Singularities
Behavior of following functions f at 0:

- $f(z) = \frac{1}{z^9}$
- $f(z) = \frac{\sin z}{z}$
- $f(z) = \frac{e^z - 1}{z}$
- $f(z) = \frac{1}{\sin \left(\frac{1}{z}\right)}$
- $f(z) = \log z$
- $f(z) = e^{\frac{1}{z}}$

In the above we observe that all the functions are not analytic at 0, however in every neighborhood of 0 there is a point at which f is analytic.
Behavior of following functions f at 0:

- $f(z) = \frac{1}{z^9}$
- $f(z) = \frac{\sin z}{z}$
- $f(z) = \frac{e^z - 1}{z}$
- $f(z) = \frac{1}{\sin(\frac{1}{z})}$
- $f(z) = \log z$
- $f(z) = e^{\frac{1}{z}}$

In the above we observe that all the functions are not analytic at 0, however in every neighborhood of 0 there is a point at which f is analytic.
Behavior of following functions f at 0:

- $f(z) = \frac{1}{z^9}$
- $f(z) = \frac{\sin z}{z}$
- $f(z) = \frac{e^z - 1}{z}$
- $f(z) = \frac{1}{\sin\left(\frac{1}{z}\right)}$
- $f(z) = \log z$
- $f(z) = e^{\frac{1}{z}}$

In the above we observe that all the functions are not analytic at 0, however in every neighborhood of 0 there is a point at which f is analytic.
Behavior of following functions f at 0:

- $f(z) = \frac{1}{z^9}$
- $f(z) = \frac{\sin z}{z}$
- $f(z) = \frac{e^z - 1}{z}$
- $f(z) = \frac{1}{\sin(\frac{1}{z})}$
- $f(z) = \log z$
- $f(z) = e^{\frac{1}{z}}$

In the above we observe that all the functions are not analytic at 0, however in every neighborhood of 0 there is a point at which f is analytic.
Behavior of following functions f at 0:

- $f(z) = \frac{1}{z^9}$
- $f(z) = \frac{\sin z}{z}$
- $f(z) = \frac{e^z - 1}{z}$
- $f(z) = \frac{1}{\sin(\frac{1}{z})}$
- $f(z) = \log z$
- $f(z) = e^{\frac{1}{x}}$

In the above we observe that all the functions are not analytic at 0, however in every neighborhood of 0 there is a point at which f is analytic.
Behavior of following functions f at 0:

- $f(z) = \frac{1}{z^9}$
- $f(z) = \frac{\sin z}{z}$
- $f(z) = \frac{e^z - 1}{z}$
- $f(z) = \frac{1}{\sin(\frac{1}{z})}$
- $f(z) = \log z$
- $f(z) = e^{\frac{1}{z}}$

In the above we observe that all the functions are not analytic at 0, however in every neighborhood of 0 there is a point at which f is analytic.
Behavior of following functions f at 0:

- $f(z) = \frac{1}{z^9}$
- $f(z) = \frac{\sin z}{z}$
- $f(z) = \frac{e^z - 1}{z}$
- $f(z) = \frac{1}{\sin(\frac{1}{z})}$
- $f(z) = \text{Log } z$
- $f(z) = e^{\frac{1}{z}}$

In the above we observe that all the functions are not analytic at 0, however in every neighborhood of 0 there is a point at which f is analytic.
Behavior of following functions f at 0:

- $f(z) = \frac{1}{z^9}$
- $f(z) = \frac{\sin z}{z}$
- $f(z) = \frac{e^z - 1}{z}$
- $f(z) = \frac{1}{\sin(\frac{1}{z})}$
- $f(z) = \log z$
- $f(z) = e^{\frac{1}{z}}$

In the above we observe that all the functions are not analytic at 0, however in every neighborhood of 0 there is a point at which f is analytic.
Definition: The point \(z_0 \) is called a **singular point** or **singularity of \(f \)** if \(f \) is not analytic at \(z_0 \) but every neighborhood of \(z_0 \) contains at least one point at which \(f \) is analytic.

- Here \(\frac{e^z - 1}{z}, \frac{1}{z^2}, \sin \frac{1}{z}, \log z \) etc. has singularity at \(z = 0 \).
- \(\bar{z}, |z|^2, \text{Re} \, z, \text{Im} \, z, z \text{Re} \, z \) are nowhere analytic. That does not mean that every point of \(\mathbb{C} \) is a singularity.

A singularities are classified into **TWO** types:

1. A singular point \(z_0 \) is said to be an **isolated singularity or isolated singular point** of \(f \) if \(f \) is analytic in \(B(z_0, r) \setminus \{z_0\} \) for some \(r > 0 \).

2. A singular point \(z_0 \) is said to be an **non-isolated singularity** if \(z_0 \) is not an isolated singular point.

- \(\frac{\sin z}{z}, \frac{1}{z^2}, \sin(\frac{1}{z}) \) (0 is isolated singular point).
- \(\frac{1}{\sin(\pi/z)}, \log z \) these functions has non-isolated singularity at 0.
Singularities

Definition: The point z_0 is called a **singular point** or **singularity of f** if f is not analytic at z_0 but every neighborhood of z_0 contains at least one point at which f is analytic.

- Here $\frac{e^z - 1}{z}, \frac{1}{z^2}, \sin \frac{1}{z}, \log z$ etc. has singularity at $z = 0$.
- $\bar{z}, |z|^2, \text{Re } z, \text{Im } z, z\text{Re } z$ are nowhere analytic. That does not mean that every point of \mathbb{C} is a singularity.

A singularities are classified into TWO types:

1. A singular point z_0 is said to be an **isolated singularity or isolated singular point** of f if f is analytic in $B(z_0, r) \setminus \{z_0\}$ for some $r > 0$.

2. A singular point z_0 is said to be an **non-isolated singularity** if z_0 is not an isolated singular point.

- $\frac{\sin z}{z}, \frac{1}{z^2}, \sin(\frac{1}{z})$ (0 is isolated singular point).
- $\frac{1}{\sin(\pi/z)}, \log z$ these functions has non-isolated singularity at 0.
Definition: The point z_0 is called a **singular point** or **singularity of f** if f is not analytic at z_0 but every neighborhood of z_0 contains at least one point at which f is analytic.

- Here $\frac{e^z - 1}{z}$, $\frac{1}{z^2}$, $\sin \frac{1}{z}$, $\log z$ etc. has singularity at $z = 0$.

- \bar{z}, $|z|^2$, $\text{Re } z$, $\text{Im } z$, $z\text{Re } z$ are nowhere analytic. That does not mean that every point of \mathbb{C} is a singularity.

- **A singularities are classified into TWO types:**

 1. A singular point z_0 is said to be an **isolated singularity or isolated singular point** of f if f is analytic in $B(z_0, r) \setminus \{z_0\}$ for some $r > 0$.

 2. A singular point z_0 is said to be an **non-isolated singularity** if z_0 is not an isolated singular point.

- $\frac{\sin z}{z}$, $\frac{1}{z^2}$, $\sin(\frac{1}{z})$ (0 is isolated singular point).

- $\frac{1}{\sin(\pi/z)}$, $\log z$ these functions has non-isolated singularity at 0.
Definition: The point \(z_0 \) is called a **singular point** or **singularity of \(f \)** if \(f \) is not analytic at \(z_0 \) but every neighborhood of \(z_0 \) contains at least one point at which \(f \) is analytic.

- Here \(e^z - 1, \frac{1}{z^2}, \sin \frac{1}{z}, \log z \) etc. has singularity at \(z = 0 \).
- \(\bar{z}, |z|^2, \text{Re} \, z, \text{Im} \, z, z \text{Re} \, z \) are nowhere analytic. That does not mean that every point of \(\mathbb{C} \) is a singularity.

A singularities are classified into TWO types:

1. A singular point \(z_0 \) is said to be an **isolated singularity** or **isolated singular point** of \(f \) if \(f \) is analytic in \(B(z_0, r) \setminus \{z_0\} \) for some \(r > 0 \).
2. A singular point \(z_0 \) is said to be an **non-isolated singularity** if \(z_0 \) is not an isolated singular point.

- \(\sin \frac{z}{z}, \frac{1}{z^2}, \sin(\frac{1}{z}) \) (0 is isolated singular point).
- \(\frac{1}{\sin(\pi/z)}, \log z \) these functions has non-isolated singularity at 0.
Definition: The point z_0 is called a **singular point** or **singularity of f** if f is not analytic at z_0 but every neighborhood of z_0 contains at least one point at which f is analytic.

- Here $\frac{e^z - 1}{z}$, $\frac{1}{z^2}$, $\sin \frac{1}{z}$, $\log z$ etc. have singularity at $z = 0$.

- \bar{z}, $|z|^2$, $\text{Re } z$, $\text{Im } z$, $z\text{Re } z$ are nowhere analytic. That does not mean that every point of \mathbb{C} is a singularity.

A singularities are classified into TWO types:

1. A singular point z_0 is said to be an **isolated singularity or isolated singular point** of f if f is analytic in $B(z_0, r) \setminus \{z_0\}$ for some $r > 0$.

2. A singular point z_0 is said to be an **non-isolated singularity** if z_0 is not an isolated singular point.

- $\frac{\sin z}{z}$, $\frac{1}{z^2}$, $\sin(\frac{1}{z})$ (0 is isolated singular point).

- $\frac{1}{\sin(\pi/z)}$, $\log z$ these functions has non-isolated singularity at 0.
If f has an isolated singularity at z_0, then f is analytic in $B(z_0, r) \setminus \{z_0\}$ for some $r > 0$. In this case f has the following Laurent series expansion:

$$f(z) = \cdots \frac{a_{-n}}{(z - z_0)^n} + \cdots + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1(z - a) + a_2(z - z_0)^2 + \cdots.$$

- If all $a_{-n} = 0$ for all $n \in \mathbb{N}$, then the point $z = z_0$ is a removal singularity.
- The point $z = z_0$ is called a pole if all but a finite number of a_{-n}'s are non-zero. If m is the highest integer such that $a_{-m} \neq 0$, then z_0 is a Pole of order m.
- If $a_{-n} \neq 0$ for infinitely many n's, then the point $z = z_0$ is a essential singularity.
- The term a_{-1} is called residue of f at z_0.

Lecture 16

Singularities
If f has an isolated singularity at z_0, then f is analytic in $B(z_0, r) \setminus \{z_0\}$ for some $r > 0$. In this case f has the following Laurent series expansion:

$$f(z) = \cdots \frac{a_{-n}}{(z - z_0)^n} + \cdots + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - a) + a_2(z - z_0)^2 + \cdots.$$

- If all $a_{-n} = 0$ for all $n \in \mathbb{N}$, then the point $z = z_0$ is a removal singularity.
- The point $z = z_0$ is called a pole if all but a finite number of a_{-n}'s are non-zero. If m is the highest integer such that $a_{-m} \neq 0$, then z_0 is a Pole of order m.
- If $a_{-n} \neq 0$ for infinitely many n's, then the point $z = z_0$ is a essential singularity.
- The term a_{-1} is called residue of f at z_0.

If f has an isolated singularity at z_0, then f is analytic in $B(z_0, r) \setminus \{z_0\}$ for some $r > 0$. In this case f has the following Laurent series expansion:

$$f(z) = \cdots \frac{a_{-n}}{(z - z_0)^n} + \cdots + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1(z - a) + a_2(z - z_0)^2 + \cdots.$$

- If all $a_{-n} = 0$ for all $n \in \mathbb{N}$, then the point $z = z_0$ is a removal singularity.
- The point $z = z_0$ is called a pole if all but a finite number of a_{-n}'s are non-zero. If m is the highest integer such that $a_{-m} \neq 0$, then z_0 is a Pole of order m.
- If $a_{-n} \neq 0$ for infinitely many n's, then the point $z = z_0$ is a essential singularity.
- The term a_{-1} is called residue of f at z_0.

Lecture 16 Singularities
If \(f \) has an isolated singularity at \(z_0 \), then \(f \) is analytic in \(B(z_0, r) \setminus \{z_0\} \) for some \(r > 0 \). In this case \(f \) has the following Laurent series expansion:

\[
f(z) = \cdots \frac{a_{-n}}{(z - z_0)^n} + \cdots + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - a) + a_2(z - z_0)^2 + \cdots.
\]

- If all \(a_{-n} = 0 \) for all \(n \in \mathbb{N} \), then the point \(z = z_0 \) is a removal singularity.

- The point \(z = z_0 \) is called a pole if all but a finite number of \(a_{-n} \)'s are non-zero. If \(m \) is the highest integer such that \(a_{-m} \neq 0 \), then \(z_0 \) is a Pole of order \(m \).

- If \(a_{-n} \neq 0 \) for infinitely many \(n \)'s, then the point \(z = z_0 \) is a essential singularity.

- The term \(a_{-1} \) is called residue of \(f \) at \(z_0 \).
If f has an isolated singularity at z_0, then f is analytic in $B(z_0, r) \setminus \{z_0\}$ for some $r > 0$. In this case f has the following Laurent series expansion:

$$f(z) = \cdots \frac{a_{-n}}{(z - z_0)^n} + \cdots + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1(z - a) + a_2(z - z_0)^2 + \cdots.$$

- If all $a_{-n} = 0$ for all $n \in \mathbb{N}$, then the point $z = z_0$ is a removal singularity.
- The point $z = z_0$ is called a pole if all but a finite number of a_{-n}'s are non-zero. If m is the highest integer such that $a_{-m} \neq 0$, then z_0 is a Pole of order m.
- If $a_{-n} \neq 0$ for infinitely many n's, then the point $z = z_0$ is a essential singularity.
- The term a_{-1} is called residue of f at z_0.
Removable singularities

The following statements are equivalent:

1. f has a removable singularity at z_0.
2. If all $a_{-n} = 0$ for all $n \in \mathbb{N}$.
3. $\lim_{z \to z_0} f(z)$ exists and finite.
4. $\lim_{z \to z_0} (z - z_0)f(z) = 0$.
5. f is bounded in a deleted neighborhood of z_0.

The function $\frac{\sin z}{z}$ has removable singularity at 0.
The following statements are equivalent:

1. \(f \) has a removable singularity at \(z_0 \).
2. If all \(a_{-n} = 0 \) for all \(n \in \mathbb{N} \).
3. \(\lim_{z \to z_0} f(z) \) exists and finite.
4. \(\lim_{z \to z_0} (z - z_0)f(z) = 0 \).
5. \(f \) is bounded in a deleted neighborhood of \(z_0 \).

The function \(\frac{\sin z}{z} \) has removable singularity at 0.
The following statements are equivalent:

- \(f \) has a pole of order \(m \) at \(z_0 \).

- \(f(z) = \frac{g(z)}{(z - z_0)^m} \), \(g \) is analytic at \(z_0 \) and \(g(z_0) \neq 0 \).

- \(\frac{1}{f} \) has a zero of order \(m \).

- \(\lim_{z \to z_0} |f(z)| = \infty \).

- \(\lim_{z \to z_0} (z - z_0)^{m+1} f(z) = 0 \)

- \(\lim_{z \to z_0} (z - z_0)^m f(z) \) has removal singularity at \(z_0 \).
The following statements are equivalent:

- f has a essential singularity at z_0.
- The point z_0 is neither a pole nor removable singularity.
- $\lim_{{z \to z_0}} f(z)$ does not exists.
- Infinitely many terms in the principal part of Laurent series expansion around the point z_0.

Limit point of zeros is isolated essential singularity. For example:

$$f(z) = \sin \frac{1}{z}$$
The following statements are equivalent:

- f has a essential singularity at z_0.
- The point z_0 is neither a pole nor removable singularity.
- $\lim_{z \to z_0} f(z)$ does not exists.
- Infinitely many terms in the principal part of Laurent series expansion around the point z_0.

Limit point of zeros is isolated essential singularity. For example:

$$f(z) = \sin \frac{1}{z}$$
Let f be a complex valued function. Define another function g by

$$g(z) = f\left(\frac{1}{z}\right).$$

Then the nature of singularity of f at $z = \infty$ is defined to be the the nature of singularity of g at $z = 0$.

- $f(z) = z^3$ has a pole of order 3 at ∞.
- e^z has an essential singularity at ∞.
- An entire function f has a removal singularity at ∞ if and only if f is constant. (Prove This!)
- An entire function f has a pole of order m at ∞ if and only if f is a polynomial of degree m. (Prove This!)
Let f be a complex valued function. Define another function g by

$$g(z) = f\left(\frac{1}{z}\right).$$

Then the nature of singularity of f at $z = \infty$ is defined to be the nature of singularity of g at $z = 0$.

- $f(z) = z^3$ has a pole of order 3 at ∞.
- e^z has an essential singularity at ∞.
- An entire function f has a removal singularity at ∞ if and only if f is constant. (Prove This!)
- An entire function f has a pole of order m at ∞ if and only if f is a polynomial of degree m. (Prove This!)
Let f be a complex valued function. Define another function g by

$$g(z) = f \left(\frac{1}{z} \right).$$

Then the nature of singularity of f at $z = \infty$ is defined to be the nature of singularity of g at $z = 0$.

- $f(z) = z^3$ has a pole of order 3 at ∞.
- e^z has an essential singularity at ∞.
- An entire function f has a removal singularity at ∞ if and only if f is constant. (Prove This!)
- An entire function f has a pole of order m at ∞ if and only if f is a polynomial of degree m. (Prove This!)
Let f be a complex valued function. Define another function g by

$$g(z) = f\left(\frac{1}{z}\right).$$

Then the nature of singularity of f at $z = \infty$ is defined to be the nature of singularity of g at $z = 0$.

- $f(z) = z^3$ has a pole of order 3 at ∞.
- e^z has an essential singularity at ∞.
- An entire function f has a removal singularity at ∞ if and only if f is constant. (Prove This!)
- An entire function f has a pole of order m at ∞ if and only if f is a polynomial of degree m. (Prove This!)
Let f be a complex valued function. Define another function g by

$$g(z) = f \left(\frac{1}{z} \right).$$

Then the nature of singularity of f at $z = \infty$ is defined to be the nature of singularity of g at $z = 0$.

- $f(z) = z^3$ has a pole of order 3 at ∞.
- e^z has an essential singularity at ∞.
- An entire function f has a removal singularity at ∞ if and only if f is constant. (Prove This!)
- An entire function f has a pole of order m at ∞ if and only if f is a polynomial of degree m. (Prove This!)