Measurements of optical loss in GaAs/Al2O3 nonlinear waveguides in the infrared using femtosecond scattering technique

S. Venugopal Rao (1), K. Moutzouris (1), M. Ebrahizadeh (1) A. De Rossi (2), G. Gintz (2), M. Calligaro (2), V. Ortiz (2), and V. Berger (2)

(1) School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, Scotland, UK
(2) THALES, Laboratoire Central de Recherches, Domaine de Corbeville, 91400 Orsay, France

INTRODUCTION

• Optical loss: Important in the assessment of semiconductor nonlinear waveguides (SiGe, DFG, and OPO’s)
• Difficulties
 • Inaccurate knowledge of effective refractive indices
 • Unknown facet reflectivities
• Techniques used: Cutback method, Prism coupling, Photo-thermal deflection, Fabry-Perot (FP) interference method. Photo-luminescence, Optimized end-fire coupling, Self-pumped phase conjugation, Multisection single-pass technique and Scattering technique
 • Advantages
 • For waveguides with losses > 1 dB/cm
 • Disadvantages
 • Not universally appealing: Complexity (eg. self-pumped phase conjugation)
 • Stringent frequency stability requirements
• FP technique: The most successful approach for evaluation of losses < 1 dB/cm.
 • Pros
 • Simple
 • Robust
 • Accurate knowledge of facet reflectivities
 • Cons
 • Not very accurate data for < 0.5 dB/cm losses
 • Non-destructive
 • Precision in the facet parallelism of the waveguide etalon

Scattering technique

• Pros
 • Uncomplicated
 • Not very accurate data for < 0.5 dB/cm losses
 • Non-destructive
• Cons
 • Continuous tunability
 • Knowledge about interaction/propagation of fs pulses within waveguide (useful for TDM and WDM)

RESULTS

• Loss coefficient:
 • Sample on the

• T = Le-αL, where I0 is the scattered intensity after a propagation length L through the waveguide, I0 is the initial intensity at the start of the path, and α is the overall loss coefficient

EXPERIMENT

• Source Characteristics
 • Ti:Sapphire Laser
 • Duration ~ 175 fs
 • Wavelength (~1.55 m
• Sample
 • (GaAs <001> substrate) / 1000 nm AlAs / 273 nm GaAs / 37 nm AlAs / 273 nm GaAs / 37 nm AlAs / 1000 nm Al2O3 / 38 nm GaAs
• Process steps:
 1. Ridge etching (optical confinement)
 2. Mesa etching (thermal oxidation)
 3. Oxidation
 4. Annealing (interface quality)

CONCLUSIONS

• Losses have been evaluated for a wide range of wavelengths in the infrared (1.35-1.58 m

• Loss coefficients of ~1.15-2.55 cm

• Overall loss: Linear loss due to absorption + Loss due to scattering from waveguide + Loss due to scattering from Alox + Loss due to two Photon Absorption (TPA) (~250 fs pulses).

• Loss higher for TM and TE+TM polarization compared to TE polarization

• No clear dependence on the mode structure: same loss for TE_p and higher order modes.
• α ~ 1.0 cm

• Loss lower at higher wavelengths (<1.6 μm)
• Intensity dependent nonlinear transmission studies enabled to identify the magnitude of TPA contribution.

• At very low input powers the major contribution is from absorption + scattering from waveguide and Alox with typical values of ~1.5 cm

• α is fixed with loss value at low input powers

• TPA coefficient β ~10-18 cm/GW

• Temporal pulse broadening (due to GVD)

• Temporal pulse width

• 9 = 9 x 10^-11 cm^2/W at 1.55 μm

• 9 = 9 x 10^-11 cm^2/W and ~3 x 10^-10 cm^2/W at 1.45 μm and 1.55 μm respectively

REFERENCES