
Real-Time Scheduling in

Distributed Environments

1

Distributed Environments

Arnab Sarkar

Dept. of Computer Sc. & Engg.

IIT Guwahati

STC Networks & Distrib. Comput., IITG13-Feb-15

Setting the Stage

� Real-time Systems

� A system whose specification includes both functional as

well as temporal notions of correctness.

� Logical Correctness: Produces correct outputs.� Logical Correctness: Produces correct outputs.

� Temporal Correctness: Produces outputs at the right time.

� It is not enough to say that “brakes were applied”

� You want to be able to say “brakes were applied at the right time”

2STC Networks & Distrib. Comput., IITG13-Feb-15

Setting the Stage

� Real-time systems enable us to:

� Manage the vast power generation and distribution

networks,

� Control industrial processes for chemicals, fuel, medicine,

and manufactured products,and manufactured products,

� Control automobiles, ships, trains and airplanes,

� Conduct video conferencing over the Internet and

interactive electronic commerce, and

� Send vehicles high into space and deep into the sea to

explore new frontiers and to seek new knowledge.

3STC Networks & Distrib. Comput., IITG13-Feb-15

Example of a Real-Time System

Many real-time systems are control systems.

Example: A simple one-sensor, one-actuator control system.

control-law
A/D

D/A

rk

uk

reference

input r(t) control-law

computation
A/D

D/A

sensor plant actuator

yk

y(t) u(t)

ukinput r(t)

The system
being controlled

4STC Networks & Distrib. Comput., IITG13-Feb-15

Example of a Real-Time System
Pseudo-code for this system:

set timer to interrupt periodically with period T;

at each timer interrupt do

do analog-to-digital conversion to get y;

compute control output u;

output u and do digital-to-analog conversion;output u and do digital-to-analog conversion;

end do

T is called the sampling period. T is a key design choice.

Typical range for T: seconds to milliseconds.

5STC Networks & Distrib. Comput., IITG13-Feb-15

Another Example

� Multimedia

� Want to process audio and video frames at steady

rates.

�TV video rate is 30 frames/sec. HDTV is 60

frames/sec.frames/sec.

�Telephone audio is 16 Kbits/sec. CD audio is 128

Kbits/sec.

� Other requirements: Lip synchronization, low jitter,

low end-to-end response times (if interactive).

6STC Networks & Distrib. Comput., IITG13-Feb-15

Characteristics of Real Time Tasks

� Task: A sequential piece of code.

� Job: Instance of a task.

� Jobs require resources to execute.

� Example resources: CPU, network, disk, critical section.

� Release time of a job: The time at which the job becomes

ready to execute.

� Absolute Deadline of a job: The time instant by which the

job must complete execution.

� Relative deadline of a job: “Deadline − Release time”.

7STC Networks & Distrib. Comput., IITG13-Feb-15

Example

= job release

= job deadline

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

= job deadline

• Job is released at time 3.

• Its (absolute) deadline is at time 10.

• Its relative deadline is 7.

• Its response time is 6.

8STC Networks & Distrib. Comput., IITG13-Feb-15

Real-Time Periodic Task

� Task : a sequence of similar jobs

� Periodic task (p,e)

� Jobs repeat regularly

� Period p = inter-release time (0 < p)

� Execution time e (maximum execution time; 0 < e < p)� Execution time e (maximum execution time; 0 < e < p)

� Utilization U = e/p

5 10 150

9STC Networks & Distrib. Comput., IITG13-Feb-15

Deadlines: Hard vs. Soft

� Hard deadline

� Disastrous or very serious consequences may occur if

the deadline is missed

� Validation is essential : can all the deadlines be met,

even under worst-case scenario?even under worst-case scenario?

� Deterministic guarantees

� Soft deadline

� Ideally, the deadline should be met for maximum

performance. The performance degrades in case of

deadline misses.

� Best effort approaches / statistical guarantees

10STC Networks & Distrib. Comput., IITG13-Feb-15

Schedulability

� Property indicating whether a real-time system (a

set of real-time tasks) can meet their deadlines

(4,1)

(5,2)

(7,2)

11STC Networks & Distrib. Comput., IITG13-Feb-15

� Metrics for real-time systems differ from that for

time-sharing systems.

What’s Important in Real-Time

Time-Sharing
Systems

Real-Time
Systems

Capacity High throughput Schedulability

Responsiveness Fast average response Ensured worst-case

response

Overload Fairness Stability

12STC Networks & Distrib. Comput., IITG13-Feb-15

Real-Time Scheduling

� Determines the order of real-time task executions

� Static-priority scheduling

� Dynamic-priority scheduling

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

13STC Networks & Distrib. Comput., IITG13-Feb-15

RM (Rate Monotonic)

� Optimal static-priority scheduling

� It assigns priority according to period

� A task with a shorter period has a higher priority

� Executes a job with the shortest period� Executes a job with the shortest period

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

14STC Networks & Distrib. Comput., IITG13-Feb-15

RM (Rate Monotonic)

� Executes a job with the shortest period

(4,1)T1

(5,2)

(7,2)

5

5

10

10 15

15

T2

T3

15STC Networks & Distrib. Comput., IITG13-Feb-15

RM (Rate Monotonic)

� Executes a job with the shortest period

Deadline Miss !

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

16STC Networks & Distrib. Comput., IITG13-Feb-15

Response Time

� Response time

� Duration from released time to finish time

(4,1)T (4,1)

(5,2)

(10,2)

5

5

10

10 15

15

T1

T2

T3

17STC Networks & Distrib. Comput., IITG13-Feb-15

Response Time

� Response time

� Duration from released time to finish time

Response Time

(4,1)

(5,2)

(10,2)

5

5

10

10 15

15

T1

T2

T3

18STC Networks & Distrib. Comput., IITG13-Feb-15

Response Time

� Response Time (ri) [Audsley et al., 1993]

k

THPT k

i
ii e

p

r
er

ik

⋅

+= ∑

∈)(

� HP(Ti) : a set of higher-priority tasks than Ti

(4,1)

(5,2)

(10,2)

5

5

10

10

T1

T2

T3

19STC Networks & Distrib. Comput., IITG13-Feb-15

RM – Utilization Bound

� Real-time system is schedulable under RM if

∑Ui ≤ n (21/n-1)

Liu & Layland,Liu & Layland,

“Scheduling algorithms for multi-programming in a

hard-real-time environment”, Journal of ACM,

1973.

20STC Networks & Distrib. Comput., IITG13-Feb-15

RM – Utilization Bound

� Real-time system is schedulable under RM if

∑Ui ≤ n (21/n-1)

� Example: T1(4,1), T2(5,1), T3(10,1),

∑Ui = 1/4 + 1/5 + 1/10

= 0.55

3 (21/3-1) ≈ 0.78

Thus, {T1, T2, T3} is schedulable under RM.

21STC Networks & Distrib. Comput., IITG13-Feb-15

RM Utilization Bounds
1.1

RM – Utilization Bound

� Real-time system is schedulable under RM if
� ∑Ui ≤ n (21/n-1)

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024 4096

The Number of Tasks

U
ti
liz

a
ti
o

n

22STC Networks & Distrib. Comput., IITG13-Feb-15

EDF (Earliest Deadline First)

� Optimal dynamic priority scheduling

� A task with a shorter deadline has a higher priority

� Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

23STC Networks & Distrib. Comput., IITG13-Feb-15

EDF (Earliest Deadline First)

� Executes a job with the earliest deadline

(4,1)T1(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

24STC Networks & Distrib. Comput., IITG13-Feb-15

EDF (Earliest Deadline First)

� Executes a job with the earliest deadline

(4,1)T1

(5,2)

(7,2)

5

5

10

10 15

15

T2

T3

25STC Networks & Distrib. Comput., IITG13-Feb-15

EDF (Earliest Deadline First)

� Executes a job with the earliest deadline

(4,1)T1

(5,2)

(7,2)

5

5

10

10 15

15

T2

T3

26STC Networks & Distrib. Comput., IITG13-Feb-15

EDF (Earliest Deadline First)

� Optimal scheduling algorithm

� if there is a schedule for a set of real-time tasks,

EDF can schedule it.

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

27STC Networks & Distrib. Comput., IITG13-Feb-15

EDF – Utilization Bound

� Real-time system is schedulable under EDF if and

only if

∑Ui ≤ 1

Liu & Layland,

“Scheduling algorithms for multi-programming in a

hard-real-time environment”, Journal of ACM,

1973.

28STC Networks & Distrib. Comput., IITG13-Feb-15

Least Laxity First (LLF)
� Dispatch the task with the smallest laxity, which is the

largest amount of time that a task can be delayed (some
type of procrastination index)

� In a sense, it is similar to EDF, in that it runs the most
urgent tasks in the set (the metric by which urgency is
measured, differs though)

Requires calling the •Requires calling the
scheduler periodically,
and to re-compute the
laxity - many calls of
the scheduler

•When tasks have the
same laxity - too many
preemptions

29STC Networks & Distrib. Comput., IITG13-Feb-15

What is a Distributed System?

� A set of nodes communicating through a network

� Network could be LAN or WAN

� Nodes could be homogeneous or heterogeneous

N1
N2

Network
(WAN/LAN)

N3

Nn
13-Feb-15 30STC Networks & Distrib. Comput., IITG

Why Distributed Systems?

� Applications themselves are distributed
� E.g., command and control, air traffic control

� High performance
Better load balancing� Better load balancing

� High availability (fault-tolerance)
� No single point of failure

13-Feb-15 31STC Networks & Distrib. Comput., IITG

Problems with Distributed Systems

� Resource management is difficult
� No global knowledge on workload

� No global knowledge on resource allocation

� No synchronized clock (or clocks need to be synchronized)

� Communication related errors
� Out of order delivery of packets, packet loss, etc.

� Difficult to distinguish network partition from node/link failures

13-Feb-15
32STC Networks & Distrib. Comput., IITG

Task Model

� Tasks can be periodic or non-periodic.

� Guaranteed Task – A task which may be assured to meet
its deadline under all circumstances.

� A set (possibly null) of guaranteed periodic tasks exists at � A set (possibly null) of guaranteed periodic tasks exists at
each node.

� Non-periodic tasks may arrive at any node at any time in
the network.

� The scheduling objective is to guarantee all periodic tasks
and as many non-periodic tasks as possible, utilizing the
resources of the entire network.

13-Feb-15 33STC Networks & Distrib. Comput., IITG

Local Scheduler

� Each node in the network contains a local scheduler.

� When a new task arrives, an attempt is made to schedule

the task at that node.

� Calls Guarantee routine� Calls Guarantee routine

� If guaranteed, the Dispatcher is invoked.

� Dispatcher determines which among the guaranteed

periodic and non-periodic tasks is to be executed next.

� This selection depends on the scheduling policy used.

� Example: EDF

13-Feb-15 34STC Networks & Distrib. Comput., IITG

Local Scheduler

� If the new task cannot be guaranteed, the scheduler tries to

execute the task on some other node.

� The local scheduler interacts with other nodes to determine

the node to which the task can be sent to be scheduled.the node to which the task can be sent to be scheduled.

� Uses techniques such as bidding, focused addressing etc.

� Upon arrival at the destination node, another attempt is made

to schedule the task.

� Eventually, the task is either guaranteed and executed, or

discarded.

13-Feb-15 35STC Networks & Distrib. Comput., IITG

Surplus

� The amount of computation time available on a node

between the arrival time of a new unguaranteed task and

its deadline.

� The new task can be guaranteed only if the surplus is � The new task can be guaranteed only if the surplus is

greater than the execution time required for the task.

� A local task is guaranteed only if its latest start time is

greater than its arrival time.

13-Feb-15 36STC Networks & Distrib. Comput., IITG

Latest Start Time (S)

� Arrange all guaranteed tasks in order of non-increasing

deadlines

� If the 1st task has deadline D1 and execution time e1,

� S1 = D1 – e1

� Let the 2nd task has deadline D2 and execution time e2,

� If D2 > S1, S2 = S1 – e2

� Otherwise, S2 = D2 – e2

� S values of all other tasks are similarly calculated.

13-Feb-15 37STC Networks & Distrib. Comput., IITG

Time Overhead Considerations

� Time spent on scheduling is important in real-time systems.

� Dispatcher's execution time must be included in every

task's computation time.

� Invoked each time any task (including the local scheduler and � Invoked each time any task (including the local scheduler and
bidder tasks) completes execution and relinquishes the CPU

� Newly arriving non-periodic tasks must be examined soon

after they arrive.

� But interrupting a running task to guarantee a newly arriving task
could cause the running task to miss its deadline!

13-Feb-15 38STC Networks & Distrib. Comput., IITG

Time Overhead Considerations

� A possible solution:

� After dispatcher chooses next task to run, check its surplus to verify
that running the bidder task / local scheduler in between will not
cause deadline misses of guaranteed tasks.

This solution cannot be used if the running task is non-� This solution cannot be used if the running task is non-

preemptive. Solution:

� Run the bidder and the local scheduler tasks as periodic tasks on a
processor separate from the CPU on which tasks are scheduled.

� A logical extension: Allocate a separate processor with

limited processing capabilities for scheduling.

13-Feb-15 39STC Networks & Distrib. Comput., IITG

Communication Related Overheads

� If a new task cannot be guaranteed locally, it becomes a

candidate for remote execution.

� Communication delays depend on the pairs of processes � Communication delays depend on the pairs of processes

involved

� The distance separating them

� The communication protocol used

� The communication from other nodes in the system to

the two nodes.

13-Feb-15 40STC Networks & Distrib. Comput., IITG

Communication Delay Estimation

� Every communication is time-stamped by the sending node.

� The receiving node computes delay by subtracting the time-

stamp from the time of receipt.

� Subsequent delays may be estimated based on a linear

relationship between message length and communication

delay.

� In this talk, we assume that the clocks on different nodes

are synchronized.

13-Feb-15 41STC Networks & Distrib. Comput., IITG

Focused Addressing

� The scheduler with a task which cannot be guaranteed

locally, first attempts to execute it on another node through

focused addressing.

� Focused addressing works as follows: � Focused addressing works as follows:

� Estimate the arrival time AT of the task (say T) at a node N.

� If estimated surplus at N, between AT and deadline D of T is greater
than its execution time e by FP%, the task is sent to the node.

� The receiving node uses the guarantee routine to check whether it
can guarantee the arriving task.

� FP is an adaptive parameter.

13-Feb-15 42STC Networks & Distrib. Comput., IITG

Bidding

� If there is no node with a significant surplus, a more

expensive bidding procedure is invoked.

� The main functions of the bidder are:

� For a task that cannot be guaranteed locally, the bidder sends out a � For a task that cannot be guaranteed locally, the bidder sends out a
request for bids (RFBs) to nodes with surplus processing power.

� Evaluating bids.

� Responding to the request for bids from other nodes.

13-Feb-15 43STC Networks & Distrib. Comput., IITG

Request for Bids (RFB)

� A request for bid (RFB) message is broadcast to all nodes.

� A RFB message contains the following information:

� Execution time of the task: e, Deadline: D, Size of the task: S, the
time t at which the message is being sent and a deadline for time t at which the message is being sent and a deadline for
responses: R.

� R is the time after which the requesting process will

examine the bids to choose the best bidder.

13-Feb-15 44STC Networks & Distrib. Comput., IITG

Request for Bids (RFB)

� The deadline for responses R should be such that after R

there is sufficient time:

� for the requesting process to evaluate the bids,

� for the task to reach the best bidder node, � for the task to reach the best bidder node,

� for the best bidder to guarantee and schedule the task,

� once scheduled, for the task to complete computations

and meet its deadline.

13-Feb-15 45STC Networks & Distrib. Comput., IITG

Request for Bids (RFB)

� R = D – (P + E + W + e)

� P: period of the task that evaluates bids (the maximum waiting time
before bids are recognized)

� E: expected time taken for the task to reach the best bidder

� W : estimated time after arrival that the task may begin computation.

� If R is insufficient, the bidder may again resort to focused

addressing.

� FP is adjusted to augment chances of finding a node with surplus.

� If a node with surplus still cannot be found, the task cannot

be guaranteed.

13-Feb-15 46STC Networks & Distrib. Comput., IITG

Request for Bids (RFB)

� A possible improvement:

� Do not broadcast RFBs

� Send RFBs only to nodes whose estimated surplus matches the
requirements of the task to be guaranteed - Buddies

� avoids potentially unnecessary communication

� Drawbacks of the approach:

� Requires time to check the node-surplus information to determine
potential bidders

� Can prevent bidding by nodes with surplus, if the available
information was inaccurate.

13-Feb-15 47STC Networks & Distrib. Comput., IITG

Making Bids

� This is carried out in response to an RFB

� The bidder first checks and proceeds only if its response will

reach the requestor before the response deadline R.reach the requestor before the response deadline R.

� This time includes: time of response + transit time of response

� Once a node decides to respond, it first computes AT, the

estimated arrival time of the task if, indeed, it is awarded the

task.

13-Feb-15 48STC Networks & Distrib. Comput., IITG

Making Bids

� AT takes into account the following:

� The fact that bids at the requesting node are evaluated after the
response deadline R

� The average delay in evaluating bids (estimated to be one half the
bidding period)bidding period)

� The estimated time for the task to arrive at the bidder's node.

� Whether the bidder can execute the new task is determined

by the surplus SATD at the bidder's node between AT and

deadline D.

13-Feb-15 49STC Networks & Distrib. Comput., IITG

Making Bids

� SATD takes into account:

� Future instances of periodic tasks

� Processing time for tasks that may arrive as a result of previous bids

� PNB: % of CPU time used by non-periodic tasks arriving as a
result of bidding

� Processing time needed for non-periodic tasks that may arrive locally
in the future

� PNL: % of CPU time used by non-periodic tasks arriving locally

� SATD = S – (PNB + PNL) x (D - AT)

� S = Surplus between AT and D

13-Feb-15 50STC Networks & Distrib. Comput., IITG

Making Bids

� Possible Improvements:

� A node receiving an RFB, determines that another node

has a higher probability of being awarded the task.

� Do not respond to the RFB

� Saves communication and computation costs incurred in

bidding

� The accuracy of this decision would depend on the

accuracy about other nodes’ surpluses

13-Feb-15 51STC Networks & Distrib. Comput., IITG

Evaluating Bids

� Bids are processed by the node that originally sent RFBs

� Queues all bids until the response deadline R

� Calculates Estimated Arrival Time (EAT) at each bidder's

node.

� For each bidder it estimates SEATD, the surplus between � For each bidder it estimates SEATD, the surplus between

ETA and D

� SEATD = SATD x ((D - EAT) / (D - AT))

� The node with the greatest SEATD becomes the best

bidder.

� Identity of the 2nd best bidder may also be sent to the best bidder

13-Feb-15 52STC Networks & Distrib. Comput., IITG

Evaluating Bids

� Intimates to all but the best bidder that their bids were not

accepted.

� An alternative: Bidders may time-out after a

predetermined time.

� (RFBs may also contain similar time bounds within � (RFBs may also contain similar time bounds within

which bids must be received)

� Surplus information sent on bids may be used for focused

addressing and selection of buddies while sending RFBs

13-Feb-15 53STC Networks & Distrib. Comput., IITG

Response to Task Award

� Awardee node treats it as a task that has arrived locally

� Takes action to guarantee it.

� If the task cannot be guaranteed,

� Determine if some other node has the surplus to guarantee it.

� Instead of a broadcast, send the task to the second-best bidder.

� Otherwise, the task is rejected.

� The environment that submitted the task will be responsible

for appropriate action if a task is not guaranteed.

� Resubmit task with a later deadline.

13-Feb-15 54STC Networks & Distrib. Comput., IITG

Handling Precedence Constraints

� The bidding algorithm can be extended to handle tasks with

precedence constraints.

� Consider the following scenario:

� Task A has been guaranteed on node 1, B on node 2, C on node 3� Task A has been guaranteed on node 1, B on node 2, C on node 3

� A and B should precede C

� Assume DA < DB

� Try to guarantee C at node 3, with start time of DB + T

� T: Max time required for A and B’s outputs to reach C

13-Feb-15 55STC Networks & Distrib. Comput., IITG

Handling Precedence Constraints

� If C cannot be guaranteed at node 3,

� Send C to node 2 (containing preceding task with latest deadline)

� Broadcast an RFB to be returned to node 2

� Attempt to guarantee task at node 2.

� If this is not successful, try to modify DB to D’B such that, � If this is not successful, try to modify DB to D’B such that,

� D’B < DB and DA < D’B
� B remains guaranteed

� C can be guaranteed

� A possible extension: Recursively apply the above method.

� If C is still not guaranteed,

� Send C to the best bidder in a normal bidding process

13-Feb-15 56STC Networks & Distrib. Comput., IITG

Time triggered Bus: Flexray

5713-Feb-15 STC on RT Embedded Systems, IITG

Multiprocessor Scheduling - Partitioning

� Partition tasks so that each task always runs on

the same processor

� Steps:

� Assign tasks to processors

(bin packing)

� Schedule tasks on each

processor using uniprocessor

algorithms like EDF or LLF.

5813-Feb-15 STC on RT Embedded Systems, IITG

Partitioning

� Assignments of tasks to processors

� Bin-packing problem (NP-hard problem)

� Typically done using heuristics

� Proposed heuristics� Proposed heuristics

� First Fit (FF)

� Best Fit (BF)

� Worst Fit (WF)

� First Fit Decreasing (FFD), etc.

5913-Feb-15 STC on RT Embedded Systems, IITG

Global Scheduling

� A single scheduling algorithm is used that

schedules all tasks

� Important difference:

Task may migrate among� Task may migrate among

the processors

6013-Feb-15 STC on RT Embedded Systems, IITG

Partitioned Schedulers ≠ Optimal

� Example: 2 processors; 3 tasks, each with 2 units of
work required every 3 time units

6113-Feb-15 STC on RT Embedded Systems, IITG

Global Schedulers Succeed

� Example: 2 processors; 3 tasks, each with 2 units
of work required every 3 time units

Task 3 migrates between processors

6213-Feb-15 STC on RT Embedded Systems, IITG

Problem Classification Methods

� Migration-based Classification

� No migration

� Restricted migration

� Full migration

More restriction

Less restriction

� Priority-based Classification

� Static priorities

� Job-level dynamic priorities

� Unrestricted dynamic priorities

More restriction

Less restriction

6313-Feb-15 STC on RT Embedded Systems, IITG

Global Scheduling Vs. Partitioning

� Trade-off between the two approaches

� Global scheduling (= no restriction on migration)

�Good: high utilization

�Bad: high migration cost (also cache misses)

� Partitioned scheduling (= strict restriction on migration)

��Good: no migration cost

�Bad: low utilization

� Generally, if we restrict more,

� the run-time overhead is reduced but

� the schedulability (e.g., utilization bound) is also

reduced.

6413-Feb-15 STC on RT Embedded Systems, IITG

Migration-based Classification

� No Migration (Partitioned)

� Task can not migrate

� Job can not migrate

� Restricted Migration

� Task can migrate

p1

p2

a new period

a new period
� Task can migrate

� Job can not migrate

� Full Migration

� Task can migrate

� Job can migrate

p1

p2

p1

p2

a new period

6513-Feb-15 STC on RT Embedded Systems, IITG

Migration-based Classification

� Task migration and / or cache misses become very

harmful when

� CPUs are connected via bus or network

� Each CPU has its own memory

� Shared global memory not enough to hold states of all Shared global memory not enough to hold states of all

tasks

� For CPU cores on a single chip

� CPUs are connected via a high-speed on-chip network

� CPUs share large global memories and caches.

� � Lower migration costs

6613-Feb-15 STC on RT Embedded Systems, IITG

The Big Goal #1

� Design of optimal scheduling algorithms
� Intuitively speaking, any task set, whose utilization is

less than or equal to the number of processors, is
schedulable by some (3,3)-restricted algorithm

� Pfair (1996), ERfair (2000), PD2 (2003), Bfair (2003), EKG
(2006), LLREF (2006), SERF* (2011), POES* (2011), DP-
Fair (2011), ESSM* etc. are examples of (3,3)-restricted
algorithms.

� Optimal real-time scheduling methodologies on
multiprocessors.

Greedy Algorithms Fail on Multiprocessors

� At each scheduling point, a greedy algorithm will
regularly select the m “best” jobs and run those

� Earliest Deadline First (EDF)

� Least Laxity First (LLF)� Least Laxity First (LLF)

� EDF and LLF are optimal on a single processor ;
neither is optimal on a multiprocessor

� Such greedy approaches generally fail on multiprocessors

6813-Feb-15 STC on RT Embedded Systems, IITG

� Example (n = 3 tasks, m = 2 processors) :

Greedy Algorithms Fail on Multiprocessors

6913-Feb-15 STC on RT Embedded Systems, IITG

At time t = 0,
Tasks 1 and 2
are the obvious
greedy choices

Event-Driven Algorithms Fail on Multiprocessors

7013-Feb-15 STC on RT Embedded Systems, IITG

Even at t = 8,
Tasks 1 and 2
are the only
“reasonable”
greedy choices

Greedy Algorithms Fail on Multiprocessors

7113-Feb-15 STC on RT Embedded Systems, IITG

Yet if Task 3 isn’t
started by t = 8, the
resultant idle time
eventually causes a
deadline miss

Greedy Algorithms Fail on Multiprocessors

7213-Feb-15 STC on RT Embedded Systems, IITG

How can we “see”
this critical event
at t = 8?

Event-Driven Algorithms Fail on Multiprocessors

7313-Feb-15 STC on RT Embedded Systems, IITG

Proportioned Algorithms Succeed

Subdivide Task 3
with a period of 10

7413-Feb-15 STC on RT Embedded Systems, IITG

Proportioned Algorithms Succeed

Now Task 3 has a
zero laxity event
at time t = 8

7513-Feb-15 STC on RT Embedded Systems, IITG

The Other Big Goals

� Big Goal #2: Proportional Fairness

� Jobs having equal priority (same utilization) are said to

be scheduled with equal fairness if their rates of

execution progress are same.

� Big Goal #3: Low Overheads

� Task migration and Context Switches

� Scheduling Complexity

7613-Feb-15 STC on RT Embedded Systems, IITG

Current State of the Art

� Pfair, ERfair, PD2 satisfy goals #1 and #2

� Bfair, EKG, LLREF, DP-Fair satisfy goals #1 and #3

�� POFBFS*, POES*, SERF*, ESSM* satisfy goals #1,

#2 and #3

� There are other algorithms like EDF-fm (2005) which

trades-off goal #1 to achieve goal #3.

7713-Feb-15 STC on RT Embedded Systems, IITG

ERFair Scheduling

� A work-conserving global multi-processor scheduling
methodology for hard real-time repetitive tasks sets
with fully dynamic priorities.

� Divides tasks into unit length sub-tasks; schedules � Divides tasks into unit length sub-tasks; schedules
the most urgent sub-tasks at each time-slot to ensure
fairness.

� Early Release fair (ERfair) Scheduling: At the end
of any time-slot t, at least (wti * t) time-slots of
execution of each task Ti must complete.

7813-Feb-15 STC on RT Embedded Systems, IITG

ERfair Scheduling - Idea
� Early Release fair (ERfair):

� Given the task weights, finds pseudo-deadline di
j of the jth

sub-task of task I as :

� Algorithm:

� Schedule task with earliest pseudo-deadline first.

1
*

−

=

i

ij

i
e

pj
d

� Schedule task with earliest pseudo-deadline first.

� Arrange tasks in a min heap.

� Extract the task at the root and execute.

� Calculate pseudo-deadline of next sub-task.

� Insert the task into the heap and re-heapify.

� Ties between multiple tasks having same pseudo-deadline is
broken using tie-breaking rules.

� Complexity: O(log n) per time-slot per processor.

7913-Feb-15 STC on RT Embedded Systems, IITG

Strengths

� Schedulability: Optimal

� Quality of Service (QoS): Guarantees QoS : reserve X
time units for task A out of every Y time units.

� Temporal Isolation: Provides temporal isolation to each
client task from the ill-effects of other "misbehaving" tasks client task from the ill-effects of other "misbehaving" tasks
attempting to execute for more than their prescribed
processor shares.

� Makes it applicable in a wide range of domains – CPU,
networks, embedded systems

� Graceful degradation for all tasks in times of overload.

� Efficient handling of dynamic task arrivals and departure

8013-Feb-15 STC on RT Embedded Systems, IITG

Weaknesses

� Scheduling Overheads

� High Scheduling Complexity: Uses a min-heap to determine

the most urgent operation deadlines of sub-tasks at each time-

slot. Hence, for n given tasks, they suffer a high scheduling

complexity of O(lg n) per time-slot per task.

� Unrestricted Migrations and Preemptions: A direct � Unrestricted Migrations and Preemptions: A direct

consequence of global scheduling and ignorance of affinities:

� of tasks towards the processor where it executed last

� of processor caches towards tasks it executed recently.

� Dearth of techniques to incorporate practical and emerging design

metrics like power, overload management, fault tolerance, etc.

8113-Feb-15 STC on RT Embedded Systems, IITG

Thank You

13-Feb-15 STC Networks & Distrib. Comput., IITG 82

