Notes on the bosonization operator identity for chiral fermions

F. D. M. Haldane
Department of Physics, Princeton University, Princeton NJ 08544-0708

(Dated: August 9, 2019 v0.14)
A short summary of the exact fermion-boson "bosonization" duality of free-fermion $1+1 \mathrm{~d} U(1)$ conformal field theory.

BOSONIZATION ON THE CIRCLE

Consider the right-moving branch of chiral fermions on the circle of circumference L, with antiperiodic boundary conditions:

$$
\begin{equation*}
\Psi_{R}^{\dagger}(x)=-\Psi_{R}^{\dagger}(x+L)=\frac{1}{\sqrt{ } L} \sum_{k} e^{i k x} c_{k}^{\dagger}, \quad e^{i k L}=-1 \tag{1}
\end{equation*}
$$

Here x is real, $k= \pm \pi / L, \pm 3 \pi / L, \pm 5 \pi / L, \ldots, \pm \infty$, and $\left\{c_{k}, c_{k^{\prime}}^{\dagger}\right\}=\delta_{k k^{\prime}}$, with $c_{k}^{\dagger} c_{k} \equiv n_{k}$. Here

$$
\begin{equation*}
\left\{\Psi_{R}(x), \Psi_{R}^{\dagger}\left(x^{\prime}\right)\right\}=\frac{1}{L} \sum_{k} e^{i k\left(x-x^{\prime}\right)}=\sum_{n}(-1)^{n} \delta\left(x-x^{\prime}+n L\right) \tag{2}
\end{equation*}
$$

where the RHS is the antiperiodically-repeated Dirac delta function. Note that $\Psi_{R}(x)|\psi\rangle$ is not a normalizable state, even if $|\psi\rangle$ is, and the Dirac delta function is a distribution, not a true function. In the usual way, the field operator can be defined by a regularization process, in this case

$$
\begin{equation*}
\Psi_{R}^{\dagger}(x)=\lim _{\epsilon \rightarrow 0^{+}} \Psi_{R}^{f \dagger}(x, \epsilon)=\frac{1}{\sqrt{ } L} \sum_{k} e^{-|k| \epsilon} e^{i k x} c_{k}^{\dagger} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\{\Psi_{R}^{f}(x, \epsilon), \Psi_{R}^{f \dagger}\left(x^{\prime}, \epsilon^{\prime}\right)\right\}=\frac{i}{\left.2 L \sin \left(\pi\left(x-x^{\prime}\right)+i\left(\epsilon+\epsilon^{\prime}\right)\right) / L\right)}+\frac{i}{\left.2 L \sin \left(\pi\left(x^{\prime}-x\right)+i\left(\epsilon+\epsilon^{\prime}\right)\right) / L\right)} \tag{4}
\end{equation*}
$$

Then define number and momentum operators

$$
\begin{align*}
N_{R} & =\sum_{k>0} c_{k}^{\dagger} c_{k}-c_{-k} c_{-k}^{\dagger} \tag{5}\\
P_{R} & =\hbar \sum_{k>0} k\left(c_{k}^{\dagger} c_{k}+c_{-k} c_{-k}^{\dagger}\right) \tag{6}
\end{align*}
$$

Here N_{R} has integer eigenvalues N, while the eigenvalues of P_{R} are non-negative, with values $\pi \hbar M / L$ where M is an integer satisfying $(-1)^{M}=(-1)^{N}, M \geq N^{2}$. The Hilbert space will be defined as the space spanned by the eigenstates of P_{R} with finite eigenvalue.

Define the (Virasoro) "primary states" $|N\rangle$ by

$$
\begin{equation*}
c_{k}^{\dagger}|N\rangle=0, \quad k<2 \pi N / L ; \quad c_{k}|N\rangle=0, \quad k>2 \pi N / L \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
N_{R}|N\rangle=N|N\rangle, \quad|N\rangle=\left(e^{i \theta_{R}}\right)^{N}|0\rangle \tag{8}
\end{equation*}
$$

where $e^{i \theta_{R}}$ is unitary.
Then, for $q>0=2 \pi / L, 4 \pi / L, 6 \pi / L, \ldots, \infty$, with $e^{i q L}=1$, define

$$
\begin{equation*}
b_{q}=\sqrt{ }(2 \pi / q L) \sum_{k} c_{k}^{\dagger} c_{k+q} \tag{9}
\end{equation*}
$$

These annihilate the primary states

$$
\begin{equation*}
b_{q}|N\rangle=0 \tag{10}
\end{equation*}
$$

and, as a consequence of the "chiral anomaly" $\sum_{k}\left(n_{k+q}-n_{k}\right)=q L / 2 \pi$, obey the Heisenberg (boson) algebra

$$
\begin{equation*}
\left[b_{q}, b_{q^{\prime}}^{\dagger}\right]=\delta_{q q^{\prime}}, \quad\left[b_{q}, b_{q^{\prime}}\right]=0 \tag{11}
\end{equation*}
$$

In terms of these operators

$$
\begin{align*}
P_{R} & =\hbar\left(\frac{\pi}{L} N_{R}^{2}+\sum_{q>0} q b_{q}^{\dagger} b_{q}\right) \tag{12}\\
\Psi_{R}^{\dagger}(x) & =\frac{1}{\sqrt{ } L} e^{i \varphi_{R}^{+}(x)} e^{i \theta_{R}} e^{i \varphi_{R}^{-}(x)} \tag{13}
\end{align*}
$$

where $\varphi_{R}^{+}(x)=\left(\varphi_{R}^{-}(x)\right)^{\dagger}$, and

$$
\begin{equation*}
\varphi_{R}^{-}(x)=\pi N_{R}(x / L)+i \sum_{q>0} \sqrt{ }(2 \pi / q L) e^{-i q x} b_{q} \tag{14}
\end{equation*}
$$

Note that there is no cutoff parameter of any kind in this expression.
Note that the equivalence of fermionic and bosonic forms are exact operator identities for chiral fermions in the Hilbert space described above. It is easy to check this with explicit calculations. Consider $\left\langle\psi_{2}\right| \Psi_{R}^{\dagger}(x)\left|\psi_{1}\right\rangle$ where, for example

$$
\left|\psi_{1}\right\rangle=b_{q}^{\dagger}|0\rangle, \quad\left|\psi_{2}\right\rangle=|1\rangle
$$

In the fermionic formalism, with $k_{0}=\pi / L$,

$$
\left|\psi_{1}\right\rangle=\sqrt{ }(2 \pi / q L) \sum_{-q<k<0} c_{k+q}^{\dagger} c_{k}|0\rangle, \quad\left|\psi_{2}\right\rangle=c_{k_{0}}^{\dagger}|0\rangle
$$

Then

$$
\left\langle\psi_{2}\right| \Psi_{R}^{\dagger}(x)\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{ } L} \sqrt{ }(2 \pi / q L) \sum_{k k^{\prime}} e^{i k x}\langle 0| c_{k_{0}} c_{k}^{\dagger} c_{k^{\prime}+q}^{\dagger} c_{k^{\prime}}|0\rangle=-\frac{1}{\sqrt{ } L} \sqrt{ }(2 \pi / q L) e^{i\left(k_{0}-q\right) x}
$$

In the bosonized form, this is given by

$$
\frac{1}{\sqrt{ } L}\langle 0| e^{-i \theta_{R}} e^{i k_{0} x} e^{i \theta_{R}}\left(1+i\left(i \sqrt{ }(2 \pi / q L) e^{-i q x} b_{q}\right)\right) b_{q}^{\dagger}|0\rangle
$$

which gives the same result. This exercise can be repeated with more complicated states, as the equivalence of the the two forms of $\Psi_{R}^{\dagger}(x)$ is an exact mathematical identity.

Now consider the boson-normal-ordered forms of the operators

$$
\begin{align*}
\Psi_{R}(x) \Psi_{R}^{\dagger}\left(x^{\prime}\right) & =\frac{i}{2 L \sin \left(\pi\left(x-x^{\prime}\right) / L\right)} e^{i\left(\varphi_{R}^{+}(x)-\varphi_{R}^{+}\left(x^{\prime}\right)\right)} e^{i\left(\varphi_{R}^{-}(x)-\varphi_{R}^{-}\left(x^{\prime}\right)\right)} \\
\Psi_{R}^{\dagger}\left(x^{\prime}\right) \Psi_{R}(x) & =\frac{i}{2 L \sin \left(\pi\left(x^{\prime}-x\right) / L\right)} e^{i\left(\varphi_{R}^{+}(x)-\varphi_{R}^{+}\left(x^{\prime}\right)\right)} e^{i\left(\varphi_{R}^{-}(x)-\varphi_{R}^{-}\left(x^{\prime}\right)\right)} \tag{15}
\end{align*}
$$

For $x \neq x^{\prime}(\bmod L)$ we get, as required

$$
\begin{equation*}
\Psi_{R}(x) \Psi_{R}^{\dagger}\left(x^{\prime}\right)+\Psi_{R}^{\dagger}\left(x^{\prime}\right) \Psi_{R}(x)=0, \quad e^{\left.2 \pi i\left(x-x^{\prime}\right) / L\right)} \neq 1 \tag{16}
\end{equation*}
$$

Each term diverges as $\exp \left(2 \pi i\left(x-x^{\prime}\right) / L \rightarrow 1\right.$. In this case, to make sense of the divergence and correctly recover the anticommutator as the Dirac delta function, we must use the " ϵ-regularized" form of one or both of the two field operators:

$$
\begin{equation*}
\Psi_{R}(x, \epsilon)=\frac{1}{\sqrt{ } L} e^{-i \varphi_{R}^{+}(x+i \epsilon)} e^{-i \theta_{R}} e^{-i \varphi_{R}^{-}(x-i \epsilon)}, \quad \Psi_{R}^{\dagger}(x, \epsilon) \equiv\left(\Psi_{R}(x, \epsilon)\right)^{\dagger}=\frac{1}{\sqrt{ } L} e^{i \varphi_{R}^{+}(x+i \epsilon)} e^{i \theta_{R}} e^{i \varphi_{R}^{-}(x-i \epsilon)} \tag{17}
\end{equation*}
$$

with real positive ϵ (replace $x \pm i \epsilon$ by $x \mp i \epsilon$ for left-movers). A different ϵ can be used for each fermion field. Note that the "bosonically-regulated" operator $\Psi_{R}(x, \epsilon)$ is distinct from the "fermionically-regulated" operator $\Psi_{R}^{f}(x, \epsilon)$ (3), but they both have the same unregulated limit, so that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}}\left\langle\psi_{1}\right| \Psi_{R}(x, \epsilon)\left|\psi_{2}\right\rangle=\lim _{\epsilon \rightarrow 0^{+}}\left\langle\psi_{1}\right| \Psi_{R}^{f}(x, \epsilon)\left|\psi_{2}\right\rangle \tag{18}
\end{equation*}
$$

where $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are normalizable states in the Hilbert space spanned by eigenstates of P_{R} with finite eigenvalue.
The key algebraic result is

$$
\begin{equation*}
\left.\exp \left(-\left[\theta_{R}+\varphi_{R}^{-}(x-i \epsilon), \theta_{R}+\varphi_{R}^{+}\left(x+i \epsilon^{\prime}\right)\right]\right)=2 i \sin \left(\pi\left(\left(x-x^{\prime}\right)-i\left(\epsilon+\epsilon^{\prime}\right)\right) / L\right)\right) \tag{19}
\end{equation*}
$$

From this,

$$
\begin{align*}
\left\{\Psi_{R}(x, \epsilon), \Psi_{R}^{\dagger}\left(x^{\prime}, \epsilon^{\prime}\right)\right\} & =\left(\frac{i}{2 L \sin \left(\pi\left(x-x^{\prime}+i\left(\epsilon+\epsilon^{\prime}\right)\right) / L\right)}+\frac{i}{2 L \sin \left(\pi\left(x^{\prime}-x+i\left(\epsilon+\epsilon^{\prime}\right) / L\right)\right.}\right) \\
& \times e^{i\left(\varphi_{R}^{+}(x+i \epsilon)-\varphi_{R}^{+}\left(x^{\prime}+i \epsilon^{\prime}\right)\right)} e^{i\left(\varphi_{R}^{-}(x-i \epsilon)-\varphi_{R}^{-}\left(x^{\prime}-i \epsilon^{\prime}\right)\right)} \tag{20}
\end{align*}
$$

On taking the limit $\epsilon, \epsilon^{\prime} \rightarrow 0^{+}$, the RHS becomes equal to the antiperiodically-repeated Dirac delta function $\sum_{n}(-1)^{n} \delta\left(x-x^{\prime}+n L\right)$. Similarly,

$$
\begin{align*}
\Psi_{R}^{\dagger}(x, \epsilon) \Psi_{R}^{\dagger}\left(x^{\prime}, \epsilon^{\prime}\right)= & \frac{2 i}{L} \sin \left(\pi\left(\left(x-x^{\prime}\right)-i\left(\epsilon+\epsilon^{\prime}\right)\right) / L\right) \times \\
& e^{i\left(\varphi_{R}^{+}(x+i \epsilon)+\varphi_{R}^{+}\left(x^{\prime}+i \epsilon^{\prime}\right)\right.} e^{2 i \theta_{R}} e^{i\left(\varphi_{R}^{-}(x-i \epsilon)+\varphi_{R}^{-}\left(x^{\prime}-i \epsilon^{\prime}\right)\right.} \tag{21}
\end{align*}
$$

Taking the limit $\epsilon, \epsilon^{\prime} \rightarrow 0^{+}$of this normal-ordered operator gives:

$$
\begin{equation*}
\left\{\Psi_{R}^{\dagger}(x), \Psi_{R}^{\dagger}\left(x^{\prime}\right)\right\}=0 \tag{22}
\end{equation*}
$$

The density operator is given by

$$
\begin{equation*}
\rho_{R}(x)=\frac{1}{L}\left(N_{R}+\sum_{q>0} \sqrt{ }(q L / 2 \pi)\left(e^{i q x} b_{q}^{\dagger}+e^{-i q x} b_{q}\right)\right) \tag{23}
\end{equation*}
$$

The normalized state $\left|\psi_{R}(x, \epsilon)\right\rangle \equiv \sqrt{ }(2 L \sinh (2 \pi \epsilon / L)) \Psi_{R}^{\dagger}(x, \epsilon)|0\rangle$ has the periodically-repeated width-2 ϵ Lorentzian particle density

$$
\begin{equation*}
\left\langle\psi_{R}(x, \epsilon)\right| \rho_{R}\left(x^{\prime}\right)\left|\psi_{R}(x, \epsilon)\right\rangle=\frac{1}{L} \sum_{q} e^{-|q| \epsilon} e^{i q\left(x-x^{\prime}\right)} \tag{24}
\end{equation*}
$$

where the sum is over all q obeying $\exp i q L=1$. This becomes a (periodically-repeated) delta function when $\epsilon \rightarrow 0^{+}$.
Bosonization is a strict operator identity only for "complete" chiral fermions without a cutoff on $\left|k-k_{F}\right|, k_{F}$ $=2 \pi N_{R} / L$, in a Fock space of states where (for right-movers) $n_{k} \rightarrow(1,0)$ as $k \rightarrow(-\infty, \infty)$. A cutoff produces non-locality, and equality ($"="$) gets replaced by long-wavelength proportional equivalence (" \sim ").

BOSONIZATION ON THE INFINITE LINE

In this case we need to use the regularized form, and undo the boson normal-ordering. On the circle,

$$
\begin{align*}
\Psi_{R}^{\dagger}(x, \varepsilon) & =\frac{1}{\sqrt{ } L} e^{\frac{1}{2}\left(\left[\theta_{R}+\varphi_{R}^{+}(x+i \epsilon), \theta_{R}+\varphi_{R}^{-}(x-i \epsilon)\right]\right.} e^{i \varphi_{R}(x, \alpha)} \\
& =\frac{1}{\sqrt{ }(2 L \sinh (2 \pi \epsilon / L)} e^{i \varphi_{R}(x, \alpha)} \tag{25}
\end{align*}
$$

with

$$
\begin{equation*}
\varphi_{R}(x, \epsilon)=\varphi_{R}^{+}(x+i \epsilon)+\theta_{R}+\varphi_{R}^{-}(x-i \epsilon) \tag{26}
\end{equation*}
$$

Note that $\varphi_{R}(x, \epsilon)$ is Hermitian.
Now take the limit $L \rightarrow \infty, N_{0} \rightarrow \infty, 2 \pi N_{0} / L \rightarrow k_{F R}$, with finite ϵ, and $N_{R}=N_{0}+N_{R}^{\prime}$, where N_{R}^{\prime} is finite.
Then

$$
\begin{equation*}
\Psi_{R}^{\dagger}(x, \epsilon)=\frac{1}{\sqrt{ }(4 \pi \epsilon)} e^{i \varphi_{R}(x, \epsilon)} \tag{27}
\end{equation*}
$$

with

$$
\begin{equation*}
\left[\varphi_{R}(x, \epsilon), \varphi_{R}\left(x^{\prime}, \epsilon^{\prime}\right)\right]=-2 i \tan ^{-1}\left(\frac{x-x^{\prime}}{\epsilon+\epsilon^{\prime}}\right) \tag{28}
\end{equation*}
$$

Also define

$$
\begin{equation*}
\rho_{R}(x, \epsilon)=\frac{1}{2 \pi} \partial_{x} \varphi(x, \epsilon) \tag{29}
\end{equation*}
$$

with

$$
\begin{equation*}
\left[\varphi_{R}(x, \epsilon), \rho_{R}\left(x^{\prime}, \epsilon^{\prime}\right)\right]=\frac{i}{\pi}\left(\frac{\epsilon+\epsilon^{\prime}}{\left(x-x^{\prime}\right)^{2}+\left(\epsilon+\epsilon^{\prime}\right)^{2}}\right) \tag{30}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \rho_{R}(x, \epsilon)=N_{R}^{\prime} \tag{31}
\end{equation*}
$$

is independent of ϵ, and has the important property

$$
\begin{equation*}
\left[N_{R}^{\prime}, e^{ \pm i \varphi_{R}(x, \epsilon)}\right]= \pm e^{i \varphi_{R}(x, \epsilon)} \tag{32}
\end{equation*}
$$

These commutation relations can be represented in terms of a chiral bosonic field $A_{R}(q)$ with the Heisenberg algebra commutation relations

$$
\begin{equation*}
\left[A_{R}(q), A_{R}\left(q^{\prime}\right)\right]=q^{\prime} \delta\left(q+q^{\prime}\right), \quad A_{R}(q)^{\dagger}=A_{R}(-q) \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{R}(x, \epsilon)=k_{F R} x-i \int_{-\infty}^{\infty} \frac{d q}{q} e^{-|q| \epsilon} e^{i q x} A_{R}(q), \quad N_{R}^{\prime}=A_{R}(0) \tag{34}
\end{equation*}
$$

A shift of the background ground state charge density to $k_{F R} / 2 \pi$ has been made, so that the integer N_{R}^{\prime} represents a finite number of extra particles added to this background. Note that

$$
\begin{equation*}
\left[N_{R}, \varphi_{R}(x, \epsilon)\right]=-i \int_{-\infty}^{\infty} d q e^{-|q| \epsilon} e^{i q x}\left[A_{R}(0), q^{-1} A_{R}(q)\right]=-i \tag{35}
\end{equation*}
$$

where $\left[A_{R}(0), q^{-1} A_{R}(q)\right]=\delta(q)$ has been used. This allows the identification

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0^{+}}-i \int_{-\alpha}^{\alpha} \frac{d q}{q} A_{R}(q)=\theta_{R} \tag{36}
\end{equation*}
$$

The singular structure at $q=0$ of the algebra (33) on the infinite line thus reproduces the action-angle variables of the circle geometry.

Primary states (fixed charge ground states) are defined by

$$
\begin{equation*}
A_{R}(0)|N\rangle=N|N\rangle, \quad A_{R}(q)|N\rangle=0, \quad q<0 \tag{37}
\end{equation*}
$$

For any operator

$$
\begin{equation*}
\widehat{O}=\int_{-\infty}^{\infty} d q O(q) A_{R}(q) \tag{38}
\end{equation*}
$$

there is a decompositon

$$
\begin{align*}
\widehat{O} & =\widehat{O}^{+}+\widehat{O}^{0}+\widehat{O}^{-} \\
\widehat{O}^{+} & =\lim _{\alpha \rightarrow 0^{+}} \int_{\alpha}^{\infty} d q O(q) A_{R}(q) \\
\widehat{O}^{0} & =\lim _{\alpha \rightarrow 0^{+}} \int_{-\alpha}^{\alpha} d q O(q) A_{R}(q) \\
\widehat{O}^{-} & =\lim _{\alpha \rightarrow 0^{+}} \int_{-\infty}^{-\alpha} d q O(q) A_{R}(q) \tag{39}
\end{align*}
$$

Normal ordering places all occurences of $A_{R}(q)$ with $q>0$ to the left of those of $A_{R}(0)$, and all occurences of $A_{R}(q)$ with $q<0$ to the right. In particular,

$$
\begin{equation*}
: e^{i \widehat{O}}: \equiv e^{i \widehat{O}^{+}} e^{i \widehat{O}^{0}} e^{i \widehat{O}^{-}} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{i \widehat{O}}=\lim _{\alpha \rightarrow 0^{+}} \exp \left(-\frac{1}{2} \int_{\alpha}^{\infty} q d q O(q) O(-q)\right): e^{i \widehat{O}}: \tag{41}
\end{equation*}
$$

Now consider the normal-ordered form of a product of fermion operators

$$
\begin{equation*}
\widehat{O}=\frac{1}{\sqrt{ }\left(4 \pi \epsilon_{1}\right)} e^{i n_{1} \varphi_{R}\left(x_{1}, \epsilon_{1}\right)} \frac{1}{\sqrt{ }\left(4 \pi \epsilon_{2}\right)} e^{i n_{2} \varphi_{R}\left(x_{2}, \epsilon_{2}\right)} \ldots \tag{42}
\end{equation*}
$$

where $n_{i}= \pm 1$. First use the BCH formula and the fundamental commutation relation (28) to combine them into a single exponential:

$$
\begin{equation*}
\widehat{O}=\left(\prod_{i} \frac{1}{\sqrt{ }\left(4 \pi \epsilon_{i}\right)}\right)\left(\prod_{i<j}\left(\frac{\left(\epsilon_{i}+\epsilon_{j}\right)+i\left(x_{i}-x_{j}\right)}{\sqrt{ }\left(\left(\epsilon_{i}+\epsilon_{j}\right)^{2}+\left(x_{i}-x_{j}\right)^{2}\right)}\right)^{n_{i} n_{j}}\right) e^{i \Theta}, \quad \Theta=\sum_{j} n_{j} \varphi_{R}\left(x_{j}, \epsilon_{j}\right) \tag{43}
\end{equation*}
$$

Now carry out the normal-ordering:

$$
\begin{align*}
e^{i \Theta}= & \lim _{\alpha \rightarrow 0^{+}} \prod_{i j} \exp -n_{i} n_{j}\left(\frac{1}{2} \int_{\alpha}^{\infty} \frac{d q}{q} e^{-q\left(\epsilon_{i}+\epsilon_{j}\right)}\right) \times \\
& \prod_{i<j} \exp \left(n_{i} n_{j} \int_{0}^{\infty} \frac{d q}{q} e^{-q\left(\epsilon_{i}+\epsilon_{j}\right)}\left(1-\cos \left(q\left(x_{i}-x_{j}\right)\right)\right): e^{i \Theta}:\right. \\
= & \left(e^{\mathbb{C}} \alpha\right)^{\frac{1}{2}\left(\sum_{j} n_{j}\right)^{2}}\left(\prod_{i} \sqrt{ }\left(2 \epsilon_{i}\right)\right)\left(\prod_{i<j}\left(\sqrt{ }\left(\left(x_{i}-x_{j}\right)^{2}+\left(\epsilon_{i}+\epsilon_{j}\right)^{2}\right)\right)^{n_{i} n_{j}}\right): e^{i \Theta}: \tag{44}
\end{align*}
$$

where \mathbb{C} is Catalan's constant. It is useful to define $\alpha^{\prime}=\alpha e^{\mathbb{C}}$. Reassembling the parts,

$$
\begin{equation*}
\widehat{O}=\lim _{\alpha \rightarrow 0^{+}}\left(\alpha^{\prime}\right)^{\frac{1}{2}\left(\sum_{i} n_{i}\right)^{2}}\left(\prod_{i} \frac{1}{\sqrt{ } 2 \pi}\right)\left(\prod_{i<j}\left(\left(\epsilon_{i}+\epsilon_{j}\right)+i\left(x_{i}-x_{j}\right)\right)^{n_{i} n_{j}}\right): e^{i \Theta}: \tag{45}
\end{equation*}
$$

This expression corresponds to replacing $2 \pi / L$ by α^{\prime} in the circle-geometry expressions, and taking the limit $\alpha^{\prime} \mid x_{i}-$ $x_{j} \mid \ll 1$, with fixed x_{i}, In these expressions, the formal limit $\alpha \rightarrow 0^{+}$is not actually taken; instead the limiting power-law behavior as a function of α in this limit is extracted as the scaling dimension of the normal-ordered operator.

Note that provided all the x_{i} are distinct, the ultra-violet cutoffs ϵ_{i} have vanished from the prefactor, which depends only on the infra-red cutoff α^{\prime} as $\left(\alpha^{\prime}\right)^{\Delta}$, where $\Delta=\frac{1}{2}\left(\sum_{i} n_{i}\right)^{2}$ is the scaling dimension of \widehat{O} as $\alpha \rightarrow 0^{+}$. The absence of the ultraviolet cutoff from the prefactor of the normal ordered form is a very special feature of free fermion systems, where there is no mixing of low-energy physics with processes at the ultra-violet cutoff scale, and the limits $\epsilon_{i} \rightarrow 0^{+}$ can be taken.

Using this result,

$$
\begin{equation*}
\left\{\Psi_{R}^{\dagger}(x, \epsilon), \Psi_{R}^{\dagger}\left(x^{\prime}, \epsilon^{\prime}\right)\right\}=\frac{\alpha^{\prime}}{2 \pi} 2\left(\epsilon+\epsilon^{\prime}\right): e^{i\left(\varphi_{R}(x, \epsilon)+\varphi_{R}\left(x^{\prime}, \epsilon^{\prime}\right)\right)}: \tag{46}
\end{equation*}
$$

which correctly vanishes when the limits $\epsilon, \epsilon^{\prime} \rightarrow 0^{+}$are taken. Similarly

$$
\begin{equation*}
\left\{\Psi_{R}(x, \epsilon), \Psi_{R}^{\dagger}\left(x^{\prime}, \epsilon^{\prime}\right)\right\}=\frac{1}{2 \pi}\left(\frac{i}{\left(x-x^{\prime}\right)+i\left(\epsilon+\epsilon^{\prime}\right)}+\frac{i}{\left(x^{\prime}-x\right)+i\left(\epsilon+\epsilon^{\prime}\right)}\right): e^{i\left(\varphi_{R}\left(x^{\prime}, \epsilon^{\prime}\right)-\varphi_{R}(x, \epsilon)\right)}: \tag{47}
\end{equation*}
$$

becomes equal to $\delta\left(x-x^{\prime}\right)$ when the limits $\epsilon, \epsilon^{\prime} \rightarrow 0^{+}$are taken.
In the Luttinger liquids, once couplings

$$
\begin{equation*}
H^{\prime}=g \int d x \rho_{R}(x) \rho_{L}(x) \tag{48}
\end{equation*}
$$

are introduced between fields with opposite chirality, the scaling dimensions of the fermion operators depend on g and ultra-violet cutoffs appear in the prefactor. This is because the "engineering dimension" of the fermion field is $\frac{1}{2}$, and to keep the "engineering dimension" of the operator fixed as its scaling dimension $\Delta(g)$ (the power of α in the prefactor of their boson-normal-ordered forms) changes with g, a counterterm $\epsilon^{\Delta(g)-\frac{1}{2}}$ must also be present in the prefactor.

