Unit Disk Cover Problem in 2D

Gautam K. Das

Department of Mathematics Indian Institute of Technology Guwahati Guwahati - 781 039, India E-mail: gkd@iitg.ernet.in

- ∢ ⊒ →

Organization of Talk

Introduction

Discrete Unit Disk Cover(DUDC)

- Restricted Discrete Unit Disk Cover
 - Within Strip DUDC(WSDUDC)
 - Restricted Line-Separable DUDC(RLSDUDC)
 - Line-Separable DUDC(LSDUDC)
- Solution of Discrete Unit Disk Cover (DUDC) Problem

Rectangular Region Cover(RRC)

- Approximation Algorithm for RRC Problem
- RRC Problem in Reduce Radius Setup

Conclusion

• • = • • = •

• Given m unit disks D and n points Q in the plane, the discrete unit disk cover problem is to select a minimum subset of the disks to cover the points.

• Given m unit disks D and n points Q in the plane, the discrete unit disk cover problem is to select a minimum subset of the disks to cover the points.

• Given m unit disks D and n points Q in the plane, the discrete unit disk cover problem is to select a minimum subset of the disks to cover the points.

Introduction

Discrete Unit Disk Cover(DUDC)

Applications

G. K. Das (IIT Guwahati)

3

伺 ト イヨト イヨト

Introduction

Discrete Unit Disk Cover(DUDC)

Applications

3

문▶ ★ 문▶

About DUDC

- NP-Hard (Johnson, 1982)
- Approximation algorithms:
 - 108-approximate (Călinescu et al., 2004)
 - 72-approximate (Narayanappa and Voytechovsky, 2006)
 - 38-approximate (Carmi et al., 2007)
 - 22-approximate, $O(m^2n^4)$ algorithm (Claude et al., 2010)
 - 18-approximate, $O(mn + n \log n + m \log m)$ algorithm (Das et al., 2012)
 - 15-approximate, $O(m^6 n)$ algorithm (Fraser & López-Ortiz, 2012)
 - $(1 + \epsilon)$ -approximate (Mustafa and Ray, 2009)
 - Uses ϵ -net based local improvement approach
 - $O(m^{257}n)$ time for a 2-approximation solution

・ 同 ト ・ ヨ ト ・ ヨ ト

Our Results:

- (1 + μ)-approximate(PTAS) for *line separable discrete unit disk* cover(LSDUDC) problem in O((m^{3(1+¹/_μ)}n log n) time (0 < μ ≤ 1).
- (9 + ε)-approximate, O(max(m^{3(1+⁶/_ε)}n log n, m⁶n)) algorithm for DUDC problem using the above PTAS for LSDUDC, where 0 < ε ≤ 6.
- (9 + ε)-approximate, O(max(m^{3(1+⁶/ε)}n log n, m⁶n)) algorithm for rectangular region cover(RRC) problem using the above algorithm for DUDC problem, where 0 < ε ≤ 6.
- 2.25-approximate result for RRC problem in reduced radius setup.

・ロ > ・ 同 > ・ 目 > ・ 目 > ・

Feasibility Test

• Feasibility test can be done in $O(m \log m + n \log m)$ time.

Feasibility Test

• No feasible solution.

G. K. Das (IIT Guwahati)

Unit Disk Cover Problem in 2D

문▶ ★ 문▶

Within Strip DUDC(WSDUDC)

• All points in Q and center of the disks in D are within a horizontal strip of width $\frac{1}{\sqrt{2}}$

• Want $D \subseteq D$ of minimum cardinality which covers point in Q

Within Strip DUDC(WSDUDC)

• All points in Q and center of the disks in D are within a horizontal strip of width $\frac{1}{\sqrt{2}}$

• Want $D \subseteq D$ of minimum cardinality which covers point in Q

3-factor approximation algorithm in $O(m^6n)$ time [Fraser and López-Ortiz, 2012]

Restricted Line-Separable DUDC(RLSDUDC)

- Disk centers and points in Q are separable by a line
- Formally, given sets of points P={p₁,p₂,...,p_m} and Q={q₁,q₂,...,q_n}, where D={d₁,d₂,...,d_m} is the set of unit disks centered at the points in P, find D' ⊆ D of minimum cardinality such that all points in Q are covered by unit disks in D'.

• Optimal solution in $O(mn + n \log n)$ time [Claude et al., 2010].

Restricted Line-Separable DUDC(RLSDUDC)

- Disk centers and points in Q are separable by a line
- Formally, given sets of points P={p₁,p₂,...,p_m} and Q={q₁,q₂,...,q_n}, where D={d₁,d₂,...,d_m} is the set of unit disks centered at the points in P, find D' ⊆ D of minimum cardinality such that all points in Q are covered by unit disks in D'.

• Optimal solution in $O(mn + n \log n)$ time [Claude et al., 2010].

Line-Separable DUDC(LSDUDC)

- All points Q on one side of the line ℓ , and disks D centered both above and below ℓ .
- Want $D' \subseteq D$ of minimum cardinality.
- A 2-approximation in $O(mn + n \log n)$ time [Claude et al., 2010].

Line-Separable DUDC(LSDUDC)

- All points Q on one side of the line ℓ , and disks D centered both above and below ℓ .
- Want $D' \subseteq D$ of minimum cardinality.
- A 2-approximation in $O(mn + n \log n)$ time [Claude et al., 2010].

∃ ► < ∃ ►</p>

• Green color disks are in the optimum solution of RLSDUDC

• Let the set of red points are $P_1, P_2, \dots P_s$ from left to right

• Green color disks are in the optimum solution of RLSDUDC

• Let the set of red points are $P_1, P_2, \dots P_s$ from left to right

Repeat the following step: Choose k disks to cover all points in $\bigcup_{i=1,2,...,t} P_i$, where t is the maximum possible value

・ロト ・同ト ・ヨト ・ヨト

• Green color disks are in the optimum solution of RLSDUDC

• Let the set of red points are $P_1, P_2, \dots P_s$ from left to right

Repeat the following step: Choose k disk to cover all points in $\bigcup_{i=1,2,...,t} P_i$, where t is the maximum possible value

(日) (同) (三) (三)

Result:

 $(1 + \frac{3}{k-3})$ -approximation results in $O(m^k n \log n)$ time, where *m* is number of disks and *n* is number of red points.

Solution of Discrete Unit Disk Cover (DUDC) Problem

Das et al., 2012:

Approximation factor of DUDC problem is 6× (approximation factor of LSDUDC) +

approximation factor of WSDUDC problem.

Result:

Approximation factor of DUDC problem is $6 \times (1 + \epsilon) + 3 = 9 + \mu$.

Rectangular Region Cover(RRC)

• Given a set D of m unit disks and a rectangular region R such that $R \subseteq \bigcup_{d \in D} d$, the objective of RRC problem is to choose a minimum cardinality set $D^{**}(\subseteq D)$ such that $R \subseteq \bigcup_{d \in D^{**}} d$.

Approximation Algorithm for RRC Problem

Definitions and Notations

- A sector *f* inside *R* is a maximal region formed by the intersection of a set of disks.
- F set of all sectors (inside R) formed by D and $|F|=O(m^2)$.
- Construct a set of points T such that there is a point p ∈ T corresponding to each sector f ∈ F and p ∈ f ∈ F, and |T|=|F|=O(m²).

Approximation Algorithm for RRC Problem

Result:

 $\operatorname{RRC}(R,D) \implies \operatorname{DUDC}(T,D) \& n = O(m^2).$

< ロ > < 同 > < 回 > < 回 >

The RRC problem has $(9 + \epsilon)$ -factor approximation algorithm with running time $O(\max(m^{6(1+\frac{3}{\epsilon})} \log m, m^8))$ for $0 < \epsilon \le 6$.

RRC Problem in Reduce Radius Setup

Definitions and Notations

- Given a set D of unit disks and a rectangular region R such that R is covered by the disks in D after reducing their radius to (1δ) , the objective is to choose a minimum cardinality set $D^{**}(\subseteq D)$ whose union covers R.
- Place a grid with cells of size ν × ν over the region R, where ν=√2δ for 0 < δ < 1, and snap the center of each disk d∈ D to the closest vertex of the grid and set its radius to (1 − δ).
- Let D' be the set of disks with radius (1δ) after snapping their centers.
- Let R' be a square of size 4×4 on the plane contained in R.
- A disk d ∈ D' dominates another disk d' ∈ D' with respect to the region R' if d ∩ R' ⊇ d' ∩ R'.

3

<ロ> <同> <同> < 回> < 回>

RRC Problem in Reduce Radius Setup

Definitions and Notations

• Construct a set $D_{RS}(\subseteq D')$ such that any disk $d \in D'$ and $d \notin D_{RS}$ can not participate in the optimal solution for covering the region R' by D'.

RRC Problem in Reduce Radius Setup

Result:

- If d ∈ D' and d ∉ D_{RS}, then d can not participate in the optimal solution for covering R' by minimum number of disks in D'.
- $|D_{RS}| \le \frac{16}{\nu^2} + \frac{20}{\nu}$
- In the reduce radius setup, the RRC problem has an 2.25-factor approximation algorithm with running time $O(q2^{\frac{16}{\nu^2}+\frac{20}{\nu}})$, where q is the minimum number of squares of size 4×4 covering R.

Conclusion

We have proposed (i) a PTAS for Line Separable DUDC problem and (ii) $(9 + \epsilon)$ -factor approximation algorithm for DUDC problem. (iii) a $(9 + \epsilon)$ -factor approximation algorithm for RRC problem and (iv) 2.25-factor approximation algorithm for RRC problem in reduce radius setup.

THANK YOU

G. K. Das (IIT Guwahati)

æ

< ロ > < 回 > < 回 > < 回 > < 回 >