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A complete and explicit confirmation of the bosonization formula on the circle is given by direct
construction of the anticommutator of the fermionic and bosonic forms of the fermion field. The
action of the unitary “shift” operator exp iθR on the fermion operators c†k is given.

Impose antiperiodic boundary conditions on fermion fields on a circle of perimeter L, so exp ikL = −1. Fermion
creation and annihilation operators obey

{ck, ck′} = 0, {ck, c†k′} = δkk′ . (1)

We will work in the right-moving chiral Hilbert space of states |ψ〉 where

lim
k→∞

ck|ψ〉 = 0, lim
k→−∞

c†k|ψ〉 = 0 (2)

Then define

NR =
∑
k>0

c†kck − c−kc
†
−k. (3)

with

NRc
†
k = c†k(NR + 1). (4)

Also define the unitary shift operator with the action

eiθRc†k = c†k+2π/Le
iθR (5)

Then, in the chiral fermion Hilbert space

NRe
iθR = eiθR(NR + 1). (6)

Also define, for q > 0, where exp iqL = 1.

b†q =

(
2π

qL

) 1
2 ∑

k

c†k+qck, bq =

(
2π

qL

) 1
2 ∑

k

c†kck+q, (7)

where

[NR, b
†
q] = [eiθR , b†q] = 0, (8)

and

[bq, bq′ ] = 0, [bq, b
†
q′ ] = δqq′

(
2π

qL

)∑
k

(nk+q − nk) = δqq′ , (9)

where nk ≡ c†kck.
Then

[b†q, c
†
k] =

(
2π

qL

) 1
2

c†k+q, [bq, c
†
k] =

(
2π

qL

) 1
2

c†k−q (10)

Now define

Ψ†f (x) =
1√
L

∑
k

eikxc†k, (11)



2

and

ϕ+
R(x, ε) =

(
ϕ−R(x, ε

)†
= πNR(x/L)− i

∑
q>0

f(qε)

(
2π

qL

) 1
2

eiqxb†q, (12)

where ε > 0, and f(u) is a real regularization function with the property that f(0) = 1, and f(u) → 0 as u→∞, and
decreases exponentially or faster in this limit, so the integral from 0 to ∞ of unf(u) is finite for all integers n ≥ 0.

Then

b†qΨ
†
f (x) = Ψ†f (x)

(
b†q +

(
2π

qL

) 1
2

e−iqx

)
, bqΨ

†
f (x) = Ψ†f (x)

(
bq +

(
2π

qL

) 1
2

eiqx

)
. (13)

From this

e±iϕ
−
R(x,ε)Ψ†f (x′) = exp±

(
iπx

L
− 2π

L

∑
q>0

f(q)

q
e−iq(x−x

′)

)
Ψ†f (x′)e±iϕ

−
R(x,ε)

e±iϕ
+
R(x,ε)Ψ†f (x′) = exp±

(
iπx

L
+

2π

L

∑
q>0

f(q)

q
eiq(x−x

′)

)
Ψ†f (x′)e±ϕ

+
R(x,ε)

e±iθRΨ†f (x′) = exp

(
∓2πix′

L

)
Ψf (x′)e±iθR . (14)

Now define the regularized form of the bosonized representation of the fermion field:

Ψ†b(x, ε) =
1√
L
eiϕ

+
R(x,ε)eiθeiϕ

−
R(x,ε) (15)

Then

{Ψb(x, ε),Ψ
†
f (x′)} = e−iϕR(x,ε)e−iθRe−iπ(x′/L)Ψ†f (x′)e−iϕ

−(x′,ε) ×
1

L
(expF (x− x′, ε) + expF (x′ − x, ε)) , (16)

{Ψ†b(x, ε),Ψ
†
f (x′)} = eiϕR(x,ε)eiθReiπ(x′/L)Ψ†f (x′)eiϕ

−(x,ε) ×
1

L
(exp−F (x− x′, ε) + exp−F (x′ − x, ε)) , (17)

where

F (x, ε) = iπ(x/L) +
2π

L

∑
q>0

f(qε)

q
eiqx. (18)

The key requirement on the cutoff function f(u) is that F (z, ε) with ε > 0 is holomorphic for Im z ≥ 0; this is assured
by the properties of f(u) given earlier. Then for Im z > 0,

lim
ε→0+

expF (z, ε) =
i

2 sin(πz/L)
. (19)

This is also holomorphic on the real axis, except when z = nL, when it diverges at a first-order pole, and is odd
around these points, and is antiperiodic on the circle. Then

lim
ε→0+

1

L

(
eF (x,ε) + eF (−x,ε)

)
= c

∑
n

(−1)nδ(x− nL) (20)

The weight c is given by

1
2c = lim

ε→0+

∫ 1
2L

− 1
2L

dx exp(F (x, ε)), (21)
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which can be evaluated by deforming the integration contour from the real axis to a path from − 1
2L to − 1

2L + i∞
to 1

2L+ i∞ to 1
2L, which leaves its value unchanged, as the function is holomorphic in the upper half of the complex

plane. Then

c =
4

L

∫ ∞
0

dy
1

2 cosh(πy/L)
= 1. (22)

Thus

lim
ε→0+

{Ψb(x, ε),Ψ
†
f (x′)} = Ô(x)

∑
n

(−1)nδ(x− x′ + nL) (23)

where

Ô(x) = e−iϕR(x,0)e−iθRe−iπ(x/L)Ψ†f (x)e−iϕ
−(x,0). (24)

We now need to show that this commutes with all operators in the chiral-fermion algebra, and is independent of x,
so Ô(x) = η, a constant. Commutation with either ck, c†k, or NR, eiθR , bq and b†q is easily established using the
previously given commutation relations. Thus a single diagonal matrix element is needed to define η. For the states
|N〉 = exp(iNθR)|0〉 that are annihilated by all bq, and which are eigenvalues of NR with eigenvalue N ,

η = 〈N |Ô(x)|N〉 = 〈N + 1|c†(2N+1)π/L|N〉 = 〈1|c†π/L|0〉, (25)

which is independent of x, and has the property

η∗η = 〈0|cπ/Lc†π/L|0〉 = 1. (26)

Then

lim
ε→0+

{Ψb(x, ε),Ψ
†
f (x′)} = η

∑
n

(−1)nδ(x− x′ + nL)Ô(x), (27)

where η is the unimodular Klein factor, which commutes with all elements of the chiral fermion algebra. Since η is
defined by an off-diagonal matrix element, its phase is fundamentally an arbitrary choice.

In addition,

lim
ε→0+

(exp−F (x, ε) + exp−F (−x, ε)) = 0, (28)

Hence

lim
ε→0+

{Ψ†b(x, ε),Ψ
†
f (x′)} = 0. (29)

This demonstrates the operator identity in the chiral fermion Hilbert space:

lim
ε→0+

ηΨ†b(x, ε) = Ψ†f (x). (30)

or for right-moving chiral fermions, with ϕ±R(x) ≡ ϕ±R(x, 0),

√
LΨ†(x) ≡

∑
k

eikxc†k = ηeiϕ
+
R(x)eiθReiϕ

−
R(x) = lim

ε→0+
ηe

1
2F (0,ε)eiϕR(x,ε) (31)

where

ϕR(x) = (ϕR(x))
†

= ϕ+
R(x, ε) + θR + ϕ−R(x, ε). (32)

If there is more than one species of chiral fermions, the unimodular Klein factors ensure that fermion fields of two
different species anticommute.

{ησ, c†k,σ′} = {ησ, ck,σ′} = 0, σ 6= σ′. (33)
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If the species labels σ are are ordered so that the Dirac sea of species σ is filled after that of species σ′ > σ, the
conventional phase choice for the Dirac-sea states corresponds to

ησ =
∏
σ′<σ

(−1)Nσ′ , (34)

and η1 = 1.
The above treatment has followed the usual treatment with standard bosons bq, b

†
q, with q > 0. A useful rational

variant, which avoids square roots, is to define Aq (for all q, positive, negative or zero, with exp iqL = 1) by

A0 = NR; Aq =
∑
k

c†k+qck, q 6= 0. (35)

Then

[Aq, Aq′ ] =

(
q′L

2π

)
δq+q′,0. (36)

Also define Bq by

B0 = 1
2A

2
0 +

∑
q>0

AqA−q; Bq = 1
2

∑
q′

Aq−q′Aq′ , q 6= 0. (37)

Then

[Bq, B
′
q] = 1

12

((
q′L

2π

)3

−
(
q′L

2π

))
δq+q′,0 +

(
(q′ − q)L

2π

)
Bq+q′ . (38)

Note that Bq, with q = −2πn/L, are the standard generators Ln of the Virasoro algebra with central charge c = 1.
In this formulation, the charge and momentum densities (both relative to the state |0〉) are

ρR(x) =
1

L

∑
q

Aqe
iqx, (39)

πR(x) =
2π~
L2

∑
q

Bqe
iqx (40)

and

ϕ+
R(x, ε) =

πx

L
A0 −

2πi

L

∑
q>0

f(qε)

q
eiqxAq. (41)

This form makes the passage to the thermodynamic limit (where the circle of circumference L becomes the infinite
line) much easier. In this limit k and q become continuous variables, so

{c(k), c†(k′)} = 2πδ(k − k′), (42)

and

A(q) =

∫ ∞
kF

dk

2π
c†(k + 1

2q)c(k −
1
2q)−

∫ kF

−∞
c(k − 1

2q)c
†(k + 1

2q), (43)

so

[A(q), A(q′)] = q′δ(q + q′). (44)

Note that

NR = A(0) (45)
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is the particle number operator (relative to the Dirac-sea state with Fermi vector kF ). Then

B(q) =

∫ ∞
0

dq′A( 1
2q + q′)A( 1

2q − q
′), (46)

and

[B(q), B(q′)] = 1
12 (q′)3δ(q + q′) + (q′ − q)B(q + q′). (47)

The charge and momentum density (relative to a Dirac sea with kF = 0), are

ρ(x) =
kF
2π

+

∫ ∞
∞

dq

2π
A(q)eiqx, (48)

π(x) =
~(kF )2

4π
+ ~

∫ ∞
−∞

dq

2π
B(q)eiqx. (49)

and

ϕR(x, ε) = −i
∫ ∞
−∞

dq

q
f(|q|ε)eiqxA(q). (50)

The decomposition used for normal ordering is now given by

ϕR(x, ε) = ϕ+
R(x, ε) + θR + ϕ−R(x, ε) (51)

where

ϕ+
R(x, ε) = lim

α→0+
−i
∫ ∞
α

dq

q
f(|q|ε)eiqxA(q)

θR = lim
α→0+

−i
∫ α

−α

dq

q
f(|q|ε)eiqxA(q)

ϕ−R(x, ε) = lim
α→0+

−i
∫ −α
∞

dq

q
f(|q|ε)eiqxA(q). (52)

The commutation relation

[NR, e
iθR ] = eiθR (53)

now derives from the commutation relation

[A(0), q−1A(q)] = δ(q). (54)

Here the meaning of taking the limit α→ 0+ is not to set α = 0, but to obtain the limiting behavior in this limit. In
general, the normal-ordered form of any operator will be multiplied by a factor (α′)∆, where ∆ is the scaling dimension
of the operator; α′ = αeC (where C = 0.577 . . . is Euler’s constant) is an infra-red regularization that replaces 2π/L
in expressions derived as L→∞ limits of those on the circle.

Then

Ψ†(x) ≡
∫ ∞
−∞

dk

2π
eikxc†(k) =

(
α′

2π

) 1
2

ηeikF xeiϕ
+
R(x)eiθReiϕ

−
R(x) = lim

ε→0+

(
ecf

2πε

) 1
2

η eikF xeiϕR(x,ε) (55)

where cf is the cutoff-function-dependent constant

cf = lim
v→0+

(
ln v + C +

∫ ∞
v

du

u
f(u)

)
. (56)


