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Setting the Stage

� Real-time Systems

� A system whose specification includes both functional as 

well as temporal notions of correctness.

� Logical Correctness: Produces correct outputs.� Logical Correctness: Produces correct outputs.

� Temporal Correctness: Produces outputs at the right time.

� It is not enough to say that “brakes were applied” 

� You want to be able to say “brakes were applied at the right time”
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Setting the Stage

� Real-time systems enable us to: 

� Manage the vast power generation and distribution 

networks, 

� Control industrial processes for chemicals, fuel, medicine, 

and manufactured products,and manufactured products,

� Control automobiles, ships, trains and airplanes,

� Conduct video conferencing over the Internet and 

interactive electronic commerce, and

� Send vehicles high into space and deep into the sea to 

explore new frontiers and to seek new knowledge. 
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Example of a Real-Time System

Many real-time systems are control systems.

Example: A simple one-sensor, one-actuator control system.
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Example of a Real-Time System
Pseudo-code for this system:

set timer to interrupt periodically with period T;

at each timer interrupt do

do analog-to-digital conversion to get y;

compute control output u;

output u and do digital-to-analog conversion;output u and do digital-to-analog conversion;

end do

T is called the sampling period.  T is a key design choice.  

Typical range for T: seconds to milliseconds.
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Another Example

� Multimedia

� Want to process audio and video frames at steady 

rates.

�TV video rate is 30 frames/sec.  HDTV is 60 

frames/sec.frames/sec.

�Telephone audio is 16 Kbits/sec.  CD audio is 128 

Kbits/sec.

� Other requirements: Lip synchronization, low jitter, 

low end-to-end response times (if interactive).
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Characteristics of Real Time Tasks

� Task: A sequential piece of code.

� Job: Instance of a task.

� Jobs require resources to execute.

� Example resources: CPU, network, disk, critical section.

� Release time of a job: The time at which the job becomes 

ready to execute.

� Absolute Deadline of a job: The time instant by which the 

job must complete execution.

� Relative deadline of a job: “Deadline − Release time”.
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Example

= job release

= job deadline

0   1     2  3    4    5     6   7  8     9  10 11   12 13 14  15

= job deadline

• Job is released at time 3.

• Its (absolute) deadline is at time 10.

• Its relative deadline is 7.

• Its response time is 6.
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Real-Time Periodic Task

� Task : a sequence of similar jobs

� Periodic task (p,e)

� Jobs repeat regularly

� Period p = inter-release time (0 < p)

� Execution time e (maximum execution time; 0 < e < p)� Execution time e (maximum execution time; 0 < e < p)

� Utilization U = e/p

5 10 150
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Deadlines: Hard vs. Soft

� Hard deadline

� Disastrous or very serious consequences may occur if 

the deadline is missed

� Validation is essential : can all the deadlines be met, 

even under worst-case scenario?even under worst-case scenario?

� Deterministic guarantees

� Soft deadline

� Ideally, the deadline should be met for maximum 

performance. The performance degrades in case of 

deadline misses.

� Best effort approaches / statistical guarantees
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Schedulability

� Property indicating whether a real-time system (a 

set of real-time tasks) can meet their deadlines

(4,1)

(5,2)

(7,2)
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� Metrics for real-time systems differ from that for 

time-sharing systems.

What’s Important in Real-Time

Time-Sharing 
Systems

Real-Time 
Systems

Capacity High throughput Schedulability

Responsiveness Fast average response Ensured worst-case 

response

Overload Fairness Stability

12STC Networks & Distrib. Comput., IITG13-Feb-15



Real-Time Scheduling

� Determines the order of real-time task executions 

� Static-priority scheduling

� Dynamic-priority scheduling

(4,1)

(5,2)

(7,2)
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RM (Rate Monotonic)

� Optimal static-priority scheduling

� It assigns priority according to period

� A task with a shorter period has a higher priority

� Executes a job with the shortest period� Executes a job with the shortest period

(4,1)

(5,2)

(7,2)
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RM (Rate Monotonic)

� Executes a job with the shortest period

(4,1)T1

(5,2)

(7,2)
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RM (Rate Monotonic)

� Executes a job with the shortest period

Deadline Miss !

(4,1)

(5,2)

(7,2)
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Response Time

� Response time 

� Duration from released time to finish time

(4,1)T (4,1)

(5,2)

(10,2)
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Response Time

� Response time 

� Duration from released time to finish time

Response Time

(4,1)

(5,2)

(10,2)
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Response Time

� Response Time (ri) [Audsley et al., 1993]
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� HP(Ti) : a set of higher-priority tasks than Ti

(4,1)

(5,2)

(10,2)

5

5

10

10

T1

T2

T3

19STC Networks & Distrib. Comput., IITG13-Feb-15



RM – Utilization Bound

� Real-time system is schedulable under RM if

∑Ui ≤ n (21/n-1)

Liu & Layland,Liu & Layland,

“Scheduling algorithms for multi-programming in a 

hard-real-time environment”,  Journal of ACM, 

1973.
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RM – Utilization Bound

� Real-time system is schedulable under RM if

∑Ui ≤ n (21/n-1)

� Example: T1(4,1), T2(5,1), T3(10,1), 

∑Ui = 1/4 + 1/5 + 1/10

= 0.55 

3 (21/3-1) ≈ 0.78

Thus, {T1, T2, T3} is schedulable under RM. 
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RM Utilization Bounds
1.1

RM – Utilization Bound

� Real-time system is schedulable under RM if
� ∑Ui ≤ n (21/n-1)
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EDF (Earliest Deadline First)

� Optimal dynamic priority scheduling

� A task with a shorter deadline has a higher priority

� Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)
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EDF (Earliest Deadline First)

� Executes a job with the earliest deadline

(4,1)T1(4,1)

(5,2)

(7,2)
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EDF (Earliest Deadline First)

� Executes a job with the earliest deadline

(4,1)T1

(5,2)
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EDF (Earliest Deadline First)

� Executes a job with the earliest deadline

(4,1)T1
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EDF (Earliest Deadline First)

� Optimal scheduling algorithm 

� if there is a schedule for a set of real-time tasks,

EDF can schedule it.

(4,1)

(5,2)

(7,2)
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EDF – Utilization Bound

� Real-time system is schedulable under EDF if and 

only if

∑Ui ≤ 1

Liu & Layland,

“Scheduling algorithms for multi-programming in a 

hard-real-time environment”,  Journal of ACM, 

1973.
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Least Laxity First (LLF)
� Dispatch the task with the smallest laxity, which is the 

largest amount of time that a task can be delayed (some 
type of procrastination index)

� In a sense, it is similar to EDF, in that it runs the most 
urgent tasks in the set (the metric by which urgency is 
measured, differs though)

Requires calling the •Requires calling the 
scheduler periodically, 
and to re-compute the 
laxity - many calls of 
the scheduler 

•When tasks have the 
same laxity - too many 
preemptions
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What is a Distributed System?

� A set of nodes communicating through a network

� Network could be LAN or WAN

� Nodes could be homogeneous or heterogeneous

N1
N2

Network 
(WAN/LAN)

N3

Nn
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Why Distributed Systems?

� Applications themselves are distributed
� E.g., command and control, air traffic control

� High performance
Better load balancing� Better load balancing

� High availability (fault-tolerance)
� No single point of failure
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Problems with Distributed Systems

� Resource management is difficult
� No global knowledge on workload

� No global knowledge on resource allocation

� No synchronized clock (or clocks need to be synchronized)

� Communication related errors
� Out of order delivery of packets, packet loss, etc.

� Difficult to distinguish network partition from node/link failures

13-Feb-15
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Task Model

� Tasks can be periodic or non-periodic.

� Guaranteed Task – A task which may be assured to meet 
its deadline under all circumstances. 

� A set (possibly null) of guaranteed periodic tasks exists at � A set (possibly null) of guaranteed periodic tasks exists at 
each node.

� Non-periodic tasks may arrive at any node at any time in 
the network.

� The scheduling objective is to guarantee all periodic tasks 
and as many non-periodic tasks as possible, utilizing the 
resources of the entire network.
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Local Scheduler

� Each node in the network contains a local scheduler. 

� When a new task arrives, an attempt is made to schedule 

the task at that node.

� Calls Guarantee routine� Calls Guarantee routine

� If guaranteed, the Dispatcher is invoked. 

� Dispatcher determines which among the guaranteed 

periodic and non-periodic tasks is to be executed next.

� This selection depends on the scheduling policy used.

� Example: EDF
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Local Scheduler 

� If the new task cannot be guaranteed, the scheduler tries to 

execute the task on some other node. 

� The local scheduler interacts with other nodes to determine 

the node to which the task can be sent to be scheduled.the node to which the task can be sent to be scheduled.

� Uses techniques such as bidding, focused addressing etc.

� Upon arrival at the destination node, another attempt is made 

to schedule the task.

� Eventually, the task is either guaranteed and executed, or 

discarded.

13-Feb-15 35STC Networks & Distrib. Comput., IITG



Surplus

� The amount of computation time available on a node 

between the arrival time of a new unguaranteed task and 

its deadline.

� The new task can be guaranteed only if the surplus is � The new task can be guaranteed only if the surplus is 

greater than the execution time required for the task.

� A local task is guaranteed only if its latest start time is 

greater than its arrival time.
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Latest Start Time (S)

� Arrange all guaranteed tasks in order of non-increasing 

deadlines

� If the 1st task has deadline D1 and execution time e1, 

� S1 = D1 – e1

� Let the 2nd task has deadline D2 and execution time e2,

� If  D2 > S1, S2 = S1 – e2

� Otherwise, S2 = D2 – e2

� S values of all other tasks are similarly calculated.
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Time Overhead Considerations

� Time spent on scheduling is important in real-time systems.

� Dispatcher's execution time must be included in every 

task's computation time.

� Invoked each time any task (including the local scheduler and � Invoked each time any task (including the local scheduler and 
bidder tasks) completes execution and relinquishes the CPU

� Newly arriving non-periodic tasks must be examined soon 

after they arrive.

� But interrupting a running task to guarantee a newly arriving task 
could cause the running task to miss its deadline!
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Time Overhead Considerations

� A possible solution:

� After dispatcher chooses next task to run, check its surplus to verify 
that running the bidder task / local scheduler in between will not 
cause deadline misses of guaranteed tasks.

This solution cannot be used if the running task is non-� This solution cannot be used if the running task is non-

preemptive. Solution:

� Run the bidder and the local scheduler tasks as periodic tasks on a 
processor separate from the CPU on which tasks are scheduled.

� A logical extension: Allocate a separate processor with 

limited processing capabilities for scheduling.
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Communication Related Overheads

� If a new task cannot be guaranteed locally, it becomes a 

candidate for remote execution.

� Communication delays depend on the pairs of processes � Communication delays depend on the pairs of processes 

involved

� The distance separating them

� The communication protocol used

� The communication from other nodes in the system to 

the two nodes.
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Communication Delay Estimation

� Every communication is time-stamped by the sending node.

� The receiving node computes delay by subtracting the time-

stamp from the time of receipt.

� Subsequent delays may be estimated based on a linear 

relationship between message length and communication 

delay.

� In this talk, we assume that the clocks on different nodes 

are synchronized.
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Focused Addressing

� The scheduler with a task which cannot be guaranteed 

locally, first attempts to execute it on another node through 

focused addressing. 

� Focused addressing works as follows: � Focused addressing works as follows: 

� Estimate the arrival time AT of the task (say T) at a node N.

� If estimated surplus at N, between AT and deadline D of T is greater 
than its execution time e by FP%, the task is sent to the node.

� The receiving node uses the guarantee routine to check whether it 
can guarantee the arriving task.

� FP is an adaptive parameter.
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Bidding

� If there is no node with a significant surplus, a more 

expensive bidding procedure is invoked. 

� The main functions of the bidder are:

� For a task that cannot be guaranteed locally, the bidder sends out a � For a task that cannot be guaranteed locally, the bidder sends out a 
request for bids (RFBs) to nodes with surplus processing power.

� Evaluating bids. 

� Responding to the request for bids from other nodes.
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Request for Bids (RFB)

� A request for bid (RFB) message is broadcast to all nodes.

� A RFB message contains the following information:

� Execution time of the task: e, Deadline: D, Size of the task: S, the 
time t at which the message is being sent and a deadline for time t at which the message is being sent and a deadline for 
responses: R.

� R is the time after which the requesting process will 

examine the bids to choose the best bidder.
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Request for Bids (RFB)

� The deadline for responses R should be such that after R

there is sufficient time:

� for the requesting process to evaluate the bids, 

� for the task to reach the best bidder node, � for the task to reach the best bidder node, 

� for the best bidder to guarantee and schedule the task, 

� once scheduled, for the task to complete computations 

and meet its deadline.
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Request for Bids (RFB)

� R = D – (P + E + W + e)

� P: period of the task that evaluates bids (the maximum waiting time 
before bids are recognized)

� E: expected time taken for the task to reach the best bidder 

� W : estimated time after arrival that the task may begin computation. 

� If R is insufficient, the bidder may again resort to focused 

addressing.

� FP is adjusted to augment chances of finding a node with surplus.

� If a node with surplus still cannot be found, the task cannot 

be guaranteed.
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Request for Bids (RFB) 

� A possible improvement: 

� Do not broadcast RFBs

� Send RFBs only to nodes whose estimated surplus matches the 
requirements of the task to be guaranteed - Buddies

� avoids potentially unnecessary communication

� Drawbacks of the approach:

� Requires time to check the node-surplus information to determine 
potential bidders 

� Can prevent bidding by nodes with surplus, if the available 
information was inaccurate.
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Making Bids

� This is carried out in response to an RFB 

� The bidder first checks and proceeds only if its response will 

reach the requestor before the response deadline R.reach the requestor before the response deadline R.

� This time includes: time of response + transit time of response

� Once a node decides to respond, it first computes AT, the 

estimated arrival time of the task if, indeed, it is awarded the 

task.
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Making Bids

� AT takes into account the following:

� The fact that bids at the requesting node are evaluated after the 
response deadline R

� The average delay in evaluating bids (estimated to be one half the 
bidding period)bidding period)

� The estimated time for the task to arrive at the bidder's node.

� Whether the bidder can execute the new task is determined 

by the surplus SATD at the bidder's node between AT and 

deadline D.
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Making Bids

� SATD takes into account:

� Future instances of periodic tasks

� Processing time for tasks that may arrive as a result of previous bids

� PNB: % of CPU time used by non-periodic tasks arriving as a 
result of bidding

� Processing time needed for non-periodic tasks that may arrive locally 
in the future

� PNL: % of CPU time used by non-periodic tasks arriving locally

� SATD = S – (PNB + PNL) x (D - AT)

� S = Surplus between AT and D
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Making Bids

� Possible Improvements:

� A node receiving an RFB, determines that another node 

has a higher probability of being awarded the task.

� Do not respond to the RFB

� Saves communication and computation costs incurred in 

bidding

� The accuracy of this decision would depend on the 

accuracy about other nodes’ surpluses
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Evaluating Bids

� Bids are processed by the node that originally sent RFBs

� Queues all bids until the response deadline R

� Calculates Estimated Arrival Time (EAT) at each bidder's 

node.

� For each bidder it estimates SEATD, the surplus between � For each bidder it estimates SEATD, the surplus between 

ETA and D

� SEATD = SATD x ((D - EAT) / (D - AT))

� The node with the greatest SEATD becomes the best 

bidder.

� Identity of the 2nd best bidder may also be sent to the best bidder
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Evaluating Bids

� Intimates to all but the best bidder that their bids were not 

accepted. 

� An alternative: Bidders may time-out after a 

predetermined time.

� (RFBs may also contain similar time bounds within � (RFBs may also contain similar time bounds within 

which bids must be received)

� Surplus information sent on bids may be used for focused 

addressing and selection of buddies while sending RFBs
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Response to Task Award

� Awardee node treats it as a task that has arrived locally 

� Takes action to guarantee it.

� If the task cannot be guaranteed,

� Determine if some other node has the surplus to guarantee it.

� Instead of a broadcast, send the task to the second-best bidder.

� Otherwise, the task is rejected.

� The environment that submitted the task will be responsible 

for appropriate action if a task is not guaranteed.

� Resubmit task with a later deadline.
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Handling Precedence Constraints

� The bidding algorithm can be extended to handle tasks with 

precedence constraints.

� Consider the following scenario:

� Task A has been guaranteed on node 1, B on node 2, C on node 3� Task A has been guaranteed on node 1, B on node 2, C on node 3

� A and B should precede C

� Assume DA < DB

� Try to guarantee C at node 3, with start time of DB + T

� T: Max time required for A and B’s outputs to reach C
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Handling Precedence Constraints

� If C cannot be guaranteed at node 3,

� Send C to node 2 (containing preceding task with latest deadline)

� Broadcast an RFB to be returned to node 2

� Attempt to guarantee task at node 2.

� If this is not successful, try to modify DB to D’B such that, � If this is not successful, try to modify DB to D’B such that, 

� D’B < DB and DA < D’B
� B remains guaranteed

� C can be guaranteed

� A possible extension: Recursively apply the above method.

� If C is still not guaranteed,

� Send C to the best bidder in a normal bidding process
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Time triggered Bus: Flexray
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Multiprocessor Scheduling - Partitioning

� Partition tasks so that each task always runs on 

the same processor

� Steps:

� Assign tasks to processors

(bin packing)

� Schedule tasks on each

processor using uniprocessor

algorithms  like EDF or LLF.
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Partitioning

� Assignments of tasks to processors

� Bin-packing problem (NP-hard problem)

� Typically done using heuristics

� Proposed heuristics� Proposed heuristics

� First Fit (FF)

� Best Fit (BF)

� Worst Fit (WF)

� First Fit Decreasing (FFD), etc.
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Global Scheduling

� A single scheduling algorithm is used that 

schedules all tasks

� Important difference:

Task may migrate among� Task may migrate among

the processors
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Partitioned Schedulers ≠ Optimal

� Example: 2 processors; 3 tasks, each with 2 units of 
work required every 3 time units
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Global Schedulers Succeed

� Example: 2 processors; 3 tasks, each with 2 units 
of work required every 3 time units

Task 3 migrates between processors
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Problem Classification Methods

� Migration-based Classification

� No migration

� Restricted migration

� Full migration

More restriction

Less restriction

� Priority-based Classification

� Static priorities

� Job-level dynamic priorities

� Unrestricted dynamic priorities

More restriction

Less restriction
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Global Scheduling Vs. Partitioning

� Trade-off between the two approaches

� Global scheduling ( = no restriction on migration)

�Good: high utilization

�Bad: high migration cost (also cache misses)

� Partitioned scheduling ( = strict restriction on migration)

��Good: no migration cost

�Bad: low utilization

� Generally, if we restrict more,

� the run-time overhead is reduced but

� the schedulability (e.g., utilization bound) is also 

reduced.
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Migration-based Classification

� No Migration (Partitioned)

� Task can not migrate

� Job can not migrate

� Restricted Migration

� Task can migrate

p1

p2

a new period

a new period
� Task can migrate

� Job can not migrate

� Full Migration

� Task can migrate

� Job can migrate

p1

p2

p1

p2

a new period
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Migration-based Classification

� Task migration and / or cache misses become very 

harmful when

� CPUs are connected via bus or network

� Each CPU has its own memory 

� Shared global memory not enough to hold states of all Shared global memory not enough to hold states of all 

tasks

� For CPU cores on a single chip

� CPUs are connected via a high-speed on-chip network

� CPUs share large global memories and caches. 

� � Lower migration costs
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The Big Goal #1

� Design of optimal scheduling algorithms
� Intuitively speaking, any task set, whose utilization is 

less than or equal to the number of processors, is 
schedulable by  some (3,3)-restricted algorithm

� Pfair (1996), ERfair (2000), PD2 (2003), Bfair (2003), EKG 
(2006), LLREF (2006), SERF* (2011), POES* (2011), DP-
Fair (2011), ESSM* etc. are examples of (3,3)-restricted 
algorithms.

� Optimal real-time scheduling methodologies on 
multiprocessors.



Greedy Algorithms Fail on Multiprocessors

� At each scheduling point, a greedy algorithm will 
regularly select the m “best” jobs and run those

� Earliest Deadline First (EDF)

� Least Laxity First (LLF)� Least Laxity First (LLF)

� EDF and LLF are optimal on a single processor ; 
neither is optimal on a multiprocessor

� Such greedy approaches generally fail on multiprocessors
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� Example (n = 3 tasks, m = 2 processors) :

Greedy Algorithms Fail on Multiprocessors
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At time t = 0, 
Tasks 1 and 2 
are the obvious 
greedy choices

Event-Driven Algorithms Fail on Multiprocessors
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Even at t = 8, 
Tasks 1 and 2 
are the only 
“reasonable” 
greedy choices

Greedy Algorithms Fail on Multiprocessors
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Yet if Task 3 isn’t 
started by t = 8, the 
resultant idle time 
eventually causes a 
deadline miss

Greedy Algorithms Fail on Multiprocessors
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How can we “see” 
this critical event 
at t = 8?

Event-Driven Algorithms Fail on Multiprocessors
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Proportioned Algorithms Succeed

Subdivide Task 3 
with a period of 10
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Proportioned Algorithms Succeed

Now Task 3 has a 
zero laxity event 
at time t = 8
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The Other Big Goals

� Big Goal #2: Proportional Fairness

� Jobs having equal priority (same utilization) are said to 

be scheduled with equal fairness if their rates of 

execution progress are same.

� Big Goal #3: Low Overheads

� Task migration and Context Switches

� Scheduling Complexity
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Current State of the Art

� Pfair, ERfair, PD2 satisfy goals #1 and #2

� Bfair, EKG, LLREF, DP-Fair satisfy goals #1 and #3

�� POFBFS*, POES*, SERF*, ESSM* satisfy goals #1, 

#2 and #3

� There are other algorithms like EDF-fm (2005) which 

trades-off goal #1 to achieve goal #3. 
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ERFair Scheduling

� A work-conserving global multi-processor scheduling 
methodology for hard real-time repetitive tasks sets 
with fully dynamic priorities.

� Divides tasks into unit length sub-tasks; schedules � Divides tasks into unit length sub-tasks; schedules 
the most urgent sub-tasks at each time-slot to ensure 
fairness.

� Early Release fair (ERfair) Scheduling: At the end 
of any time-slot t, at least (wti * t) time-slots of 
execution of each task Ti must complete.
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ERfair Scheduling - Idea
� Early Release fair (ERfair): 

� Given the task weights, finds pseudo-deadline di
j of the  jth

sub-task of task I as : 

� Algorithm: 

� Schedule task with earliest pseudo-deadline first.

1
*

−







=

i

ij

i
e

pj
d

� Schedule task with earliest pseudo-deadline first.

� Arrange tasks in a min heap.

� Extract the task at the root and execute.

� Calculate pseudo-deadline of next sub-task.

� Insert the task into the heap and re-heapify. 

� Ties between multiple tasks having same pseudo-deadline is 
broken using tie-breaking rules.

� Complexity: O(log n) per time-slot per processor.
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Strengths

� Schedulability: Optimal

� Quality of Service (QoS): Guarantees QoS : reserve X 
time units for task A out of every Y time units.

� Temporal Isolation: Provides temporal isolation to each 
client task from the ill-effects of other "misbehaving" tasks client task from the ill-effects of other "misbehaving" tasks 
attempting to execute for more than their prescribed 
processor shares.

� Makes it applicable in a wide range of domains – CPU, 
networks, embedded systems

� Graceful degradation for all tasks in times of overload.

� Efficient handling of dynamic task arrivals and departure
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Weaknesses

� Scheduling Overheads

� High Scheduling Complexity: Uses a min-heap to determine 

the most urgent operation deadlines of sub-tasks at each time-

slot. Hence, for n given tasks, they suffer a high scheduling 

complexity of O(lg n) per time-slot per task.

� Unrestricted Migrations and Preemptions: A direct � Unrestricted Migrations and Preemptions: A direct 

consequence of global scheduling and ignorance of affinities: 

� of tasks towards the processor where it executed last 

� of processor caches towards tasks it executed recently. 

� Dearth of techniques to incorporate practical and emerging design 

metrics like power, overload management, fault tolerance, etc. 

8113-Feb-15 STC on RT Embedded Systems, IITG



Thank You
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