues, 
under equilibrium conditions. 

• The network will be at equilibrium if each of the K queues 
are at equilibrium. This can happen only if the effective 
traffic offered to each queue is less than the number of 
servers in the queue. i.e.  ρj = λ j /µj < mj   j=1,….., K  where mj 
is the number of servers in Qj.  
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For a network of this type with M/M/m/∞ queues (i.e. 
Jackson Servers) at each node, Jackson's Theorem 
states that provided the arrival rate at each queue is 
such that equilibrium exists, the probability of the overall 
system state (n1,......., nK) will be - 

∏
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with pj(nj)=P{nj customers in Qj} 

 
This individual queue state probability may be found by 
considering the M/M/m/∞ queue at node j in isolation, with its 
total average arrival rate λj, its mean service time 1/µj and the 
corresponding results for the steady state M/M/m/∞ queue 
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Stability requirement for the existence of the solution 
of (5.4) is that - 

For each queue Qj  j=1,….., K in the network, the traffic 
offered should be such that  

j
j

j
j m<






= µ
λρ

where mj is the number of servers in the M/M/m/∞ 
queue at Qj 
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Implications of Jackson’s Theorem - (extensions and 
generalizations considered subsequently) 

• Once flow balance has been solved, the individual queues may be 
considered in isolation. 

• The queues behave as if they are independent of each other (even 
though they really are not independent of each other) and the joint 
state distribution may be obtained as the continued product of the 
individual state distributions (product-form solution)  
• The flows entering the individual queues behave as if they are 
Poisson, even though they may not really be Poisson in nature (i.e. if 
there is feedback in the network). 

Note that Jackson’s Theorem does require the external arrival 
processes to be Poisson processes and the service times at each 
queue to be exponentially distributed in nature with their 
respective, individual means. 
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Performance Measures 

Total Throughput = ∑
=

Λ=
K

j
j

1

λ (5.5) 

Average traffic load at  node j (i.e. Qj) =  
j

j
j µ

λ
ρ = (5.6) 

Visit Count to node j = 
λ
λ j

jV = (5.7) 

The visit counts may also be obtained by directly solving 
the following K linear equations - 
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j =1,……, K (5.8) 

Scaled Flow Balance 
Equations 
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Average number of jobs at node j =  ∑
∞

=

=
0

)(
k

jj kkpN (5.9) 

Average number of jobs in system =  ∑
=

=
K

j
jNN

1

(5.10) 

Interpretation of the Visit Ratio Vj :  

Average number of times a job will visit Qj  every time it actually 
enters the (open) queueing network. Useful to calculate transit 
(sojourn) times from different entry points in the network 

Mean Sojourn Time (W) : The mean total time spent in the 
system by a job before it leaves the network. 
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When does the Product- Form Solution hold? 

The product-form expression for the joint state 
probabilities hold for any open or closed queueing 
network where local balance conditions are satisfied. 

Some other results indicate that this type of solution 
also hold for somewhat more general conditions. 

 



Copyright 2015, Sanjay K. Bose 18 

Specifically, open or closed networks with the following 
types of queues will have a product-form solution - 

1. FCFS queue with exponential service times 

2. LCFS queues with Coxian service times 

3. Processor Sharing (PS) queues with Coxian service 
times 

4. Infinite Server (IS) queues with Coxian service times 

A Coxian service time has a distribution of the following 
type - 
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Example: Open Jackson Network 
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Example  
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Example  
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Note that as λ increases, 
system eventually becomes 
unstable because            
 

This, therefore, implies that 
ρ0<0.6176 or λ<0.6176μ for 
the queueing network to be 
stable. 

for 
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Example  

(a) Condition for network to be stable 

(b) Transit Delay through the system for any job arrival for Λ=0.5, μ=1 

(c) Transit Delay through the system for job entering at A for Λ=0.5, 
μ=1 
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Solving Flow Balance, we get - 

1 2 3 42.75 1.25 1.375 2.375λ λ λ λ= Λ = Λ = Λ = Λ

and 

1 2 3 41.375 1.25 1.375 1.1875ρ ρ ρ ρ
µ µ µ µ
Λ Λ Λ Λ

= = = =

1.375 1 or 0.727µ
µ
Λ

< Λ <System Stable if  

Since all the queues are single-server queues,  
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1 2 3 40.6875 0.625 0.6875 0.59375ρ ρ ρ ρ= = = =

1 2 3 42.2 1.667 2.2 1.462N N N N= = = =

7.529N =
7.529 5.019

3 3 0.5
NW = = =
Λ ×

For Λ=0.5, μ=1    

  and  

  

W is the transit time through the system averaged 
over all jobs that enter the system, i.e. through A or 
through B 
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For Λ=0.5, μ=1    

31 2 4
1 2 3 4

1 2 3 4

1.6 2.667 3.2 1.231NN N NW W W W
λ λ λ λ

= = = = = = = =

are the delays through the individual queues Q1-Q4  

To find delays for jobs entering from one particular entry point 
in the network, we need to find how many times (on the average) 
such a job will visit each queue in the network. This would 
require finding the visit ratios to each queue with only that flow 
present (set other flows to zero). 
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1 2 3 42.5 0 1.25 1.25λ λ λ λ= Λ = = Λ = Λ

1 2 3 4
2.5 1.25 1.251.25 0 0.625 0.625
2 2 2

V V V VΛ Λ Λ
= = = = = = =

Λ Λ Λ

Considering the system with arrivals coming only 
from A, we get - 
   

Visit Ratios
  

Therefore, Transit Delay for job entering at A  

                      =1.25x1.6+0.625x3.2+0.625x1.231=4.77 
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Extensions to Jackson’s Theorem for Open Networks 

[A]  Jackson's Theorem with State dependent Service 
Rates at the Queuing Nodes. i.e. queues with multiple 
servers 
For this, assume that the service times at Qj are exponentially 
distributed with mean 1/µj(m) when there are m customers in Qj 
just before the departure of a customer. 

[B]  Queuing Networks with Multiple Customer Classes 
For this, we need to assume that the service time distribution 
at a node will be the same for all classes even though they may 
differ from one node to another. The service times may be 
state dependent. 
The external arrival rates and routing probabilities will vary 
from one class of customers to another 
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Closed Queueing Networks 

• K queues - Q1, ......, QK  in the queueing network 

• M jobs of the same class circulating in the network 

• pij  is the routing probability from Qi to Qj  (probabilistic routing) 

∑
=

==
K

j
ij Kip

1

,......,11Since network is a closed network 

• No arrivals from outside and no departures from the network 

• Flow balance conditions for this network may still be written as 

Kjp
K

i
ijij ,......,1

1

== ∑
=

λλ (5.12) 
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• The K equations of (5.12) are not independent. Hence, they 
cannot be solved to uniquely find the λjs for the K queues,  
j=1,....., K 
• Using any K-1 equations of the K equations in (5.12), we can 
however find the λj’s up to a multiplicative constant 

For this, assume that α(M) is an (unknown) scalar quantity and 
let {λj

*} j=1,...,K be a particular solution of (5.12) such that the 
true average arrival rates {λj(M)} j=1,....,K are given by 

  λj(M) = α(M)λj
*       j=1,….....,K                 (5.13) 

 
•α(M) and {λj(M)} j=1,……..,K  are both functions of the population 
size of M jobs circulating in the closed network  

•However, {λj
* } j=1,…...,K  will be independent of M 
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An alternate, but equivalent approach would be to do 
the following - 

• Choose any queue in the network (say Q1) as the 
reference queue and assume that λ1

*=α   

 
Any value of α  may be chosen!  

 
A convenient choice is α=µ1 so that ρ1=λ1

*/µ1=1 
 

• Solve the flow balance equations of (5.13) to obtain the 
relative throughputs (λ2

*,λ3
*,.......,λK

*) in terms of α. 
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• Assuming the service times to be exponentially distributed 
(recall that we are assuming M/M/m type queues), we can 
allow the actual service rates at each queue to be state 
dependent 

µj(m) = service rate at Qj when Qj is in state m  
 (exponential service times assumed) 

• Using the relative throughputs {λj
*} j=1,…...,K found earlier, 

we define the relative utilizations {uj} j=1,…...,K as - 

)(
)(

*

m
mu

j

j
j µ

λ
= j=1,…., K    m=1……,M (5.14) 
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Let ni = Number in queue Qi      i=1,……., K 

State Probability Vector  )..,,.........(~
1 Knnn =

such that Mnn K =++ ...........1 Total number of jobs 

Jackson’s Theorem for Closed Networks of M/M/- Type Queues 

∏
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Example 
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Example (cont.) 

Q1
M/M/1

Q2
M/M/1

q

p

1-q
1-p

µ1

µ2

Closed Network with M jobs 

P{Q1 is busy} = 1-P(0, M) = 
)(

)1(
)(

1 2

MG
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u M −

=−

P{Q2 is busy} = 1-P(M, 0) = 
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MGu
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Visit Ratios 
The visit ratio Vi  of the ith queue Qi in the queueing network 
is defined as the mean number of times Qi is visited by a job 
for every visit it makes to a given reference queue, say Q1.  

Note that the definition is basically the same as for an open 
network. 

With Q1 as the reference queue,  
*

1

*

λ
λi

iV = i=1,…., K 

The same result will be obtained by setting V1 =1 and solving 
the equations                 with                            and  VPV ~~~

=⋅ ),.......,(~
1 KVVV = ][~

ijpP =
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Jackson’s Theorem for Closed Networks of Multi-Server 
Queues 

Qi has si servers ),(min)( iiii smm µµµ =⇒ i=1,……, K 

µi = service rate of a single server at Qi   
µi (m) =overall (state dependent) service rate at Qi when it 
 has a total of m jobs (waiting and in-service)  

K  exponential service queues in the closed network with 
probabilistic routing given by Kjipij ,.......,1,){ =

Define 
i

i
iu

µ
λ *

= where λi
* is the relative throughput for Qi 
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Jackson’s Theorem for a Closed Network of Multi-Server 
Queues 

Using these 
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These expressions may be written in a simpler form for a Closed 
Network of Single Server Queues with Exponential Service 
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• The major computational difficulty with finding the state 
probability distribution of a Closed Network is that of 
finding the value of the normalization constant G(M) 
  
This complexity increases rapidly with larger networks 
(increasing values of K) and larger population of circulating 
jobs (increasing values of M) 
• G(M) may be calculated directly only for very small 
networks with a very small number of circulating jobs. For 
larger networks, the Convolution Algorithm should be used to 
calculate G(M). 
• If mean performance parameters are desired (rather than 
the actual state probability), then the Mean Value Algorithm 
may be directly used to find these without finding G(M) at 
all. 
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For a closed network of K single server queues with M 
jobs circulating - 
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Then 
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Therefore 
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Note that the departure rate from Qi will always be µi 
whenever Qi has one or more jobs. 

Therefore, the actual throughput λi of Qi will be given by  
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Example  
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Example  
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State Probability Distribution at equilibrium 
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It would be easier to use MVA or 
the Convolution Algorithm to 
calculate G(M) or the queue 
parameters rather than trying to 
compute them directly. 

These algorithms are discussed 
next 
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