
Routing

1

Geo-Routing
Thanks to Stefan Schmid for slides

• Classic routing overview
• Geo-routing
• Greedy geo-routing

• Euclidean and Planar graphs
• Face Routing

Overview

2

• Greedy and Face Routing

Shortest path

• An important issue is: how well do such algorithms perform

when the topology changes? No real network is static!

3

• Let us examine distance vector routing that is adaptation

of the shortest path algorithm

Distance Vector Routing

• Distance vector routing uses the basic idea of shortest path
routing, but handles topology changes.

• The routing table is an array of tuples <destination, nexthop,
distance>.

• To send a packet to a given destination, it is forwarded to the
process in the corresponding nexthop field of the tuple.

• When a node j or a link crashes some neighbor of it detects

4

• When a node j or a link crashes some neighbor of it detects
the failure and sets the corresponding distance to ∞.

• When a new node joins the network, or an existing node is
repaired, the neighbor detecting it sets the corresponding
distance to 1.

• Routing table is eventually recomputed.
• Unfortunately, depending on when a failure is detected,

and when the advertisements are sent out, the routing
table may not stabilize soon.

Distance Vector Routing

Distance Vector D for each node i contains N elements

D[i,0], D[i,1], D[i,2] … D[i, N-1]. D[i,j] denotes the

distance from node i to node j. ∀i, D[i,i] =0, and initially

∀i,j: i≠j, D[i,j] = ∞.

- Each node j periodically sends its distance vector to its

immediate neighbors.

j

iD[j,k]

w[i,j]

5

immediate neighbors.

- Every neighbor i of j, after receiving the broadcasts

from its neighbors, updates its distance vector as

follows:

∀∀∀∀ k ≠ i: D[i,k] = mink(w[i,j] + D[j,k])

i

k

D[j,k]

D[i,k]

Suggested Reading:
Routing Information Protocol (RIP),
Interior Gateway Routing Protocol (IGRP).

What if the topology changes?

Assume that each edge has weight = 1. Currently,

Node 1: d(1,0) = 1, d(1, 2) = 1, d(1,3) = 2

Node 2: d(2,0) = 1, d(2,1) =1, d(2,3) = 1

Node 1: d(3,0) = 2, d(3,1) = 2, d(3,2) = 1

0

1

2 3

6

Node 1: d(3,0) = 2, d(3,1) = 2, d(3,2) = 1

Observe what can happen when the link (2,3)
fails.

Counting to infinity

Node 1 thinks d(1,3) = 2 (old value)

Node 2 thinks d(2,3) = d(1,3) +1 = 3

Node 1 thinks d(1,3) = d(2,3) +1 = 4

…

and so on. So it will take forever for the
0

1

2 3

Observe what can happen when the link (2,3) fails. D[j,k]=3 means
j thinks k is 3
hops away

7

and so on. So it will take forever for the
distances to stabilize.

• A partial remedy is the split horizon

method that will prevent node 1 from
sending the advertisement about d(1,3) to 2
since its first hop (to 3) is node 2.

∀∀∀∀ k≠ i: D[i,k] = mink(w[i,j] + D[j,k])

Suitable for smaller networks. Larger volume of data is disseminated, but
to its immediate neighbors only. Poor convergence property

Link State Routing

• This is an alternative method of shortest path routing
• In comparison with distance vector routing, link-state routing protocol

converges faster.
• Each node i periodically broadcasts the weights of all edges (i,j)

incident on it (this is the link state) to all its neighbors. The
mechanism for dissemination is flooding.

• Link state broadcasts are sent out reliable flooding, which guarantees

8

that the broadcasts reach every node.

• This helps each node eventually compute the topology of the
network, and independently determine the shortest path to any
destination node using some standard sequential graph algorithm

like Dijkstra’s.

• When failures are not taken into consideration, the correctness
follows trivially. The total number of LSPs circulating in the network
for every change in the link state is |E|.

Smaller volume data disseminated over the entire network
Used in Open Shortest Path First (OSPF) of Internet Protocol (IP)

Link State Routing contd..

• The failure (or temporary unavailability) of links and nodes can make the
algorithm more complicated.

• When a node i crashes, the link-state packet s (LSPs) stored in it are
lost — so it has to reconstruct the topology from the newer packets.

• New link states replace the old ones in case of links and nodes failure and
repair taken place.

9

repair taken place.

• The links may not be FIFO, so to distinguish between the old and the new
link states each link state contains a sequence number seq.

• Each link state packet has a seq that reflects the order in which the packets
were generated. While sending a LSP, a node increments its seq by 1.

• Each node records the largest seq received from every other node. Packets
with higher seq are more recent, and used for updates. Packets with lower
seq are considered old, and discarded.

Link State Routing: clarification

When a node crashes, all packets stored in it may be lost.

After it is repaired, new packets are sent with seq = 0.

So these new packets may be discarded in favor of the old packets!

10

So these new packets may be discarded in favor of the old packets!

Problem resolved using time-to-live (TTL)

Time-To-Live (TTL)

Each LSP contains a TTL field, which is an estimate of the time after

which a packet should be considered stale (out of date), and discarded.

Every node decrements the TTL field of all its LSPs at a steady rate.1

Furthermore, every time a node forwards a stored LSP, it decrements

its TTL.

11

its TTL.

When the TTL of a packet becomes 0, the packet is discarded.

Of course transient failures can corrupt seq in an unpredictable manner

and challenge the protocol.

Corrupt LSP entries are eventually flushed out using the TTL field.

Suggested reading: Dynamic Routing Protocols by Jeff Doyle,
Sample Chapter is provided courtesy of Cisco Press, Nov 16, 2001.
See:
http://www.ciscopress.com/articles/article.asp?p=24090&seqNum=4

Discussion of Classic Routing Protocols

• Proactive Routing Protocols

• Both link-state and distance vector
are “proactive,” that is, routes are
established and updated even if
they are never needed.

• If there is almost no mobility,

• Reactive Routing Protocols

• Flooding is “reactive,” but does
not scale

• If mobility is high and data
transmission rare, reactive

12

• If there is almost no mobility,
proactive algorithms are superior
because they never have to
exchange information and find
optimal routes easily.

transmission rare, reactive
algorithms are superior; in the
extreme case of almost no data
and very much mobility the simple
flooding protocol might be a good
choice.

There is no “optimal” routing protocol; the choice of the routing protocol depends
on the circumstances. Of particular importance is the mobility/data ratio.

Routing in Ad-Hoc Networks

• Reliability
– Nodes in an ad-hoc network are not 100% reliable
– Algorithms need to find alternate routes when nodes are failing

• Mobile Ad-Hoc Network (MANET)
– It is often assumed that the nodes are mobile (“Car2Car”)

13

• Q: How good are these routing algorithms?!? Any hard results?
• A: Almost none! Method-of-choice is simulation…

Geometric (geographic, directional, position-based) routing

• …even with all the tricks there will be flooding every now and then.

• In this part we will assume that the nodes are location aware (they
have GPS, or an ad-hoc way to figure out their coordinates), and
that we know where the destination is.

• Then we simply

14

• Then we simply
route towards the
destination

s

t

Geometric routing

• Problem: What if there is no path in the right direction?

• We need a guaranteed way to reach a destination even in the case
when there is no directional path…

• As in flooding
nodes keep track

15

nodes keep track
of the messages
they have already
seen, and then they
backtrack* from there

*backtracking? Does this
mean that we need a stack?!?

s

t

?

B

Geo-Routing: Strictly Local

???

2/16

A

Greedy Geo-Routing?

B

2/17

A

Greedy Geo-Routing?

2/18

C

A

?

What is Geographic Routing?

• Each node knows its own position and position of neighbors
• Source knows the position of the destination
• No routing tables stored in nodes!

19

Greedy routing

• Greedy routing
looks promising.

• Maybe there is a
way to choose the
next neighbor
and a particular

2/20

and a particular
graph where we
always reach the
destination?

Greedy routing

• 0. Start at s.

• 1. Proceed to the
neighbor closest to t.

• 2. Repeat step 1 until
either reaching t or a
local minimum with
respect to the distance

2/21

respect to the distance
from t, that is a node v
without any neighbor
closer to t than v itself.

Examples why greedy algorithms fail

• We greedily route to the neighbor
which is closest to the destination:
But both neighbors of x are
not closer to destination D

2/22

• Also the best angle approach
might fail, even in a triangulation:
if, in the example on the right,
you always follow the edge with
the narrowest angle to destination
t, you will forward on a loop
v0, w0, v1, w1, …, v3, w3, v0, …

Euclidean and Planar Graphs

• Euclidean: Points in the plane, with coordinates, e.g. UDG

• UDG: Classic computational geometry model, special case of disk
graphs.

• All nodes are points in the plane,
two nodes are connected iff (if and

2/23

two nodes are connected iff (if and
only if) their distance is at most 1,
that is {u,v} ∈ E , |u,v| ≤ 1

+ Very simple, allows for strong analysis

– Particularly bad in obstructed environments (walls, hills, etc.)

Euclidean and Planar Graphs

• Planar: can be drawn without “edge crossings” in a plane

2/24

• A planar graph already drawn in the plane without edge
intersections is called a plane graph.

• Now we will see how to make a Euclidean graph planar.

Euclidean and Planar Graphs

• In order to achieve planarity on
the unit disk graph G, the
Gabriel graph is employed.

• A Gabriel graph contains an
edge between two nodes u and v
iff the disk (including

2/25

iff the disk (including
boundary) having uv as a
diameter does not contain a
“witness” node w.

Delaunay Triangulation

• Let disk(u,v,w) be a disk defined by
the three points u,v,w.

• The Delaunay Triangulation (Graph)
DT(V) is defined as an undirected
graph (with E being a set of undirected
edges). There is a triangle of edges
between three nodes u,v,w iff the

disk(u,v,w)

v

u
w

2/26

between three nodes u,v,w iff the
disk(u,v,w) contains no other points.

• The Delaunay Triangulation is the
dual of the Voronoi diagram, and
widely used in various CS areas

– the DT is planar

– the DT is a geometric spanner

Delaunay Triangulation

2/27

Properties of Proximity Graphs

• Theorem 1:
MST ⊆ RNG ⊆ GG ⊆ DT

3/28

• Corollary:
Since the MST is connected and the DT is planar, all the graphs in
Theorem 1 are connected and planar.

Breakthrough idea: route on faces

• Remember the
faces…

• Idea:
Route along the
boundaries of
the faces that

2/29

the faces that
lie on the
source–destination
line

• Kranakis, E., Singh, H., Urrutia, J.: Compass routing on
geometric networks, in proc. of the 11th CCCG, Vancouver,
Canada, pp. 51–54 (1999)

Face Routing

0. Let f be the face
incident to the source
s, intersected by (s,t)

1. Explore the boundary
of f; remember the
point p where the
boundary

2/30

boundary
intersects with (s,t)
which is nearest to t;
after traversing
the whole
boundary, go back
to p, switch the face,
and repeat 1 until you
hit destination t.

• All necessary information is stored in the message
– Source and destination positions
– Point of transition to next face

• Completely local:
– Knowledge about direct neighbors‘ positions sufficient
– Faces are implicit

Face Routing Properties

31

• Planarity of graph is computed locally (not an assumption)
– Computation for instance with Gabriel Graph

“Right Hand Rule”

Face Routing Works on Any Graph

s

32

t

Face routing is correct

• Theorem: Face routing terminates on any simple planar graph in
O(n) steps, where n is the number of nodes in the network

• Proof: A simple planar graph has at most 3n–6 edges. You leave
each face at the point that is closest to the destination, that is, you
never visit a face twice, because you can order the faces that
intersect the source-destination line on the exit point. Each edge is

33

intersect the source-destination line on the exit point. Each edge is
in at most 2 faces. Therefore each edge is visited at most 4 times.
The algorithm terminates in O(n) steps.

• Euler's formula gives v − e + f = 2.
• From v − e + f = 2 and 2e >= 3f (one face has minimum 3 edges

and each edge has maximum two faces)
• e ≤ 3v − 6 if v ≥ 3.

Face Routing

• Theorem: Face Routing reaches destination in O(n) steps
• But: Can be very bad compared to the optimal route

34

ts

Is there something better than Face Routing?

How can we improve Face Routing?

2/35

Is there something better than Face Routing?

• How to improve face routing? A proposal called “Face Routing 2”

• Idea: Don’t search a whole face for the best exit point, but take the
first (better) exit point you find. Then you don’t have to traverse huge
faces that point away from the destination.

• Efficiency: Seems to be practically more efficient than face routing.

36

• Efficiency: Seems to be practically more efficient than face routing.
But the theoretical worst case is worse – O(n2).

• Problem: if source and destination are very close, we don’t want to
route through all nodes of the network. Instead we want a routing
algorithm where the cost is a function of the cost of the best route in
the unit disk graph (and independent of the number of nodes).

Bounding Searchable Area

37

ts

Adaptive Face Routing (AFR)

• Idea: Use
face routing
together with
“growing radius”
trick:

• That is, don’t
route beyond

2/38

route beyond
some radius r
by branching
the planar graph
within an ellipse
of exponentially
growing size.

• Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically optimal geometric
mobile ad-hoc routing, 6th Int. Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications, Atlanta,USA (2002)

AFR Example Continued

• We grow the
ellipse and
find a path

2/39

AFR Pseudo-Code

0. Calculate G = GG(V) Å UDG(V)
Set c to be twice the Euclidean source—destination distance.

1. Nodes w 2 W are nodes where the path s-w-t is larger than c. Do
face routing on the graph G, but without visiting nodes in W. (This is
like reducing the graph G with an ellipse.) You either reach the
destination, or you are stuck at a face (that is, you do not find a

40

destination, or you are stuck at a face (that is, you do not find a
better exit point.)

2. If step 1 did not succeed, double c and go back to step 1.

• Note: All the steps can be done completely locally,
and the nodes need no local storage.

GOAFR – Greedy Other Adaptive Face Routing

��
��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
������

����
����
����

����
����
����
����

Other AFR: In each
face proceed to point
closest to destination

• Back to geometric routing…
• AFR Algorithm is not very efficient (especially in dense graphs)
• Combine Greedy and (Other Adaptive) Face Routing

– Route greedily as long as possible
– Circumvent “dead ends” by use of face routing
– Then route greedily again

2/41

n2

��
��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
������

����
����
����

����
����
����
����n1

s t
F

GOAFR+ – Greedy Other Adaptive Face Routing

• Early fallback to greedy routing:
– Use counters p and q. Let u be the node where the exploration of the

current face F started
• p counts the nodes closer to t than u
• q counts the nodes not closer to t than u

– Fall back to greedy routing as soon as p > σ ¢ q (constant σ > 0)

Theorem: GOAFR is still asymptotically worst-case optimal…

42

Theorem: GOAFR is still asymptotically worst-case optimal…
…and it is efficient in practice, in the average-case.

• What does “practice” mean?
– Usually nodes placed

uniformly at random ��
��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
������

����
����
����

����
����
����
����

s u

C

v

w t

F

Average Case

• Not interesting when graph not dense enough
• Not interesting when graph is too dense
• Critical density range (“percolation”)

– Shortest path is significantly longer than Euclidean distance

43

too sparse too densecritical density

• Shortest path is significantly longer than Euclidean distance

Critical Density: Shortest Path vs. Euclidean Distance

44

• Critical density range mandatory for the simulation of any routing
algorithm (not only geographic)

Randomly Generated Graphs: Critical Density Range

1.5

1.6

1.7

1.8

1.9
S

ho
rt

es
t P

at
h

S
pa

n

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy

Greedy success

Connectivity

2/45

1

1.1

1.2

1.3

1.4

0 5 10 15

Network Density [nodes per unit disk]

S
ho

rt
es

t P
at

h
S

pa
n

0

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy

Shortest Path Span

critical

Simulation on Randomly Generated Graphs

AFR

Greedy success

Connectivityw
or

se
P

er
fo

rm
an

ce

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy

6

7

8

9

10

2/46

GOAFR+

be
tte

r

0 2 4 6 8 10 12

Network Density [nodes per unit disk]

P
er

fo
rm

an
ce

0

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy

critical1

2

3

4

5

A Word on Performance

• What does a performance of 3.3 in the critical density range mean?

• If an optimal path (found by Dijkstra) has cost c,
then GOAFR+ finds the destination in 3.3¢c steps.

• It does not mean that the path found is 3.3 times as long as the
optimal path! The path found can be much smaller…

47

optimal path! The path found can be much smaller…

• Remarks about cost metrics
– In this lecture “cost” c = c hops
– There are other results, for instance on distance/energy/hybrid metrics
– In particular: With energy metric there is no competitive geometric

routing algorithm

GOAFR: Summary

ts

��
��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
������

����
����
����

����
����
����
����

Greedy
Routing

Face
Routing

Adaptive
Face Routing

48

��
��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
������

����
����
����

����
����
����
����

s u

C

v

w t

F

GOAFR+

Average-case efficiency Worst-case optimality

“Practice” “Theory”

Routing with and without position information

• Without position information:
– Flooding
– Distance Vector Routing

• With position information:
– Greedy Routing

� may fail: message may get stuck in a “dead end”

49

� may fail: message may get stuck in a “dead end”
– Geometric Routing

� It is assumed that each node knows its position

Summary

• If position information is available geo-routing is a feasible option.
• Face routing guarantees to deliver the message.
• Combining greedy and face gives efficient algorithm.
• Even if there is no position information, some ideas might be helpful.

• Geo-routing is probably the only class of routing that is well
understood.

50

understood.
• There are many adjacent areas: topology control, location

services, routing in general, etc.

Open problem

• Geo-routing is one of the best understood topics. In that sense it is
hard to come up with a decent open problem.

• Open problem: How much information does one need to store in the
network to guarantee only constant overhead?
– Variant: Instead of UDG some more realistic model
– How can one maintain this information if the network is dynamic ?

51

