Efficient second harmonic generation in birefringently phase-matched GaAs/Al$_2$O$_3$ waveguides using femtosecond pulses at 2.01 μm

S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh
School of Physics and Astronomy, University of St. Andrews
North Haugh, Fife KY16 9SS, Scotland, UK.

A. De Rossi and V. Berger, M. Calligaro, and V. Ortiz
THALES, Laboratoire Central de Recherches,
Domaine de Corbeville, 91400 Orsay, France

CLEO 2002, USA

University of St. Andrews
Plan for the talk

- Introduction
- GaAs/Alox waveguides
- Experiment
- Results and Discussion
- Conclusions
INTRODUCTION

GaAs/AlGaAs based waveguides are attractive because of their

1. Large second order coefficients \(\chi^{(2)} \sim 240 \text{ pm/V for GaAs at 1.0 } \mu\text{m} \)
2. Broad infrared transparency (0.9-17.0 \(\mu\text{m} \))
3. High laser-damage threshold
4. Integrability with semiconductor laser sources
5. No photo-refractive effect (Room temperature operation)

Lack of intrinsic birefringence \(\rightarrow \) Problem with phase matching

Solution:

(a) Quasi-Phase Matching (QPM) or
(b) Birefringence Phase Matching [Selective oxidation of AlAs layers to form Aluminium Oxide (Alox)].
• Artificial birefringence can be engineered by piling up thin layers of materials of different indices of refraction.

• TE and TM waves propagating in the structure experience different refractive indices due to the continuity relations at the interfaces of the multi-layers for tangential and normal fields.

• The amount of birefringence available depends on the thickness of the layers and the index contrast. For the GaAs/AlAs system the index contrast is not enough to phase match interesting interactions.

• Selective oxidization of the AlAs layers, to form Alox was proposed as a method to introduce a useful index contrast. [Nature 391, 463 (1998)]

• The strong refractive index contrast between semiconductor (n ~3.4) and the Alox (n ~1.6) results in a form birefringence strong enough to phase match the SHG process.
Figure 1 Dispersion relation for an in-plane propagation in a periodic composite material of period d. The material consists of 25% of Alox (refractive index $n \approx 1.6$; see text) and 75% of GaAs ($n \approx 3.5$), for TM modes (full line) and TE modes (dotted lines). The physical origin of form birefringence appears in the mode wavefunction, pictured on the left for a frequency $\omega = 0.13(2\pi d)$ (corresponding to the open circles in the dispersion relation). These Bloch waves have been calculated using standard periodic multilayer theory. The direction of propagation is perpendicular to the plane of the figure. Due to the continuity of the electric displacement dE normal to the layers, the TM mode (solid line in both panels) has a significant overlap with the low-ω layer (Alox, shown in light grey in the right panel), and a lower average dielectric constant. The continuous TE electric field (dotted line in both panels) has a higher value in GaAs (dark grey, right panel), and a higher average dielectric constant.

Figure 2 Difference frequency generation (DFG) process in the sample. Here ω_1 and ω_2 are the pump frequencies of wavelengths 1.32 μm and 1.68 μm, respectively, and ω_3 is the frequency difference of wavelength 0.3 μm. Three periods of the composite material GaAs (325 nm)/Alox (40 nm) constitute the core of the waveguide. The birefringence of the composite material was engineered to compensate for the dispersion arising from both the natural dispersion in bulk GaAs and the optical confinement dispersion in the waveguide. The sample was grown by molecular beam epitaxy on a GaAs (100) substrate and consists of: 2.380 nm Al$_{0.67}$Ga$_{0.33}$As; 1.500 nm Al$_{0.7}$Ga$_{0.3}$As (waveguide cladding layers), three periods of birefringent composite material (40 nm Alox; 325 nm GaAs) $\times 3$ and 40 nm Alox; 1.500 nm Al$_{0.67}$Ga$_{0.33}$As and a final 30 nm GaAs cap layer. The oxidation process is described in detail in ref. 15. The three modes involved in the DFG process are pictured together with their polarization (\textcircled{1} for TM, \textcircled{0} for TE). The higher overlap of the TM mode with the low-refractive-index Alox layers is apparent, which is the origin of form birefringence. The arrows indicate the “phase matching” momentum conservation. $k_1 + k_3 = k_2$, where k_i indicates the wavevector of the wavenumber.

University of St. Andrews
GaAs/Alox Waveguides

Structure
- (GaAs <001> substrate non intentionally doped) / 1000 nm Al$_{0.92}$Ga$_{0.08}$As / 1000 nm Al$_{0.7}$Ga$_{0.3}$As / 4 x (50 nm AlAs / 250 nm GaAs) / 50 nm AlAs / 1000 nm Al$_{0.7}$Ga$_{0.3}$As / 30 nm GaAs.
- Alloys composition and layer thickness designed to have SHG wavelength phase matched around 1.0 µm

Process steps
1. Ridge etching (optical confinement)
2. Mesa etching (to allow lateral oxidation)
3. Oxidation
4. Annealing (interface quality)

CLEO 2002, USA

University of St. Andrews
EXPERIMENT

Millenia Ti:Sapphire PPLN OPO Beam Diagnostics

λ/2 plate @ 1.55 µm

50% Duty Cycle Chopper

Idler @ 2.0 µm ~185 fs

RG 850

Ge Filter

50% Duty Cycle Chopper

Ti:Sapphire

X 40 Sample X 20

Flip Mirror

IR Camera

InAs Detector and lock-in

IDLER

SHG

X-Y-Z Manipulator

SC Head

Power Meter

(1.3 - 1.6 µm, 120 mW)
(1.7 - 2.1 µm, 50 mW)

(90 MHz, ~150 fs)
(790 – 840 nm)

(5W, 532 nm)

University of St. Andrews

CLEO 2002, USA
Fundamental (Idler) Pulses

Intensity (arb. units) vs. Idler Wavelength (nm)

- FWHM ~26 nm

Intensity (arb. units) vs. Delay (ps)

- FWHM ~185 fs
- $\Delta \tau \cdot \Delta \nu \sim 0.38$

CLEO 2002, USA

University of St. Andrews
RESULTS AND DISCUSSION

Input Idler Characteristics

- Near-transform limited pulses (~185 fs) with 90 MHz repetition rate
- Idler tunable in the 1.7–2.1 μm range, with average power levels of ~50 mW
- Type–I phase matching: Input TE polarization → TM polarized output.
- Quadratic behaviour of SHG output vs input power as expected. Saturation behaviour in the shorter sample at higher input intensities, possibly due to multi-photon absorption.
- Maximum observed SHG power \(\sim 650 \, \mu \text{W} \) for 1-mm waveguide and \(\sim 380 \, \mu \text{W} \) for 3-mm waveguide with input power of \(\sim 50 \, \text{mW} \)

- Overall efficiencies \((P_{\text{SHG}}/P_{\text{IDLER}}) \) of 0.78\% (3-mm waveguide) and 1.3\% (1-mm waveguide)

- Taking into account the facet reflectivity, transmission losses (\(\sim 1 \, \text{cm}^{-1} \)), geometrical coupling factor we estimated the launched power \(\sim 5 \, \text{mW} \). Considering the duty cycle and the actual interaction length (due to GVM), we extract a normalized conversion efficiency of \(>1000 \, \% \text{W}^{-1}\text{cm}^{-2} \) for the 1-mm waveguide.
- Transmitted idler FWHM was \(\sim 26 \text{ nm} \) and generated SHG FWHM \(\sim 0.95 \text{ nm} \) (3-mm) and \(\sim 1.3 \text{ nm} \) (1-mm).
- Tuning curve (SHG output versus fundamental/idler wavelength) shows a peak around 2.0 \(\mu \text{m} \). FWHM of the tuning curve \(\sim 30 \text{ nm} \) for 3-mm waveguide, and \(\sim 35 \text{ nm} \) for 1-mm waveguide.
- Pump depletion measurements (using InAs detector and a lock-in amplifier combination) in the 1-mm sample indicate about 40% of the total input pump power was depleted (converted to SHG and other loss mechanism).
• The spectra of the transmitted idler recorded on and off-resonance also showed depletion, supporting our argument. Within the phase-matching bandwidth the depletion was greater than 80%.

• Any spectral shift within the pump bandwidth resulted in no shift in the position of the dip in the transmitted pump spectrum or in the position of the peak in the SHG spectrum.
Comparison with other waveguides

<table>
<thead>
<tr>
<th>Waveguide Type</th>
<th>Performance</th>
<th>Source Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPLN waveguides</td>
<td>150% /W cm² at 1.55 µm</td>
<td>OL 27, 179, 2002</td>
</tr>
<tr>
<td>APE PPLN waveguides</td>
<td>40% /W cm²</td>
<td>IEICE Trans. Elec. E83C, 869, 2000</td>
</tr>
<tr>
<td>KNbO₃ waveguides</td>
<td>30% /W cm² at Ti:Sapphire wavelengths</td>
<td></td>
</tr>
<tr>
<td>PSN GaAs waveguides</td>
<td>0.1% (Internal, P_{out} / P_{in}) at 2.0 µm</td>
<td></td>
</tr>
<tr>
<td>QPM GaAs AlAs</td>
<td>0.02% (Internal, P_{out} / P_{in}) at 1.55 µm (OL 25, 1370, 2000)</td>
<td></td>
</tr>
<tr>
<td>Polymer waveguides</td>
<td>0.05% /W cm² at 1.5 µm</td>
<td>APL 68, 1183, 1998</td>
</tr>
<tr>
<td>MgO:LiNbO₃ waveguides</td>
<td>1000% /W at 772 nm</td>
<td>JJAP 40, 1751, 2001</td>
</tr>
<tr>
<td>THIS WORK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(BPM GaAs/Alox)</td>
<td>20% Internal and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>1000 /W cm² normalized, at 2.01 µm</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

• First demonstration of SHG in birefringent GaAs/AlGaAs waveguides using femtosecond pulses.

• Usable SHG powers of ~650 µW for 1-mm waveguide and ~390 µW for 3-mm waveguide. (With an input of ~50 mW). FWHM of SHG ~0.95 nm (1-mm waveguide) & ~1.3 nm (3-mm waveguide). Input pulses had a FWHM of ~26 nm.

• Phase matching peak around 2.0 µm with SHG generated around 1.0 µm

• A normalized conversion efficiency >1000 %W^{-1}cm^{-2} was achieved for the 1-mm waveguide.