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Basic localization model in a homogeneous WSN

We consider the basic localization model:
Field of interest is convex.
Sensors are identical.
Sensing range→ s. Communication range→ r .
No sensing and communication barrier present in the WSN
field.
Sensors are in general position.
Distances are measured accurately.
For (si , sj),
if dist(si , sj) ≤ r , the value of dist(si , sj) is known.
If dist(si , sj) > r , the value of dist(si , sj) is unknown.



Network localization Problem in WSN Techniques for network localization Rigidity and localizability

Basic localization model in a homogeneous WSN

Graph Model of WSN
Let WSN contain n sensors s1, s2, · · · , sn. We construct an
undirected edge-weighted graph G = (V ,E ,w) as follows :

Each vertex in V represents a sensor.
(si , sj) ∈ E iff the distance between si and sj is known.
∀(si , sj) ∈ E , dist(si , sj) = w(si , sj).
dist(si , sj) > r , ∀ (si , sj) /∈ E .

In R2, this graph model is a Unit Disk Graph (UDG).



Network localization Problem in WSN Techniques for network localization Rigidity and localizability

Basic localization model in a homogeneous WSN

Graph Model of WSN
Let WSN contain n sensors s1, s2, · · · , sn. We construct an
undirected edge-weighted graph G = (V ,E ,w) as follows :

Each vertex in V represents a sensor.
(si , sj) ∈ E iff the distance between si and sj is known.
∀(si , sj) ∈ E , dist(si , sj) = w(si , sj).
dist(si , sj) > r , ∀ (si , sj) /∈ E .

In R2, this graph model is a Unit Disk Graph (UDG).

Problem

Given an edge-weighted undirected graph G = (V ,E ,w), our
objective is to find possible position assignments to the nodes
of the graph G in R2 under the above model.
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Graph realization

Definition
A realization of G = (V ,E ,w) in Rm (Euclidean space of

dimension m) is an assignment of coordinates (x1, . . . , xm) to
the vertices so that weight of an edge represents the Euclidean
distance between the vertices incident on the edge.
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Graph realization

Definition
A realization of G = (V ,E ,w) in Rm (Euclidean space of

dimension m) is an assignment of coordinates (x1, . . . , xm) to
the vertices so that weight of an edge represents the Euclidean
distance between the vertices incident on the edge.

Graph realization problem
Given a graph G = (V ,E ,w). Does there exist a realization of
G in Rm?

Saxe [10] has shown that the graph realization problem is
NP-complete in one dimension and NP-hard in higher
dimensions.
Breu and Kirkpatrick [2] has shown that unit disk graph
realization problem is also NP-hard.
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Graph realization

Definition
A realization of G = (V ,E ,w) in Rm (Euclidean space of

dimension m) is an assignment of coordinates (x1, . . . , xm) to
the vertices so that weight of an edge represents the Euclidean
distance between the vertices incident on the edge.

Is there any realization of the WSN at all?

The graph underlying the proposed WSN model has at
least one realization, since the distance information is
coming from an actual deployment of sensors
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Graph realization
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Techniques for location estimation of network nodes

Multilateration technique:
An unknown node can estimate its location with
information from its neighbors.
Some of the neighbors (beacons) know their positions by
GPS or some other means.
A node becomes a beacon after knowing its location in the
network.
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Techniques for location estimation of network nodes

Atomic multilateration
Let (x , y) be the position of a node v with N beacon neighbors
v1, v2, . . ., vN . Let s be the ultrasound signal propagation speed
s and ti be the time to propagate the signal from vi to v . Let

fi(x , y , s) = s ti −
√

(xi − x)2 + (yi − y)2

For noisy distances, if an adequate number of beacons are
available, a Maximum Likelihood Estimate of (x , y) can be
computed from a system of equations obtained by taking
the minimum mean square estimate of fi(x , y , s).
For noise-less distances, three or more beacons result in
unique position of v .
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Techniques for location estimation of network nodes

Iterative multilateration
In a cluster based network, the positions of the cluster
heads are known.
The cluster heads are assumed to have knowledge about
the complete network.
Computations in clusters run in a distributed manner.
Each cluster head uses atomic multilateration to estimate
the positions of non-localized nodes as much as possible.
It can start with the maximum possible number of beacons
to estimate the remaining unknown nodes.
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Techniques for location estimation of network nodes

Optimization techniques in localization:
If the average error in positioning is taken as the
performance metric, the localization problem becomes a
geometric optimization problem (Doherty et al. [3]).
It finds the points x1, x2, . . ., xn ∈ Rm which optimize the
cost function

Zm = min
∑
i<j

(‖xi − xj‖ − δij)
2

where δij are given for all i < j = 1,2, . . . ,n and
D = (δij)n×n is the corresponding distance matrix.
Depending on different types of distance information,
different mathematical optimization tools are used to
estimate the locations.
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Techniques for location estimation of network nodes

Optimization techniques in localization:

Multidimensional scaling (MDS)
MDS generally uses eigendecomposition (spectral
decomposition) of the matrix to solve this optimization problem.

In real applications of WSNs, inter node distance estimates
are available only for the node pairs within the
communication range.
The complete distance matrix may not be available. In
such cases, MDS-MAP finds the all-pair-shortest path
distances and forms the distance matrix with these rough
distance estimates.
With this distance matrix, MDS-MAP estimates the
positions of the nodes which gives the best fit.
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Techniques for location estimation of network nodes

Optimization techniques in localization:

Quadratic Programming Formulation (QPP)
For noisy distances, if given δij is an upper bound of the
distance then the localization problem in WSN may be
formulated as a QPP with the above cost function Zm subject to
the distance constraints:

‖xi − xj‖ ≤ δij , if the distance δij is known.
‖xi − xj‖ > r , if the distance δij is unknown.

This QPP is non-convex for non-convex constraints:
non-adjacency conditions: ‖xi − xj‖ > r and
‖xi − xj‖ = δij , if δij is the eaxct distance between the pair.
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Techniques for location estimation of network nodes

Optimization techniques in localization:

Quadratic Programming Formulation (QPP)
Doherty et al. [3] ignored non-adjacency conditions to
make it convex.
Positions of sensors are estimated by using Semidefinite
Program, in polynomial time, optimizing the total distance
error in location estimation.
Biswas et al. [1] used relaxation technique to reduce the
error in position estimation.
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Graph rigidity

A realization may be visualized as a frame constructed by
a finite set of rods joined at their end points.
A perturbation on the frame gives different realizations.

The realizations obtained by rotating, flipping or shifting the
whole structure, do not really count as different.

Definition
Two realizations preserving the distances among all pairs of
nodes, irrespective of whether the pair is in E or not, are called
congruent.

CO

E
A

D

B

F

(b)

O

(a)

B

C

D
E

F

A



Network localization Problem in WSN Techniques for network localization Rigidity and localizability

Graph rigidity

Definition
A realization of an edge-weighted graph G = (V ,E ,w) is called
rigid, if the it has no continuous deformation which generates
another realization of G.
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Graph rigidity

Definition
A realization of an edge-weighted graph G = (V ,E ,w) is called
rigid, if the it has no continuous deformation which generates
another realization of G.

Theorem (Laman [8])
An edge-weighted graph G = (V ,E ,w), |V | = n, is generically
rigid in R2 if and only if there is a subset E ′ ⊆ E consisting of
2n − 3 edges such that, for any nonempty subset E ′′ ⊆ E ′,
|E ′′| ≤ n′ where n′ is the number of vertices of G which are
incident with edges in E ′′.
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Graph rigidity

Definition
A realization of an edge-weighted graph G = (V ,E ,w) is called
rigid, if the it has no continuous deformation which generates
another realization of G.

Theorem (Laman [8])
An edge-weighted graph G = (V ,E ,w), |V | = n, is generically
rigid in R2 if and only if there is a subset E ′ ⊆ E consisting of
2n − 3 edges such that, for any nonempty subset E ′′ ⊆ E ′,
|E ′′| ≤ n′ where n′ is the number of vertices of G which are
incident with edges in E ′′.

Generic rigidity testing

In R2, based on variants of Laman’s theorem, Hendrickson [5]
has proposed a fast |V |2 algorithm for generic rigidity testing.
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Graph rigidity

Definition
G = (V ,E ,w) is globally rigid, if the
distance between every pair of nodes
remains preserved in every
realization.
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Localizable (uniquely realizable) graphs

Consider a network deployed in R2 with nodes in general
position.
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Localizable (uniquely realizable) graphs

Consider a network deployed in R2 with nodes in general
position.

Theorem ([4])
The graph underlying such a network is uniquely realizable if
and only if it has at least three anchors (nodes with known
positions) and the network is globally rigid.
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Localizable (uniquely realizable) graphs

Consider a network deployed in R2 with nodes in general
position.

Theorem ([4])
The graph underlying such a network is uniquely realizable if
and only if it has at least three anchors (nodes with known
positions) and the network is globally rigid.

Theorem (Jackson and Jordán [7])
An edge-weighted graph G = (V ,E ,w), |V | = n ≥ 4, is
generically globally rigid in R2 if and only if it is 3-connected
and redundantly rigid in R2.
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Localizable (uniquely realizable) graphs

Consider a network deployed in R2 with nodes in general
position.

Theorem (Jackson and Jordán [7])
An edge-weighted graph G = (V ,E ,w), |V | = n ≥ 4, is
generically globally rigid in R2 if and only if it is 3-connected
and redundantly rigid in R2.

Localizability testing in a central machine
In veiw of this theorem, localizability testing can efficiently be
done as:

Testing of 3-connectivity can be done in polynomial time
with standard techniques [6, 9].
Redundant rigidity testing can efficiently be done by the
algorithm proposed by Hendrickson [5].
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Localizable (uniquely realizable) graphs

Localizability testing distributedly
Efficient distributed localizability testing is an open problem
for arbitrary networks.
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Localizable networks: distributedly recognizable by existing techniques

Trilateration graph:
A graph is a trilateration graph if it has a trilateration ordering
π = {u1,u2, . . . ,un} of nodes, where u1, u2, u3 form a K3 and
each ui (i ≥ 3) has at least three neighbors before ui in π.

Wheel extension graph:
G is a wheel extension if it has an ordering π = {u1,u2, . . . ,un},
where u1, u2, u3 form a K3 and each ui lies in a wheel graph (a
subgraph of G) containing at least three nodes before ui in π.

(a) Wheel graph (b) Wheel extension
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Examples of some other classes of localizable networks

(a) Triangle cycle (b) Triangle circuit

(c) Triangle bridge (d) Triangle net
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Shift, flip and rotation operations in R2

A WSN may have multiple realizations.
A realization of a given network may be flipped, rotated
and/or translated (shifting origin), (like any rigid body), with
respect to the coordinate system to get another realization.
These are structurally identical, i.e., congruent.
We are interested only in realizations which are structurally
different.
From here onwards flip, rotation and shift in a realization of
a WSN graph, we mean a part of the realization is flipped,
rotated or shifted, giving us a new realization while rest of
the realization remains fixed.
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Shift, flip and rotation operations in R2

Definition
If two globally rigid graphs share exactly one vertex, then
one of them may be rotated, around the common vertex,
keeping the other fixed. Such a vertex will be called a joint.
If two globally rigid graphs share exactly two vertices,
rotation about these vertices is no longer possible, but one
of the graphs may be flipped, about the line joining the
common vertices, keeping the other fixed. This pair of
vertices is called a flip.

Lemma
If two globally rigid bodies B1 and B2, in a sensor realization of
a graph G = (V ,E ,w) share three or more common vertices,
B1 ∪ B2 (alongwith all edges between them) forms a rigid body.
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Shift, flip and rotation operations in R2

Lemma
If two globally rigid subgraphs, B1 and B2, of
a graph G share two common vertices and
there is an edge connecting a vertex in B1 to
another vertex in B2, B1 ∪ B2 is globally rigid.
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Triangle chain

Definition
A triangle stream is a sequence of distinct triangles
T = (T1,T2, . . . ,Tm) such that for every i , 2 ≤ i ≤ m− 1, Ti
shares two distinct edges with Ti−1 and Ti+1. G(T ) is the
union of the Tis in T .
A node u of a triangle Ti is termed a pendant of Ti , if the
edge opposite to u in Ti is shared by another triangle in T .
T4 = {u, v ,w} has two pendants v and w .

T3

T5

T6

T4

T2

T1

v

w

u

Triangle chain
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Triangle chain

T3

T5

T6

T4

T2

T1

v

w

u

Triangle chain

Definition
This shared edge is called an inner side of Ti . Each Ti has
at least one edge which is not shared by another triangle in
T . Such an edge is called an outer side of Ti . In figure, uw
and uv are inner sides, and vw is an outer side.
If T1 and Tm have unique and distinct pendants, then G(T )
is called a triangle chain.
A triangle chain involves only flips; hence it is rigid.
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Triangle cycle, triangle circuit, triangle bridge

Definition
If T1 and Tm share an edge other than those shared with
T2 and Tm−1, then G(T ) is called a triangle cycle. In a
triangle cycle, each triangle has exactly two inner and one
outer sides. A wheel graph is a triangle cycle.
If G(T ) is not a triangle cycle and T1 and Tm have a unique
pendant in common, then G(T ) is called a triangle circuit.
The common pendant is called a circuit knot (e.g., x).

Triangle cycle

x

Triangle circuit



Network localization Problem in WSN Techniques for network localization Rigidity and localizability

Triangle cycle, triangle circuit, triangle bridge

Definition
Let T1 and Tm have unique and distinct pendants. If the
pendants are connected by an edge e, then G(T ) ∪ {e} is
called a triangle bridge.
The edge e is called the bridging edge.
The length of a triangle stream T is the number of triangles
in it and is denoted by l(T ).

e

Triangle bridge
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Triangle cycle, triangle circuit, triangle bridge

Lemma
Every triangle cycle has a spanning wheel or triangle circuit (a
wheel or triangle circuit which is a spanning subgraph of the
triangle cycle).

Triangle cycles
with three and
four triangles

Ti

Ti+1

Ti+2

v

e

Ti+2
Ti+1

Ti+m−1
v

e

.
 
.
 
.

Triangle cycles without spanning wheel
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Triangle cycle, triangle circuit, triangle bridge

Lemma
Every triangle circuit has a spanning triangle bridge (a triangle
bridge which is a spanning subgraph of the triangle circuit).

T1
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Triangle circuit T gives a spanning triangle bridge T − e
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Triangle cycle, triangle circuit, triangle bridge

In R2, if a rigid realization admits no flip ambiguity, then it is
globally rigid. ⇒

Lemma
Triangle cycle, circuit and bridge are generically globally rigid.

T2

T1
Tn

Ti
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e

w
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A generic configuration of a triangle bridge G(T )
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Triangle tree

Definition
Consider a sequence T = (T1,T2, . . . ,Tm) of triangles while
each Ti (for i = 2, 3, · · · , m) shares exactly one edge with
exactly one Tj , 1 ≤ j < i .

The node opposite to this sharing edge is called a pendant
of Ti in T (e.g., x is a pendant of T2; T1 has no pendant).
The graph G(T ) is called a triangle tree.

10T
T8
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T6

T4

T3
T2

T5

T1

11T

T9

v

x

u

w

Triangle tree
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Triangle tree

10T
T8

T7

T6

T4

T3
T2

T5

T1

11T
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v

x

u

w

Triangle tree

For 2 ≤ i ≤ m, each Ti has exactly one pendant in T . If Ti
shares no edge with no Tj , j > i , Ti is called a leaf triangle.
A leaf triangle shares exactly one edge with other triangles
in T . It has a unique pendant, called a leaf knot. T5, T7
and T11 are leaf triangles and u, v and w are leaf knots.
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Triangle tree

10T
T8

T7

T6

T4

T3
T2

T5

T1

11T
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v

x

u

w

Triangle tree

G(T ) contains no triangle cycle. Otherwise, there always
exists a Tj which shares two edges with some triangles
before Tj in T .
By construction, any realization of a triangle tree is rigid.
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Extended node

Definition
Let G(T ) be a triangle tree. A node v , outside G(T ), is called
an extended node of G(T ), if v is adjacent (corresponding
connecting edge is called an extending edge) to at least three
nodes, each being a pendant or an extended node in G(T )

u and v are two extended nodes of G(T ). uw , ux and uz are
the extending edges of u; vu, vs and vy are those of v .

v

u

w

x
y

z

s

(b)(a)

(a) Triangle tree (b) u and v are Extended nodes
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Triangle notch

Definition
A graph G is called a triangle notch, if it can be generated from
a triangle tree G′(T ), where G′ is proper subgraph of G, by
adding only one extended node v where all the leaf knots of
G′(T ) are adjacent to v . v is called the apex of G.

ui

uk

Tk

Tj

uj

Ti

v

(a) Triangle tree G′(T ) (b) Triangle notch G with apex v

Lemma
A triangle notch is generically globally rigid.
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Triangle notch

Lemma
Let G be a graph obtained from a triangle tree G′(T ) by adding
extended nodes, where G′ is a proper subgraph of G. Any
extended node along with all pendants and extended nodes
adjacent to it lie in a generically globally rigid subgraph.
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s

(b)(a)

u and v are extended nodes in two scenarios: (a) u, v are
adjacent to pendants only, (b) u, v are adjacent to both pendant

and extended nodes
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Triangle net

Definition
A triangle net is a graph G generated from a triangle tree G′(T )
by adding one or more extended nodes such that

1 G contains no triangle cycle, circuit or bridge; and
2 there exists an extended node u such that every leaf knot

of G′(T ) is connected to u by a path (called extending
path) containing only extending edges.

v

u

w

x
y

z

s

z

w xt
y

u
v

(a) Not a triangle net (b) A triangle net



Network localization Problem in WSN Techniques for network localization Rigidity and localizability

Triangle net

v

u

w

x
y

z

s

z

w xt
y

u
v

(a) Not a triangle net (b) A triangle net

The last extended node added to generate the triangle net
is called an apex of the triangle net.
Triangle notch is a special case of triangle net.
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Triangle net

Lemma
A triangle net is generically globally rigid.

u
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w xt
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v v

u
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x
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s

(a) (b)

Triangle nets with extended nodes u and v where (a) u, v are
adjacent to pendants only, (b) u, v are adjacent to both pendant

and extended nodes
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Triangle bar

Definition
A triangle bar is a graph G that satisfies one of the followings:

1 G can be obtained from a triangle cycle, triangle circuit,
triangle bridge or triangle net by adding zero or more
edges, but no extra node;

2 G = Bi ∪ Bj where Bi and Bj are triangle bars which share
at least three nodes; or

3 G = Bi ∪ {v} where Bi is a triangle bar and v is a node not
in Bi , and adjacent to at least three nodes of Bi .

Examples of triangle bar: The first figure is a triangle cycle.
Next two are triangle nets.
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Triangle bar

Examples of triangle bar: The first figure is a triangle cycle.
Next two are triangle nets.

Note:
Triangle cycle, triangle circuit, triangle bridge and triangle
net are also triangle bars.
These triangle bars will be referred as elementary bars.

Theorem
Trilateration graph and wheel extension are triangle bars.
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Thank you !
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