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Chapter 1
Gathering asynchronous and oblivious robots on
basic graph topologies under the Look -
Compute - Move model∗

Gianlorenzo D’Angelo, Gabriele Di Stefano and Alfredo Navarra

Abstract Recent and challenging models of robot-based computing systems con-
sider identical, oblivious and mobile robots placed on the nodes of anonymous
graphs. Robots operate asynchronously in order to reach a common node and remain
with it. This task is known in the literature as thegatheringor rendezvousproblem.
The target node is neither chosen in advance nor marked differently compared to the
other nodes. In fact, the graph is anonymous and robots have minimal capabilities.
In the context of robot-based computing systems, resources are always limited and
precious. Then, the research of the minimal set of assumptions and capabilities re-
quired to accomplish the gathering task as well as for other achievements is of main
interest. Moreover, the minimality of the assumptions stimulates the investigation
of new and challenging techniques that might reveal crucial peculiarities even for
other tasks. The model considered in this chapter is known in the literature as the
Look-Compute-Movemodel. Identical robots initially placed at different nodes of
an anonymous input graph operate in asynchronous Look-Compute-Move cycles.
In each cycle, a robot takes a snapshot of the current global configuration (Look),
then, based on the perceived configuration, takes a decision to stay idle or to move
to one of its adjacent nodes (Compute), and in the latter case it makes an instanta-
neous move to this neighbor (Move). Cycles are performed asynchronously for each
robot. This means that the time between Look, Compute, and Move operations is fi-
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nite but unbounded, and it is decided by the adversary for each robot. Hence, robots
may move based on significantly outdated perceptions. The only constraint is that
moves are instantaneous, and hence any robot performing a Look operation per-
ceives all other robots at nodes of the ring and not on edges. Robots are all identical,
anonymous, and execute the same deterministic algorithm. They cannot leave any
marks at visited nodes, nor can they send messages to other robots. In this chapter,
we aim to survey on recent results obtained for the gathering task over basic graph
topologies, that are rings, grids, and trees. Recent achievements to this matter have
attracted many researchers, and have provided interesting approaches that might be
of main interest to the community that studies robot-based computing systems.

1.1 Introduction

The chapter surveys on recent results in robot-based computing systems. Two or
more robots, starting from distinct initial positions, have to meet at some place and
remain there. The problem is known in the literature as thegatheringproblem while
sometimes it is referred to as therendezvousproblem.

Different assumptions on the capabilities of the robots as well as on the envi-
ronment where they move, lead to very different scenarios. To have an idea of the
work done during the recent years, it is enough to mention that already five different
surveys deal with such a problem from different perspectives. The first distinction
considers the way the robots may take their decisions in order to move towards
some directions. In fact, randomized algorithms can be applied for this purpose or
full determinism might be required. For the former case, there is a comprehensive
survey book [3] which also includes results contained in an older survey paper [2].
The latter case has captured more attention in recent studies. In particular, for the
case where robots are considered to move along the nodes and edges of an input
graph, the survey paper [25] and in a more extended form [26] present various sce-
narios and techniques for different graph topologies. Whereas, the survey book [24]
focuses on the gathering over ring networks. In the literature, many results also con-
cern the gathering of robots moving on a continuous two-dimensional Euclidean
space have been devised. The interested reader may refer to [8, 15, 20, 27, 29] for
the continuous case. However, a recent trend is to study discrete models like the case
where robots move over graphs rather than the continuous case.

In this chapter, the aim is to provide in more details the strategies applied to
accomplish the gathering task on basic graph topologies like rings, grids, and trees,
under a very specific model that has attracted many researchers during the last years.
Very few of such results are already contained in the aforementioned surveys. In
fact, most of the results come from very recent papers and the last section contains
original results for tree topologies.

The model considered in this chapter (sometimes also referred to as
CORDA [27]) is known in the literature as theLook-Compute-Movemodel. Robots
asynchronously run an operative cycle where first they perceive the global configu-
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ration of the robots over the graph (Look phase). That is, during the Look phase a
robot is able to perceive the relative locations of the other robots with respect to its
own position on the graph. The only cases where a robot might be misled concern
the so calledmultiplicities, i.e., when more than one robot occupy the same node. In
this case, different assumptions might be considered. Based on the perceived con-
figuration which might reveal the exact disposal of all the robots or just which nodes
are occupied, a robot evaluates whether to stay idle or to move towards one of its
neighboring nodes (Compute phase). Note that, since robots are asynchronous, the
Compute phase might be accomplished by a robot based on outdated configurations
perceived while other robots are performing their movements. Finally, the robot en-
ters to the Move phase, where it simply applies the computed movement. Hence, it
either remains on its current position or it moves towards the computed neighboring
node. The only assumption in this phase is that the movements are instantaneous and
hence robots are always perceived over nodes, and never over edges. Robots are all
identical, anonymous, and execute the same deterministic algorithm. They cannot
leave any marks at visited nodes, nor send messages to other robots. The sched-
uler that wakes the robots up is assumed to be fair, i.e., all the robots will wake up,
eventually, and perform their Look-Compute-Move cycles infinitely many times.

Another assumption that can be considered concerns the ability for the robots to
perceive information about the number of robots occupying the same node, during
the Look operation. This ability is called themultiplicity detectioncapability and
it has been sometimes exploited in various forms. In any case, a robot perceives
whether a node is empty or not, but in theglobal-strongversion, a robot is able
to perceive the exact number of robots that occupy each node. In theglobal-weak
version, a robot perceives only whether a node is occupied by one robot or if a
multiplicity occurs, i.e., a node is occupied by an undefined number of robots greater
than one. In thelocal-strongversion, a robot can perceive only whether a node is
occupied or not, but it is able to perceive the exact number of robots occupying the
node where it resides. Finally, in thelocal-weakversion, a robot can perceive the
multiplicity only on the node where it resides but not the exact number of robots
composing it.

In the context of robot-based computing systems, resources are always limited
and precious. Then, the research of the minimal set of assumptions and capabilities
required to accomplish the gathering task as well as for other achievements is of
main interest. Moreover, the minimality of the assumptions stimulates the investiga-
tion of new and challenging techniques that might reveal crucial peculiarities even
for other tasks.

Depending on the multiplicity detection capability version chosen for the robots,
some scenarios may be unsolvable while some others are solvable. Intuitive con-
cepts like symmetry or periodicity might be involved and sometimes are fundamen-
tal to the feasibility of the studied problems. Depending on the assumptions made,
the definition of such concepts may vary and require different approaches. This is
why in what follows, the same concept might be re-defined according to the cur-
rent scope. Moreover, the considered scenarios lead to very interesting and different
strategies that can be considered also for other areas of applications.
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Besides the gathering problem, the Look-Compute-Move model has been studied
also for the problem ofgraph exploration with stopandexclusive perpetual graph
exploration [4, 5, 6, 12, 13, 14]. In the first problem [12, 13, 14], it is required
that each node (or each edge) of the input graph is visited for a finite number of
times by at least one robot and, eventually, all the robots have to stop. This implies
that after performing the exploration step, the algorithms need some mean to em-
power the robots by the capability of recording the part of the graph that has been
already explored. Since the robots are oblivious, this task is performed by identi-
fying particular configurations of the robots indicating that the exploration task has
been accomplished. The exclusive perpetual graph exploration [4, 5, 6] requires that
each robot visits each node of the graph infinitely many times. Moreover, it adds the
constraint that no two robots should concurrently be on the same node or cross the
same edge.

1.1.1 Outline

The chapter is organized in three main sections, dictated by the graph topologies
considered. The next section provides techniques and results for the gathering on
ring networks. In particular, the section is divided in three parts. First, impossibility
results concerning the gathering on rings are summarized. Those hold even though
the global-strong multiplicity detection is assumed. Then, results for the case of
global-weak multiplicity detection are shown. Under such assumptions, all possible
initial gatherable configurations have been addressed. Finally, partial results for the
case of local-weak multiplicity detection are described. In Section 1.3, the prob-
lem for grids is fully characterized even when no multiplicity detection is assumed.
Similarly, in Section 1.4 a full characterization without any multiplicity detection
capability is provided for tree topologies. This is indeed an original contribution of
the chapter. Finally, Section 1.5 concludes the chapter and outlines some possible
research directions for robot-based computing systems.

1.2 Gathering on Rings

In this section, the gathering over ring networks is presented. After providing some
necessary definitions, impossibility results are summarized when the global-strong
multiplicity detection is assumed. Then, differences between the case of global-
weak and local-weak multiplicity detection assumptions are presented. In particu-
lar, when the global-weak multiplicity detection is assumed, a full characterization
of the gatherable configurations is provided. Whereas, when the local-weak multi-
plicity detection is assumed, only some sub-cases are solved. However, the different
techniques used to accomplish the gathering task among the approached scenarios
are very interesting for further investigations in robot-based computing systems.
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a cb d

Fig. 1.1 Symmetric and periodic initial configurations on a ring. Withe nodes are empty while
each black node is occupied by one robot.

The model assumes thatk robots are placed over then nodes of a ring, and in the
initial configurations, nodes are occupied by at most one robot. Depending on the
movements imposed by the running algorithms, multiplicities may occur. A config-
uration is calledsymmetricif the ring admits a geometricalaxis of symmetry, that
defines a bijective function among the robots residing in the two halves of the ring
cut by the axis. When the global-weak multiplicity is considered, a configuration
is called symmetric if the ring admits a geometrical axis of symmetry that reflects
single robots into single robots, multiplicities into multiplicities, and empty nodes
into empty nodes. In this case, a configuration might be considered symmetric even
though the two halves of the ring cut by the axis do not contain the same number
of robots. This can happen if two symmetric multiplicities at the two halves are
composed of a different number of robots. If the local-strong (or the local-weak)
multiplicity detection is assumed, then a configuration might result symmetric for
some robots while asymmetric for others. For instance, if robots are part of a mul-
tiplicity and the configuration does not admit an axis of symmetry passing through
such a node, then the configuration would result asymmetric for all the robots com-
posing the multiplicity, while it might be symmetric with respect to the perception
of all the other ones. However, symmetric peculiarities of initial configurations are
invariant with respect to the assumed multiplicity detection, as multiplicities are not
allowed at the beginning.

As shown in Figure 1.1, a symmetric configuration with an axis of symmetry has
an edge-edge symmetryif the axis goes through two edges (Figure 1.1a); it has a
node-edge symmetryif the axis goes through one node and one edge (Figure 1.1a);
it has anode-node symmetryif the axis goes through two nodes (Figure 1.1c); it
has arobot-on-axis symmetryif there is at least one node on the axis of symmetry
occupied by a robot (both Figure 1.1b and Figure 1.1c).

A configuration is calledperiodic if it is invariable under non-trivial (i.e., non-
complete) rotations (Figure 1.1d).
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1.2.1 Impossibility results

In [22], it is proved that the gathering is unsolvable if the multiplicity detection
capability is completely removed in either of its forms. When the multiplicity de-
tection is assumed, even in its strong and global form, still there are configurations
for which it is impossible to accomplish the gathering task. More precisely, initial
configurations composed of only 2 robots, periodic configurations, and those admit-
ting an edge-edge axis of symmetry do not allow to finalize the gathering.

In [21], the case of 4 robots on a ring of five nodes is pointed out as a case of
symmetric initial configurations with an even number of robots that does not allow
any gathering algorithm. This has been also studied in [16] along with other solvable
cases. In general, symmetric configurations of type node-edge with 4 robots and the
odd interval cut by the axis bigger than the even one are ungatherable. In the rest of
the chapter these configurations are denoted with the setSP4. The case of 4 robots
on a five nodes ring belongs toSP4. Actually, some configurations inSP4 could be
gatherable but they require strategies that are difficult to generalize.

For all the remaining initial configurations, various gathering algorithms have
been provided, depending also on the assumptions concerning the multiplicity de-
tection capability. Whenever clear by the context, we refer to initial configurations
simply as configurations.

1.2.2 Global-Weak Multiplicity detection

In this section, a description of the techniques taken from the specific literature are
described. Based on the global-weak multiplicity detection capability, the next algo-
rithms cope with all the cases left from the impossibility results previously shown.

1.2.2.1 Asymmetric configurations.

The asymmetric initial configurations have been firstly handled in [22]. When such
configurations are aperiodic, they were referred to asrigid configurations. The gath-
ering is performed by exploiting the perception of the robots. Perception allows
robots to agree and move exactly one robot at time although the model does not
allow communication. More precisely, each robot detects which one must perform
the next move based on the configuration perceived during the Look phase. This is
done until the first (and only) multiplicity occurs. Since the scheduler that wakes
the robots up is assumed to be fair, the robot that is allowed to move will eventually
wake up and perform all its Look-Compute-Move cycle. This will ensure the robots
perform all required moves until the desired multiplicity is created. Once the mul-
tiplicity has been created, the robots with only free nodes between themselves and
the multiplicity are allowed to move towards the multiplicity, and joining it, until all
the robots gather at the same node.
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At each step of the proposed strategy, and before creating the multiplicity, the
robot allowed to move will be chosen in such a way that the configuration will
never lose its original “rigidity”. Once captured the current configuration during the
Look phase, a robot looks for the pair of robots that are at the maximum distance
(in terms of empty nodes in between) from each other. If only one pair of robots
is detected, the one allowed to move is the robot with the closest neighbor on the
other side of the maximum interval. Possible ties are easily broken by considering
the next intervals and so forth, until a difference occurs. Since the configuration
is asymmetric, there must be a difference somewhere, and one robot is elected to
move. If more than one pair provides the same maximum distance, ties are broken
by considering the global view, hence ordering lexicographically the views (in terms
of sequences of distances) and choosing the interval that appears as first in the largest
view. Once the single robot has been elected to move, it performs the movement that
enlarges the maximum interval. This ensures that in the next step there is exactly one
maximum distance, with one interval at its side smaller than the one at the other side.
Hence, from now on, only the same robot will be allowed to move until creating a
multiplicity.

1.2.2.2 Odd number of robots.

Another type of initial configurations addressed and solved in [22] concerns all the
configurations with an odd number of robots. In this case, the configuration can
be either asymmetric or symmetric. In the former case, the gathering is solved as
described in the previous section. In the latter case, it can be observed that one
robot resides on the axis of symmetry, necessarily. Then the following property is
exploited:

Property 1.[22] Let C be a symmetric configuration with an odd number of robots,
without multiplicities. LetC′ be the configuration resulting fromC by moving the
unique robot on the axis to any of its adjacent nodes. ThenC′ is either asymmet-
ric or still symmetric but aperiodic. Moreover, by repeating this procedure a finite
number of times, eventually the configuration becomes asymmetric (with possibly
one multiplicity).

When Property 1 holds, symmetric configurations with an odd number of robots
will allow only one robot to move until either a multiplicity occurs or the configu-
ration becomes asymmetric and the gathering algorithm changes to that described
above.

1.2.2.3 Even number of robots.

The cases left open by the techniques described above are all the symmetric initial
configurations with an even number of robots. Note that, configurations with only 2
robots are ungatherable as well as configurations with 4 robots inSP4.
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A first study that addresses the case of an even number of robots comes from [21].
In that paper, the authors solved all the symmetric cases with an even number of
robots grater than 18. When robots are on the axis of symmetry it may be possible
to design algorithms which break the symmetry by moving one of the robots located
on the axis, as in the case of an odd number of robots described by Property 1.

When no robots reside on the axis, the algorithm works in four phases. During
the first phase, since the configuration is symmetric, two robots are always allowed
to move. In order to detect the two symmetric robots that must perform their moves,
the robots have to elaborate the perceived configuration during their Compute phase.
Based on the sequence of distances between robots along the ring, two symmetric
minimal interval are detected and reduced concurrently, until two multiplicities are
created. The number of robots grater than 18 comes from this computational step. In
fact, the need to guarantee to break possible ties among minimal intervals, and the
fact that some robots are needed between the detected intervals and the two poles
defined by the axis of symmetry on the ring, gives a minimal number of required
robots equal to 20.

It is very important to remark that the proposed technique is the first one that
forces robots to maintain the original symmetry rather than breaking it. In fact, based
on the perceived configurations, robots are always able to detect whether the current
configuration is at one step from a reachable symmetry or not. In the latter case,
the algorithm from [22] for asymmetric configurations can be applied. In the former
case, the robot that can re-establish the symmetry will be the only one allowed to
move. Note that, such a robot could have been already started its Look-Compute-
Move cycle concurrently with its symmetric one, or it simply starts later. In any
case, the algorithm guarantees to recover the original symmetry with two steps less
towards the desired configuration with two multiplicities where the second phase
starts.

When two multiplicities have been created, the idea is to move all the remain-
ing single robots but few of them towards the two multiplicities. During the second
phase, it is necessary to decide on one of the two poles of the axis of symmetry
as the gathering point (the North pole). The poles are chosen so that the northern
arc between multiplicities contains more robots than the southern arc; in the case
of a tie, the side on which the nearest robots are closer to the multiplicities is the
northern one. The robots are moved in symmetrical pairs towards their respective
multiplicities, starting from the robots on the northern arc. In this way, North and
South are consistently preserved throughout the phase. The phase ends with two
multiplicities, two symmetric robots located at the southern part far from the multi-
plicities of at least one node, and two symmetric robots located at the northern part
neighbors of the multiplicities. The two robots on the south are calledguards.

The third phase is based on the position of the guards that maintain the direction
to the gathering node. During this phase, the remaining single robots and those
belonging to the multiplicities can move towards the North pole. The movement
is performed always maintaining the robots associated to each multiplicity either
as part or as neighbors of it. In this way, the configuration pattern is maintained
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throughout the process, until all robots except for the guards gather at the North
pole in a single multiplicity.

The fourth phase simply moves the guards towards the multiplicity, and the gath-
ering will be eventually finalized.

The algorithm has been also integrated with the one from [22], hence obtaining a
full characterization of the gatherable configurations with an odd number of robots,
with an even number of robots but asymmetric, with an even number of robots
admitting a robot-robot axis of symmetry, and with more than 18 robots admitting
a node on the axis of symmetry. This has left open the cases of an even number of
robots between 4 and 18 admitting a node on the axis of symmetry. Note that, the
cases left for few robots might require more effort and different techniques for the
resolution. In fact, lesser the robots lesser the information encoded by their disposal.
This encouraged further investigation on configurations with few robots.

Gatherable configurations with 4 robots have been addressed in [16, 23]. The
main idea is still to define a North and a South pole on the axis of symmetry (of
type node-node). Then similarly to [21], the two northern nodes are moved while
preserving the symmetry until creating a multiplicity on the North pole. After that,
the other two robots join the multiplicity, hence finalizing the gathering.

The case of 6 robots is more intriguing as it requires different techniques from
the older ones in order to fully characterize the gatherable configurations. It has
been addressed in [9]. A symmetric configuration can be represented as shown in
Figure 1.2. In detail, without multiplicities, the ring is divided by the robots into 6
intervals:A, B, C, B′, C′, andD with a, b, c, b, c, andd free nodes, respectively.
In the case of node-edge symmetry,A is the interval where the axis passes through
a node andD is the interval where the axis passes through an edge; in the case
of node-node symmetry,A andD are the intervals such that eithera < d or a = d
andb < c; the case wherea = d andb = c cannot occur as it generates two axis
of symmetry. Note that, in the case of node-node symmetry,a andd are both odd,
while, in the case of node-edge symmetry,a is odd andd is even. Robots betweenA
andB (B′, respectively) are denoted byx (x′, respectively); those betweenB andC
(B′ andC′, respectively) arey (y′, respectively); those betweenC (C′, respectively)
andD arez (z′, respectively), see Figure 1.2.

A robot r ∈ {x,y,z,x′,y′,z′} can perform only two moves: it movesup (r↑) if it
goes towardsA; it movesdown(r↓) if it goes towardsD.

The main idea of the algorithm is to perform movesx↑, x′↑, y↑ andy′↑, with
the aim of preserving the symmetry and gathering in the middle node of interval
A, where the axis is directed. In some special cases, it may happen that the axis of
symmetry changes at run time. Before multiplicities are created, the algorithm in a
symmetric configuration allows only two robots to move in order to create a new
symmetric configuration.

In the general case, the algorithm comparesb andd, and performs a pair of moves
such as whenb > d, thenb is enlarged, while, ifb < d, thenb is reduced. In this
way, the axis of symmetry and its direction do not change.

Apart from some special cases, the algorithm works as follows. Whenb> d, x↑
andx′↑ are performed, while, whenb< d, y↑ andy′↑ are performed. In both cases,
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Fig. 1.2 A symmetric configuration and its representation.

(apart for some special cases) the ordering betweenb andd is maintained in the new
configuration. Eventually, either one multiplicity is created at the middle node of the
original intervalA by means of robotsx andx′, or two symmetric multiplicities are
created on the positions originally occupied byx andx′ by means of the moves of
y andy′, respectively. In the second case, the two multiplicities will move up again
to the middle node of the original intervalA by allowing at most 4 robots to move
all together. Once such a multiplicity has been created, the remaining robots join it,
and conclude the gathering. In the special case ofb= d, which can only happen in
the initial configuration, the algorithm tries to break this equality by enlarging or
reducingd by means of eitherz↑ andz′↑ (whenC > 0) or z↓ andz′↓ (whenC = 0
andD > 0). The special cases whenC = D = 0 require specific arguments that can
be found in [9].

1.2.2.4 Unifying algorithm.

Recently in [11], a new technique has been proposed for addressing all the gather-
able initial configurations by means of a single algorithm that exploits some of the
described strategies while also solving the remaining cases left open. In particular,
existing algorithms are used as subroutines for solving the basic gatherable cases
with 4 or 6 robots from [23] and [9], respectively. Also, Property 1 is exploited in
some cases. Then, the main strategy is based on the definition of a particular read of
the configurations perceived by the robots during their Look phase.

The current configuration of the system can be described in terms of the view
of a robotr that is performing the Look operation. A configuration seen byr is
represented as a tupleQ(r) = (q0,q1, . . . ,q j), j ≤ k−1, that represents the sequence
of the numbers of free consecutive nodes broken up by robots when traversing the
ring in one direction, starting fromr. Unless differently specified,Q(r) represents
the configuration providing the lexicographical minimum among the two possible
views. For instance, in the configuration of Figure 1.2a, robotx can read eitherQ=
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(1,2,1,3,1,2) or Q′ = (2,1,3,1,2,1), henceQ(x) =Q. A multiplicity is represented
asqi =−1 for some 0≤ i ≤ j, regardless the number of robots composing it.

Given a generic configurationC = (q0,q1, . . . ,q j), let C = (q0,q j ,q j−1, . . . ,q1),
and letCi be the configuration obtained by readingC starting fromqi as first interval,
that isCi = (qi ,q(i+1) mod j+1, . . . ,q(i+ j) mod j+1). The above definitions imply:

Property 2.Given a configurationC,

i) there exists 0< i ≤ j such thatC=Ci iff C is periodic;
ii) there exists 0≤ i ≤ j such thatC= (Ci) iff C is symmetric;

iii) C is aperiodic and symmetric iff there exists only one axis of symmetry.

The next definition represents the key feature for the gathering algorithm.

Definition 1. Given a configurationC = (q0,q1, . . . ,q j) such thatqi ≥ 0, for each
0 ≤ i ≤ j, the view defined asCSM = min{Ci , (Ci), | 0 ≤ i ≤ j} is called thesu-
permin configuration view. An interval is calledsuperminif it belongs to the set
IC = {qi | Ci =CSM or (Ci) =CSM,0≤ i ≤ j}.

Once a robot is able to distinguish where a supermin is located, the next lemma
provides a useful mean for computing whether the current configuration is gather-
able or not.

Lemma 1. [11] Given a configuration C= (q0,q1, . . . ,q j) with qi ≥ 0, 0≤ i ≤ j:
1. |IC|= 1 if and only if C is either asymmetric and aperiodic or it admits only one

axis of symmetry passing through the supermin;
2. |IC| = 2 if and only if C is either aperiodic and symmetric with the axis not

passing through any supermin or it is periodic with periodn
2;

3. |IC|> 2 if and only if C is periodic, with period at mostn
3.

The above lemma already provides useful information for a robot when it wakes
up. In fact, during the Look operation, it can easily recognize if the configuration
contains only 2 robots, or if it belongs to the setSP4, or if |IC|> 2 (i.e., the configu-
ration is periodic), or in case|IC|= 2, if the configuration admits an edge-edge axis
of symmetry or it is again periodic. After this check, a robot knows if the configu-
ration is gatherable, and proceeds with its computations. Indeed, all the remaining
configurations are shown to be gatherable.

The main strategy allows only the movements which affect the supermin. In fact,
if there is only one supermin, and the configuration allows its reduction, the sub-
sequent configuration would still have only one supermin (the same as before but
reduced), or a multiplicity is created. In general, such a strategy would lead asym-
metric configurations or also symmetric ones with the axis passing through the su-
permin to create one multiplicity where the gathering will be easily finalized by
collecting at turn the closest robots to the multiplicity. This strategy reminds the one
used in [22] but with the difference to deal with the minimum rather than with the
maximum.

For gatherable configurations with|IC| = 2, the algorithm requires more phases
before creating the final multiplicity where the gathering ends. In this case, there
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are two supermins that can be reduced. If both are reduced simultaneously, then the
configuration is still symmetric and gatherable. Possibly, it contains two symmetric
multiplicities. In fact, this is the status that one wants to reach even when only one of
the two supermins is reduced. In general, the algorithm tries to preserve the original
symmetry or to create a gatherable symmetric configuration from an asymmetric
one. It is worth to remark that in all symmetric configurations with an even number
of robots, the algorithm always allows the movement of two symmetric robots. Then
after the initial movement, it is possible to obtain a symmetric configuration or an
asymmetric one with a possiblependingmove. In fact, if only one robot (among the
two allowed to move) performs its movement, it is possible that its symmetric one
either has not yet started its Look phase, or it is taking more time. If there might be
a pending move, then the algorithm forces it before any other decision.

In contrast, asymmetric configurations cannot produce pending moves as the al-
gorithm allows the movement of only one robot. In fact, it reduces the unique su-
permin by deterministically distinguish among the two adjacent robots, until one
multiplicity is created. Finally, all the other robots will join the multiplicity one-by-
one. In some special cases, from asymmetric configurations at one “allowed” move
from symmetry (i.e., with a possible pending move), robots must guess which move
would have been realized from the symmetric configuration, and force it in order to
avoid unexpected behaviors. By doing this correctly, the algorithm eventually brings
the configuration to have two symmetric multiplicities as above. From here, a new
phase that collects all the other robots but two into the multiplicities starts. Still the
configuration may move from symmetric configurations to asymmetric ones at one
move from symmetry. Once the desired symmetric configuration with two multi-
plicities and two single robots is reached, a new phase starts and moves the two
multiplicities to join each other. The node where the multiplicities join represents
the final gathering location. This strategy reminds the one used in [21] as it tries to
preserve the symmetry until the guards can join all the other robots in the gathering
node.

Actually, sometimes the strategy that affects only the supermin cannot be applied,
as a move may produce some undesired “side-effects”, i.e., leading the configuration
to ungatherable cases. In order to cope with such cases, two other moves have been
defined. However, it can be shown that a robot is always able to understand the
correct move to be performed.

An alternative move is to try to reduce the second supermin, i.e., the supermin of
the configuration is evaluated after the real one. Another move, calledXN, is applied
when specific configurations occur. The definition ofXN and the description of the
cases where it must be applied are not provided in this chapter.

The algorithm works in 5 phases and depends on the configuration perceived by
the robots, see Figure 1.3. First, it starts from a configuration without multiplicities
and performs phaseMULTIPLICITY -CREATION whose aim is to create one multi-
plicity where all the robots will eventually gather, or a symmetric configuration
with two multiplicities. In the former case, phaseCONVERGENCEis performed to
gather all the robots into the multiplicity. In the latter case, phasesCOLLECT and
thenMULTIPLICITY -CONVERGENCEare performed in order to first collect all the
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MULTIPLICITY -CREATION COLLECT

CONVERGENCESEVEN-NODES

MULT.-CONVERGENCE

Fig. 1.3 Phases interchanges.

robots but two into the two multiplicities and then to join the two multiplicities into a
single one. After that, phaseCONVERGENCEis performed. Special cases of 6 robots
on a seven nodes ring are considered separately in phaseSEVEN-NODES.

In each phase, the robots can distinguish the type of configuration and apply the
suitable strategy/move. The way a robot can identify the type of configuration is
based on basic and simple calculations. Given a configurationC = (q0,q1, . . . ,q j),
a robot compute the following parameters:

1. number of nodes in the ring,n(C);
2. number of multiplicities,m(C);
3. number of nodes occupied or number of robots in the case without multiplici-

ties,OCCUPIED(C);
4. distance between single robots and multiplicities;
5. if C is symmetric;
6. if C is at one move from one of the symmetries allowed by the algorithm.

Parameters 1–3 can be computed by formulasn(C) = ∑qi≥0(qi + 1), m(C) =
|{qi = −1,0 ≤ i ≤ j}|, andOCCUPIED(C) = j + 1−m(C), respectively. The dis-
tance between single robots and multiplicities is easily computed by summing the
intervals between a single robot and a multiplicity. The symmetry of a configuration
is computed by checking whetherC=Ci for some 0≤ i ≤ j.

To understand whenC is at one move from a symmetry allowed by the algorithm,
it is sufficient to simulate such a move backwards and checking whether the obtained
configuration is symmetric.

Based on the perceived configuration, and once calculated the above parameters,
a robot is able to answer to basic questions that check the accomplishment of the
gathering task. In particular, a robot can distinguish if the current configuration is
gatherable, which type of configuration it perceived, which strategy/move should be
applied, if it is allowed to move and towards which direction.
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The algorithm solves all the gatherable cases, hence closing also the ones left
open by other strategies. However, different assumptions on the model may consti-
tute very interesting directions for further investigations.

1.2.3 Local-Weak Multiplicity detection

Using the local-weak multiplicity detection capability, not all the cases has been
addressed so far. In [17], it has been proposed an algorithm for the case of rigid
initial configurations where the number of robotsk is strictly smaller than

⌊

n
2

⌋

.
In [18], the case wherek is odd and strictly smaller thann− 3 has been solved.
In [19], the authors provide and algorithm for the case wheren is odd,k is even,
and 10≤ k≤ n−5. The remaining cases are still open and a unified algorithm like
that for the case where the global-weak multiplicity detection capability is allowed
is still not known. In the following, the mentioned algorithms are summarized.

1.2.3.1 Asymmetric configurations withk<
⌊

n
2

⌋

.

This algorithm assumes, without loss of generality, that a configuration view seen
by a robot is the lexicographically maximal that the robot can read, instead of the
lexicographically minimal as it was in the case of global-weak multiplicity detec-
tion. These two assumptions are equivalent thus in the rest of the chapter we keep
on using the one in [17]. As the configuration is asymmetric, by Property 2, the
views seen by the robots are all different. Therefore, letC = (q0,q1, . . . ,q j) be the
lexicographically maximal configuration view,j ≤ k, andr i be the robot (or the set
of robots in the case of a multiplicity) before the intervalqi of empty nodes. First,
an algorithm to achieve the gathering for the case whereq0 ≥ 3 andq1 ≥ 2 is given.
Then, a strategy to create a configuration of the above type starting from a config-
uration whereq0 ≥ 3 andq1 < 2 is devised. Finally, the case to increaseq0 from
2 to 3 is addressed. As it is assumed thatk <

⌊

n
2

⌋

andq0 is the maximal interval,
thenq0 cannot be smaller than 2. All the three algorithms keep the configuration
asymmetric and aperiodic. Here, the algorithm for the case whereq0 ≥ 3 andq1 ≥ 2
is described, while the details for the other cases can be found in [17].

The idea is to generate a configuration with only two occupied nodes wherek−
1 robots are gathered on the same node and the other occupied node contains a
single robot. From this configuration the robots can distinguish which is the node
occupied by a single robot by using the local-weak multiplicity detection. Therefore,
the single robot moves towards the multiplicity, eventually achieving the gathering.

The algorithm when at least three nodes are occupied (j ≥ 2) is as follows.

R1: If q j ≥ 1 mover0 towardsq j ;
R2: If j 6= 2, q j = 0, andq j−1 ≥ 1
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R2-1: If q0 is the only maximum interval of empty nodes, mover j towards
q j−1;

R2-2: Otherwise mover1 towardsq1;

R3: If j 6= 2, q j = 0, andq j−1 = 0 mover0 towardsq j ;
R4: If j = 2 andq2 = 0 mover0 towardsq2;

First, it is assumed thatq0 is the only maximum interval of empty nodes. The
algorithm allows moves whereq0 is increased,q1 is not changed,q j is kept shorter
thanq1, and the other intervals are decreased. This ensures thatq0 remains the only
maximum interval of empty nodes. The algorithm starts by moving the robotsr0

towardsq j until they become neighbors of robots inr j (see rulesR1 andR3). Then
robots inr j move towardsq j−1 until they become neighbors of robots inr j−1 (see
rule R2-1). At this point the robots inr0 join those inr j . By applying these rules,
eventually a configuration with only three nodes occupied is achieved wherej = 2
andq2 = 0. In this case, all the robots inr0 join those inr2 (see ruleR4) achieving a
configuration wherek−1 robots are gathered on the same node. Finally, the single
robot joins the other ones. In the case thatq0 is not the only maximum interval
of empty nodes, the algorithm movesr1 towardsq1, enlargingq0 (see ruleR2-2).
After this moment,q0 is the only maximum interval of empty nodes. It can occur
thatq1 becomes smaller than 2 or the maximal configuration view is reversed. For
instance this can happen whenq1 = q j . In the first case, the algorithm forq0 ≥ 3
andq1 < 2 is applied and in the second case the algorithm is applied on the new
maximal configuration view.

1.2.3.2 Configurations with an odd number of robots.

The description of the algorithm requires some definitions and terminology. Letd
be the size of the minimum interval of empty nodes plus one, ad-blockis a maximal
path where there is exactly one occupied node everyd edges. The size of ad-block
is the number of robots that it contains.

The algorithm works in two phases. The first phase builds a configuration made
of a single 1-block, and the second phase achieves gathering.

In the first phase, the robots move towards thed-blocks with the biggest size.
By using the hypothesis of an odd number of robots, thed-blocks of biggest size
can merge together in order to create a uniqued-block. The obtained configuration
is symmetric and, as the number of robots is odd, there is a robot on the axis of
symmetry. The algorithm proceeds by moving the two robots adjacent to that on the
axis of symmetry towards it, achieving a(d−1)-block of size 2 or 3. The algorithm
is then iterated until a single 1-block is achieved.

The second phase starts with a configuration with a single 1-block. Note that
this configuration is symmetric and has a robotr on the axis of symmetry. The
algorithm moves the two robots adjacent tor towards it, creating a multiplicity (see
Figure 1.4a). If the two robots move synchronously, the configuration achieved is
still symmetric and a multiplicity containingr is created on the axis of symmetry
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Fig. 1.4 Second phase of the gathering algorithm for an odd number of robots with local-weak
multiplicity detection capability. A multiplicity is denotes as a circle around an occupied node.

(see Figure 1.4c). Due to the asynchronicity, only one of the two robots adjacent to
r can move, creating a configuration made of two 1-blocks separated by an empty
node (see Figure 1.4b). Such configuration can be distinguished by observing that
this is the only case where the number of occupied nodes is even. Hence the robot
which did not move can easily identify itself and perform the correct move. In the
obtained configuration, the neighbors of the multiplicity on the axis are two empty
nodes followed by two 1-blocks. At this point, the algorithm moves the two robots
on the border of the 1-blocks that are closest to the multiplicity, towards it. For
the hypothesis of asynchornicity, it can occur that three 1-blocks are created (see
Figure 1.4d). In this case, the robot that has to move can be identified thanks to the
hypothesis that the number of occupied nodes is always smaller thatn−3. In fact,
in these configurations, the 1-blocks are interleaved by 2 single empty nodes and by
a path of empty nodes of size at least three. By iterating this process, a new 1-block
is created with the size reduced by 2 with respect to the original 1-block and where
there is a multiplicity on the axis of symmetry (see Figure 1.4g). The algorithm is
then iterated until the gathering is achieved. In the final step of the algorithm a single
1-block of size 2 can be created as a consequence of asynchronicity (see Figure 1.4i).
At this point the algorithm exploits the local-weak multiplicity detection capability
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Fig. 1.5 Third phase of the gathering algorithm for an even number of robots in an odd ring
with local-weak multiplicity detection capability. A multiplicity is denotes as a circle around an
occupied node.

and moves the robot which is not on the multiplicity towards the other occupied
node.

1.2.3.3 Configurations with an even number of robots on an odd size ring.

In this case, the algorithm is divided into three phases. The first two phases aim at
creating aterminal configuration, i.e., a configuration made of only two 1-blocks
of size k

2 which are separated by exactly one empty node. Finally, the third phase
finalizes the gathering.

The first phase starts from any allowed configuration and creates a configuration
with either a single 1-block or two 1-blocks of sizek

2. The idea is similar to that of
the case of odd robots. First, onlyd-blocks are created by moving all the isolated
blocks towards thed-blocks until joining them. Then, the robots move with the
aim of creating a uniqued-block. When all the robots belong to the samed-block,
some robots move in order to decrease thed and repeat the algorithm untild = 1.
The correctness of the algorithm relies on the fact that the number of nodes in the
ring is odd and the number of robots is even. This implies that if the configuration
is symmetric, then the axis of symmetry passes through exactly one empty node
and one edge. In the second phase, the algorithm moves the two 1-blocks towards
the empty node crossed by the axis of symmetry until a terminal configuration is
created. In the case that the first phase ends with a single 1-block, this is split into
two 1-blocks. All these movements are done by preserving the symmetry of the
configuration. The third phase achieves the gathering from terminal configuration
by moving the two robots that are on the border of the two 1-blocks and that are
neighbors of a single empty node. These two robots move towards the single empty
node. For an example, see Figure 1.5. When these two robots are moved one of the
following cases (depending on the activation schedule) can occur:

• The two robots move synchronously and create a symmetric configuration with
a multiplicity crossed by the axis of symmetry (see Figure 1.5c);
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• Only one robot moves and creates a configuration with two 1-blocks separated
by a single empty node and whose sizes differ by 2 (see Figure 1.5b). This con-
figuration is easy to recognize and hence the pending move can be performed,
achieving again a symmetric configuration with a multiplicity crossed by the
axis of symmetry (see Figure 1.5c).

At this point, the robots on the multiplicity are not allowed to move. The other
robots see an odd number of robots and perform the last phase of the algorithm for
an odd number of robots (see Figures 1.4c–1.4j), so that the gathering is eventually
achieved. This implies that the maximum numberk of allowed robots has to satisfy
k−1< n−3, that isk≤ n−5.

1.3 Gathering on Grids

In this section, results achieved in [10] are reported. The authors consider the gath-
ering problem on an anonymous and undirected grid ofn×m nodes, withm≥ n.
The main assumption that distinguish these results from those obtained on rings is
the lack of any multiplicity detection capability: if a node is occupied by more than
one robot, it is not perceived by the robots, even if they reside on such a node.

Initially, each node is occupied by at most one robot. During a Look operation,
a robot perceives the relative locations on the grid of occupied nodes, regardless of
the number of robots at a node.

The current configuration of the system can be described in terms of the view of
a robotr which is performing the Look operation at the current moment. A configu-
ration seen byr is denoted as ann×m matrix M that has elements belonging ot the
set{0,1}. Value 0 represents an empty node, and 1 represents an occupied node.

Since the grid is anonymous and undirected, each robot can perceive the current
configuration with respect to different rotations and reflections leading to any view
of the grid satisfying then×m dimension. In particular, whenn= m each of the 4
rotations and 4 reflections provides a feasible view.

Definition 2. A configuration isperiodic if it is invariant with respect to rotations
of 90 or 180 degrees, where the rotation point coincides with the geometric center
of the grid.

Definition 3. A configuration issymmetricif it is invariant after a reflection with
respect to a vertical, horizontal, or diagonal (in case of square grids) axis passing
through the geometric center of the grid.

1.3.1 Odd×odd grids

This case is trivially solvable, in fact in odd×odd grids, a robot can always detect,
during its Look operation, the central node of the gridM[

⌈

n
2

⌉

,
⌈

m
2

⌉

], regardless of
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its possible view. This means that all the robots can move toward the center, concur-
rently.

1.3.2 Odd×even grids

In this case, the gathering is not always feasible. In fact, similarly to the ring case
on periodic or symmetric configurations of type edge-edge [22], if a configuration
C is periodic, or symmetric with respect to an axis passing through the edges (i.e.,
dividing the grid into two halves from the even side), thenC is ungatherable.

When the starting configuration does not belong to the above ungatherable con-
figurations, it always possible to devise an algorithm achieving the gathering without
multiplicity detection.

The idea is to distinguish between the two nodes that are the central nodes of
the odd borders of the grid. Ifm (n, respectively) is odd, then the two mentioned
nodes are given by positionsM[1,

⌈

m
2

⌉

] andM[n,
⌈

m
2

⌉

] (M[
⌈

n
2

⌉

,1] andM[
⌈

n
2

⌉

,m],
respectively). The line connecting those two nodes will be denoted as theNS line.
One of the two extreme nodes on theNS line will be the place where the gathering
is finalized. In order to select the gathering node, a robot considers the line passing
through the central edges of the even sides of the grid (denoted as theEW line)
dividing the grid into two halves. The idea is to distinguish a north and a south
part among the two halves and the gathering node will be the one in the north half.
See Figure 1.6a for a visualization. The north is the half with more nodes occupied
by robots, if any. If the number of occupied nodes in the two halves is the same,
then some more computations are required. In both cases, the robots move from the
south to the north until all the robots will be in the north part. Note that, during such
a stage, if multiplicities are created in the south, then the number of occupied nodes
decreases with respect to the north part. If multiplicities are created in the north, it
means that a robot has moved from the south to the north part, still preserving the
required distinction.

In order to distinguish the north from the south in the case of configurations with
the same number of robots among the two halves obtained by theEW line, a robot
associates to each configurationC a binary string as follows. Starting from each
corner of the grid, and proceeding in the direction parallel to theNS line, a robot
records the elements ofM row by row, or column by column (according to the di-
rection specified by theNS line). Once it has computed the four strings, it associates
to C the lexicographically largest one. For instance, starting from cornerM[1,1],
and assumingmodd, the corresponding binary string would be composed by the se-
quenceM[1,1], M[2,1], . . ., M[n,1], M[1,2], . . ., M[n,2], M[1,m], . . ., M[n,m]. See
Figure 1.6a for an example.

It is possible to show that ifC is a gatherable configuration, then, among the four
possible strings coming from a robot view of the input grid, at most two strings
can be the lexicographically largest ones. If there are two largest strings, then they
represent the views ofC starting from two symmetric corners with respect to theNS
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Fig. 1.6 Case of a 6× 9 grid. a) The two halves have the same number of nodes. The maximal
binary string is that read from the upper left corner which starts with(0,1,0,0,0,0, . . .). b),c),d)
Examples of 6×9 grids with two lexicographically largest strings: b) The two lexicographically
largest strings correspond to the views starting from two symmetric corners with respect to the
EW line; c) The two lexicographically largest strings correspond to the views starting from two
corners residing on one of the two diagonals of the grid; d) The two lexicographically largest
strings correspond to the views starting from two symmetric corners with respect to theNS line.

line, see Figure 1.6d. Note that, instances of Figures 1.6b and 1.6c are ungatherable
as they admit an edge-edge symmetry or a periodicity.

Then, thegathering nodeis defined as the one residing on the same odd side
where the corner(s) providing the lexicographically largest string resides. The gath-
ering node will determine also the directions along theNS line: the gathering node
is called the north pole.

Configurations on odd×even grids that are aperiodic and do not admit an axis
of symmetry passing through edges are always gatherable, and the algorithm is the
following.

Once the gathering node has been unambiguously identified by a robot during
its Compute operation, if the robot resides on the half grid where the south pole is,
then it moves towards the north pole. Note that, each time a robot in the southern
half of the grid performs such a movement, the gathering node cannot change. In
fact, two following two cases can occur: 1) the number of occupied nodes decreases
in the southern part of the grid, either because a robot moves to the northern part or
because a multiplicity is created; 2) the string associated to the corners in the south
are decreasing due to the robots’ movements. In this case, the corresponding strings
defining the current configuration starting from the northern corners are increasing.
This clearly leaves unchanged the direction on theNS line. Note that the corner to
which the lexicographically largest string was associated might change during the
described process, but the only option is the other corner on the same odd side of
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c1

c4 c3

c2

Fig. 1.7 Case of a 6× 10 grid. The arrows indicate the horizontal direction of the reading
from cornerc1, it gives (6,8,14,10,5,12). The other seven sequences read by the robots are:
(3,6,20,4,9,13) from c1 vertically, (3,10,24,2,5,11) and(16,1,6,26,4,2) from c2 horizontally
and vertically, respectively,(12,5,10,14,8,6) and (13,9,4,20,6,3) from c3, (11,5,2,24,10,3)
and(2,4,26,6,1,16) from c4. Theminimalsequence is(2,4,26,6,1,16) andc= c4.

the original one. This preserves the direction on theNS line. By keeping on moving
in the described way, all the robots will reach the northern part. The case in which a
subset of robots from a multiplicity move, increasing the number of occupied nodes,
does not require any special argument. More precisely, since the initial configuration
does not contain multiplicities, either the minimality of the number of robots in one
half of the grid is preserved, or case 2) ensures that the lexicographically largest
string is associated to a corner in the north.

Once all the robots belong to one half of the grid, then they are allowed to move,
during their Move operation, towards the gathering node. In fact, such a node is
well-defined and cannot change as the robots are not allowed to move to the other
half of the grid.

1.3.3 Even×even grids

In this section, the case of grids whose sides are both even is studied. Also in this
case, there are some configurations which are ungatherable, namely the periodic
configurations and those configurations having a vertical or a horizontal axis of
symmetry. In [10], it is shown that all the other cases are gatherable without any
multiplicity detection, but for the case of 2×2 grids.

On 2×2 grids, configurations with two or four nodes occupied are ungather-
able due to periodicity and edge-edge symmetries. If three nodes are occupied with
robots having the local-weak multiplicity detection, the configuration is gatherable
by moving the robot in between the other two occupied nodes arbitrarily, and then
moving the robot not in the multiplicity towards the other occupied node. Hence, the
remaining gatherable configurations are the aperiodic, asymmetric, and those with
only one axis of symmetry passing through the diagonal of a square grid of dimen-
sions larger than 2×2. All such configurations are referred to as the setEG (Even-
Gatherable) and it is proved that all the configurations inEG are indeed gatherable
without any multiplicity detection. In order to achieve this results, it is first assumed
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that at least one node on the border of the grid is occupied. Then, the gathering node
is identified among the eight sequences of distances (number of empty nodes) be-
tween occupied nodes obtained by traversing the grid starting from the four corners
and proceeding towards the two possible directions (see, e.g. Figure 1.7).

The lexicographically smallest sequence between the two readings from any cor-
ner is associated to the corner itself. In rectangular grids, these two sequences can
be equal but it is possible to distinguish one of them by assuming the reading in the
direction of the smallest side.

Theminimalsequence is defined as follows. If the configuration is symmetric, it
is the smallest sequence between the two sequences associated to the two corners
through which passes the axis of symmetry, otherwise it is the smallest among the
four sequences associated to the four corners. In any case there exists a minimal
sequenceC= (q0,q1, . . . ,q j) which identifies a single cornerc, unambiguously.

An important property of the gathering strategy is that a robot is not allowed to
move to a corner different fromc.

First it is proven that for anyEG configuration with no corners occupied and at
least one robot on the border there exists a strategy that leads to a configuration with
exactly one corner occupied. The idea is to reduceq0 by moving the robot towards
c (or the two robots, when the configuration is symmetric) on the border which is
(are) closest toc. The authors show that no symmetric configuration, other than the
possible original one, can be created.

Then, it is shown that for any configuration inEG with more than three nodes
occupied and at least two corners occupied there exists a strategy that leads to a
configuration with either exactly one corner occupied or exactly three corners occu-
pied.

Finally the main contribution is proven: Aperiodic configurations on even×even
grids larger than 2×2, that do not admit an axis of symmetry passing through edges,
are gatherable, without assuming any multiplicity detection.

To achieve this result, it has been first observed that the set of possible grids can
be restricted by considering the minimal even×even sub-grid which is centered in
the geometrical middle of the original grid and includes all the occupied nodes of it.
Such minimalwrappinggrid is still of type even×even and preserves the possible
symmetry of the original one. Moreover, it always has at least an occupied node on
the border. Then it is possible to apply the first partial result mentioned above.

The proposed algorithm only uses such sub-grid without changing its size, i.e.,
it neither enlarges nor reduces the sub-grid by moving robots outside the border or
from the border to the inside.

If no corners are occupied, by reducingq0, a configuration with one corner oc-
cupied can be reached. In this case, all the robots move towardsc by reducing the
Manhattan distance toc and then achieving the gathering.

When two corners are occupied, as said above, it is possible to reach a configu-
ration with one or three corners occupied. In the former case the gathering can be
easily finalized, in the latter case all the robots, but those in the corners, are moved
towards the corner that does not share any coordinate with the empty corner. This
process finishes with a symmetric configuration with exactly three corners occu-
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pied. In this configuration,c is the corner on the axis of symmetry, and the other
two robots move one step towardsc either concurrently or alternately, until creating
a configuration with only one corner occupied.

If four corners are occupied, the robot which occupies the corner farthest from
c is moved in an arbitrary direction, generating a configuration where only three
corners are occupied.

It remains the case where the minimal wrapping even×even sub-grid which in-
cludes all the occupied nodes of the original grid has dimension 2×2. The configura-
tion is ungatherable on this sub-grid without multiplicity detection. However, in the
case of exactly three nodes occupied, it is possible to exploit the larger dimensions
of the original grid in order to avoid the multiplicity detection. The cases of two
or four nodes occupied clearly remain ungatherable. The strategy is then to move
the robot on the corner of the 2×2 grid which is in between the other two occupied
corners towards the external row or column, arbitrarily. The case where the minimal
wrapping grid has dimension 4×4 is obtained and no corners are occupied.

1.4 Gathering on Trees

In this section, gathering results on trees are presented. To the best of our knowl-
edge, these are original contributions as trees were never treated before under the
considered model. Given a tree, a node at minimal distance from all the other ones
is calledcenter. Based on well-known results [28] about the tree topology, within
a tree there is either one center or there are two neighboring centers. In the former
case, no matter the initial distribution of the robots, each of them can move towards
the center, concurrently. The gathering will be eventually finalized, even without any
multiplicity detection assumption. In the latter case, some more specific arguments
are required. In fact, some impossibility results hold.

Lemma 2. If the two subtrees rooted at the centers along with the disposal of the
robots are isomorphic, then the gathering is impossible.

Proof. Any algorithm designed to accomplish the gathering on the tree must work
regardless the delays on the decisions made by robots. In particular, also the syn-
chronous case must be solved. Since the two considered subtrees are isomorphic,
with the same disposal of robots, if one robot is allowed to move within one sub-
tree, there must exist another robot that is allowed to accomplish the same specular
movement. If both robots perform such movements, again a configuration with two
isomorphic subtrees is obtained. In proceeding so, there will not exist any move that
can break such a situation. Hence, the gathering cannot be finalized as it requires to
distinguish one single node belonging to one of the two subtrees.

In the case the isomorphism among the two subtrees along with the disposal of
the robots does not hold, the following strategy can be applied. Letc1 andc2 be
the two centers of the input treeT, and letT1 andT2 be the two subtrees rooted
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at c1 andc2, respectively, when the edge connectingc1 andc2 is removed. If the
number of nodes occupied inT1 is smaller than that inT2, then all robots inT1 are
moved towardsc2. OnceT1 gets empty, all robots inT2 should be moved towards
c2 in order to end the gathering. If the number of nodes occupied inT1 is equal to
that in T2, it is always possible to determine which subtree is less than the other
with respect to a natural ordering on labeled trees (see [1, 7]). To define the smaller
tree as the one with the robots closer to the root, we associate label 1 to empty
nodes, and label 0 to nodes occupied by robots. Then the algorithm would exploit
this ordering in order to detect the robots to move from one subtree towards the
root of the other one. If a robot moves over a node already occupied, the number
of occupied nodes in the original subtree decreases. As soon as one robot moves
towards the other subtree, the number of robots in the two subtrees is no longer
equal and the previous strategy can be applied. Similarly to what happened in the
case of even×odd grids of Section 1.3.2, the occurrence of multiplicities does not
affect the proposed algorithm.

1.5 Conclusion

In this chapter, we surveyed recent results about the gathering problem under the
Look-Compute-Move model in various graph topologies.

For most of the cases under investigation, it turned out that the problem has been
fully characterized. For trees and grids, the multiplicity detection capability does not
strengthen the model, that is, all the cases which admit gathering are still solvable
without such a capability. The only exception is provided by the very specific case of
3 robots on a 2×2 grid. However, the multiplicity detection capability can strengthen
the model in the case of ring topologies. In the literature, the case that assumes
global-weak multiplicity detection has been fully characterized while that assuming
local-weak multiplicity detection still lacks of a unified algorithm, and there are
some open cases that deserve further investigations.

The study of different topologies has required very different and sometimes op-
posite approaches that stimulate main advances in robot-based computing systems.
On the other hand, some of the techniques described for different topologies share
common ideas that can be, therefore, used in other topologies. Infinite grids, tori,
and hypercubes might represent just a sampling set.

Another challenging direction would be that of investigating the minimum num-
ber of steps required by the robots to accomplish the gathering task. So far, the
research has mainly focused on the feasibility of the gathering, while few results
concern the minimization of the robots’ movements. Similarly, low effort has been
spent in order to increase the opportunity to parallelize movements. As we have
seen for ring networks, at most two robots are allowed to move concurrently un-
less robots composing multiplicities must move. Whereas, on grids and trees, less
restrictions are imposed on the robots’ movements.
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It would be interesting to investigate how the proposed techniques may affect the
resolution of different tasks, as well as how different assumptions on the capability
of the robots may change the required strategies.
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