Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometri Problems on Swarm Robots Scope of the Lecture Leader Election

Gathering Arbitrary Pattern Formation

Formation

Organization

Conclusion

Distributed Algorithms For Swarm Robots in R^2

Krishnendu Mukhopadhyaya

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

ACM Unit, Indian Statistical Institute, Kolkata.

Outline of the lechture

Distributed Algorithm for Swarm robots

Introduction

- Computational Model of Swarm Robots
- Example of Some Geometric Problems on Swarm Robots
- Scope of the Lecture
- Leader Electic Gathering Arbitrary
- Pattern
- Circle
- Formation
- Organization
- Conclusion

- Introduction
- Leader Election
- Gathering
- Pattern Formation
- Circle Formation under Limited Visibility
- Circle Formation under Unlimited Visibility

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

Conclusion

Swarm Robots

Distributed Algorithm for Swarm robots

Introduction

- Computational Model of Swarm Robots
- Example of Some Geometric Problems on Sworm Pobots
- Scope of the Lecture
- Leader Electio Gathering Arbitrary Pattern
- Formatio
- Circle
- Organization
- Conclusion

- Group of small, inexpensive, identical, autonomous, mobile robots.
- Collaboratively executing work
 - moving large objects, cleaning big surface.
- Geometric point of view: points moving on the 2D plane.
- Objective: Forming geometric patterns like point, circle, straight line etc.
- Distributed in nature.

General Characteristics of Swarm Robots

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometr Problems on Swarm Robots Scope of the Lecture Leader Electio Gathering

Arbitrary Pattern Formation

Circle Formation

Organization

Conclusion

- Point/Unit Disc
- Autonomous
- Identical
- No message passing
- Sense surroundings
- Move on the 2D plane
- Limited computational power

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

Oblivious

Introduction

Computational Model of Swarm Robots

Example of Some Geomet. Problems on Swarm Robots Scope of the Lecture Leader Election Gathering Arbitrary Pattern Formation Circle Ecompation

Organization

Conclusion

Execute wait-look-compute-move cycle.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

In wait state robots do nothing.

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometri Problems on Swarm Robots Scope of the Lecture Leader Electio Gathering Arbitrary Pattern

Circle

~ · ·

Conclusion

Execute wait-**look**-compute-move cycle.

\mathbb{R}_{v} (visibility range) can be **limited** or **unlimited**

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometr Problems on Swarm Robots Scope of the Lecture Leader Electio Gathering Arbitrary Pattern Formation Circle

Formation

Organization

Conclusion

Execute wait-look-compute-move cycle.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

r computes its destination t

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometri Problems on Swarm Robots Scope of the Lecture Leader Electio Gathering Arbitrary

Formation

Formation

Organization

Conclusion

Execute wait-look-compute-**move** cycle.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

- r moves to t
 - SYm: Rigid motion.
 - CORDA: Non-rigid motion.

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots Scope of the Lecture Leader Electior Gathering Arbitrary Pattern Formation

Formation

Organization

Conclusion

Execute wait-look-compute-move cycle synchronously.

・ロト ・ 同ト ・ ヨト ・ ヨト

All robots look at the same time

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometr Problems on Swarm Robots Scope of the Lecture Leader Electio Gathering Arbitrary Pattern Ecomation

Circle Formation

Organization

Conclusion

Execute wait-look-compute-move cycle asynchronously.

Different robots look, compute and move at different times.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometri Problems on Swarm Robots Scope of the Lecture Leader Electio Gathering Arbitrary Pattern Formation

Circle Formation

Organization

Conclusion

Execute wait-look-compute-move cycle semi-synchronously.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

A arbitrary set of robots looks at same time.

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometri Problems on Swarm Robots Scope of the Lecture Leader Election Gathering Arbitrary Pattern Formation Circle

Organization

Conclusion

Agreement on co-ordinate system.

Robots having same Sense of Directions (SoD) and same chirality

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometri Problems on Swarm Robots Scope of the Lecture Leader Election Gathering Arbitrary Pattern Formation

Formation

Organization

Conclusion

Agreement on co-ordinate system.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

Robots having same SoD but different chirality

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots Scope of the Lecture Leader Election Gathering Arbitrary Pattern Formation

Formation

Organization

Conclusion

Agreement on co-ordinate system.

3

Robots having different SoD but same chirality

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots Scope of the Lecture Leader Electior Gathering Arbitrary Pattern Formation

Formation

Organization

Conclusion

Agreement on co-ordinate system.

Robots having different SoD and different chirality

3

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots

Scope of the Lecture Leader Elect Gathering

Arbitrary Pattern Formation Circle

Formation

Organization

Conclusion

Gathering [Prencipe2007] or Convergence [Cohen2006]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Distributed Algorithm for Swarm robots				
Computational Model of Swarm Robots Example of Some Geometric Problems on	 Scattering 	g [Lali2011]		
Scope of the Lecture Leader Election Gathering Arbitrary Pattern Formation Circle Formation	•		•	
			•	•

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Distributed Algorithm for Swarm robots			
Example of Some Geometric Problems on Swarm Robots	 Pattern formation [Flocchini2008] 		
	· · · · · · · · · · · · · · · · · · ·	•••	
		•	

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots

Scope of the Lecture

Leader Electio Gathering Arbitrary Pattern Formation Circle Formation

Organization

Conclusion

Leader Election

Gathering

Arbitrary Pattern Formation

Circle Formation

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots

Scope of the Lecture

Leader Election

Gathering Arbitrary Pattern Formation Circle Formation

Organization

Conclusion

Leader Election.

3

■ The robots elect r₁ as their leader.

Distributed Algorithm for Swarm robots

Some Works for Leader Election

Introduction

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots

Scope of the Lecture

Leader Election

Gathering Arbitrary Pattern Formation Circle Formation

Organization

Conclusion

SoD	Chirality	# of robots	Earlier results
Yes	Yes	Any	Leader election possible [Flocchini1999].
Yes	No	Odd	Leader election possible [Flocchini2001].
No	Yes/No	Any	Leader election not possible [Flocchini2001].
No	Yes	Any	characterization of all
			geometric positions [DieudonneL2007].
No	No	Odd	characterization of all
			geometric positions [DieudonneL2007].
No	No	Any	Characterization of all
			geometric positions where
			iterative leader election
			(total ordering of robots) is possible.
			[Gan Chaudhuri2010]

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots

Scope of the Lecture

Leader Election

Gathering

Arbitrary Pattern Formation Circle Formation

Organization

Conclusion

Gathering Fat Robots [Czyzowicz2009].

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots Scope of the

Leader Election

Gathering

Arbitrary Pattern Formation Circle

Organization

Conclusior

Earlier Works on Gathering Point Robots

Scheduling	Visibility	Agreement	Multiplicity	Earlier results
	range	in co-ordinate	detection	
Sync	unlimited	No	No	Solved [Ando1999].
ASync	Any	Yes	No	Solved[Flocchini2001].
ASync	unlimited	No	Yes	Not solvable for two
				robots [Prencipe2007].
ASync	unlimited	No	Yes	Solved for three and
				four robots
				[Cieliebak2002].
				Solved for more than
				four robots initially
				(a) in bi-angular
				configuration.
				(b) not in any
				regular <i>n</i> gon
ASync	unlimited	No	No	Not solvable
				[Prencipe2007].

Distributed Algorithm for Swarm robots

. . .

Computational Model of Swarm Robots

Example of Some Geometri Problems on Swarm Robots

Scope of the Lecture

Leader Election

Gathering

Arbitrary Pattern Formation Circle Formation

Organization

Conclusion

Some Works for Gathering Fat Robots

Scheduling	Agreement in	Earlier results
	co-ordinate	
ASync	No	Solved for up to
		four robots [Czyzowicz2009].
Sync	No	Solved for any number
		of robots [CordLandwehr2011].
		(randomized / considering.
		robots with identification
		and communication power).
Sync	No	Solved by simulation [Bolla2012].
ASync	Chirality	Solved for any
		number of robots [Agathangelou2012].
Async	No	Gathering any number of
		transparent fat robots.
		without collission.
		[Gan Chaudhuri2010].

(a) Set of robots

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometri Problems on Swarm Robots

Scope of the Lecture

Gathering

Arbitrary Pattern Formation Circle Formation

Organization

Conclusion

(c) Robots move to form the pattern

イロト 不得 トイヨト イヨト

Э

A set of robots form a given pattern

0 0 0 0

(b) Given pattern

Distributed Algorithm for Swarm robots

Some Works for Arbitrary Pattern Formation for Point Robots

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots

Scope of the Lecture

Leader Election Gathering

Arbitrary Pattern Formation Circle

Organization

Conclusion

Scheduling	SoD	Chirality	Earlier results
Async	Yes	No	Any pattern formable
			with odd no. of robots and
			Symmetric pattern is formable
			for even no. of robots [Flocchini1999].
Async	Yes	Yes	Arbitrary pattern is formable for
			any no. of robots [Flocchini2001].
ASync	No	Yes	Arbitrary pattern formation
			not possible [Flocchini2008].
ASync	No	No	Asymmetric pattern formation
			is possible without collision [Ghike2010].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Distributed Algorithm for Swarm robots

Introduction

- Computational Model of Swarm Robots
- Example of Some Geometri Problems on Swarm Robots
- Scope of the Lecture
- Gathering
- Arbitrary
- Formatio
- Circle
- Formation
- Organization
- Conclusion

• Circle formation [Defago2008].

Circle formation in limited visibility range (R_v) and agreement in co-ordinate system

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometric Problems on Swarm Robots

Scope of the Lecture

Leader Electio Gathering

Pattern

Circle

Formation

Organization

Conclusion

Circle formation [Defago2008]

 Circle formation in unlimited visibility range and no agreement in co-ordinate system

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

Distributed Algorithm for Swarm robots

Introduction

Computational Model of Swarm Robots

Example of Some Geometri Problems on Swarm Robots

Scope of the Lecture

Leader Election

Pattern

Formatio

Circle Formation

Organization

Conclusion

Some Works on Circle Formation for Fat Robots

Scheduling	Visibility	Agreement	Reported results
	range	in co-ordinate	
Sync	Limited	No	Heuristic of
			approximate circle
			formation
			[Sugihara1990].
Ssync	Unlimited	No	Circle formation
			[Defago2002].
ASync	Unlimited	No	Bi-angular
			Circle formation
			[Katreniak2005].
ASync	Unlimited	No	Circle formation
			[Defago2008].

No reported result on fat robots.

Organization

Distributed Algorithm for Swarm robots

Introduction

- Computational Model of Swarm Robots
- Example of Some Geometric Problems on Swarm Robots Scope of the
- Lecture
- Cathoring
- Arbitrany
- Pattern
- Formatio
- Circle
- Formation

Organization

Conclusion

Problem	Shape	Visibility	Co-ordinate
		range	system
Leader election	Point or	Unlimited	Local co-ordinate
	transparent fat	visibility	systems with
	robots	range	no chirality
Gathering	Transparent	Unlimited	Local co-ordinate
	fat	visibility	systems with
	robots	range	no chirality
Pattern	Point	Unlimited	Local co-ordinate
formation	robots	visibility	systems with
		range	no chirality
Circle	Transparent	Limited	Global co-ordinate
formation	fat	visibility	systems
	robots	range	
Circle	Transparent	Unlimited	Local co-ordinate
formation	fat	visibility	systems with
	robots	range	no chirality

Conclusion

Distributed Algorithm for Swarm robots

Introduction

- Computational Model of Swarm Robots
- Example of Some Geometric Problems on Swarm Robots
- Scope of the Lecture
- Leader Electic Gathering Arbitrary Pattern
- Formation
- Formation
- Organization
- Conclusion

Solid Fat Robots: Visibility Block model.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ○ ○ ○ ○

- Unequal visibility range.
- Optimal/efficient Algorithms.