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A short summary of the exact fermion-boson “bosonization” duality of free-fermion 1+1d U(1)
conformal field theory.

BOSONIZATION ON THE CIRCLE

Consider the right-moving branch of chiral fermions on the circle of circumference L, with antiperiodic boundary
conditions:

Ψ†R(x) = −Ψ†R(x+ L) =
1√
L

∑
k

eikxc†k, eikL = −1. (1)

Here x is real, k = ±π/L,±3π/L,±5π/L, . . . ,±∞, and {ck, c†k′} = δkk′ , with c†kck ≡ nk. Here

{ΨR(x),Ψ†R(x′)} =
1

L

∑
k

eik(x−x′) =
∑
n

(−1)nδ(x− x′ + nL), (2)

where the RHS is the antiperiodically-repeated Dirac delta function. Note that ΨR(x)|ψ〉 is not a normalizable state,
even if |ψ〉 is, and the Dirac delta function is a distribution, not a true function. In the usual way, the field operator
can be defined by a regularization process, in this case

Ψ†R(x) = lim
ε→0+

Ψf†
R (x, ε) =

1√
L

∑
k

e−|k|εeikxc†k (3)

where

{Ψf
R(x, ε),Ψf†

R (x′, ε′)} =
i

2L sin(π(x− x′) + i(ε+ ε′))/L)
+

i

2L sin(π(x′ − x) + i(ε+ ε′))/L)
. (4)

Then define number and momentum operators

NR =
∑
k>0

c†kck − c−kc
†
−k, (5)

PR = ~
∑
k>0

k
(
c†kck + c−kc

†
−k

)
. (6)

Here NR has integer eigenvalues N , while the eigenvalues of PR are non-negative, with values π~M/L where M is an
integer satisfying (−1)M = (−1)N , M ≥ N2. The Hilbert space will be defined as the space spanned by the eigenstates
of PR with finite eigenvalue.

Define the (Virasoro) “primary states” |N〉 by

c†k|N〉 = 0, k < 2πN/L; ck|N〉 = 0, k > 2πN/L. (7)

Then

NR|N〉 = N |N〉, |N〉 =
(
eiθR

)N |0〉, (8)

where eiθR is unitary.
Then, for q > 0 = 2π/L, 4π/L, 6π/L, . . . ,∞, with eiqL = 1, define

bq =
√

(2π/qL)
∑
k

c†kck+q. (9)

These annihilate the primary states

bq|N〉 = 0, (10)
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and, as a consequence of the “chiral anomaly”
∑
k(nk+q − nk) = qL/2π, obey the Heisenberg (boson) algebra

[bq, b
†
q′ ] = δqq′ , [bq, bq′ ] = 0. (11)

In terms of these operators

PR = ~

(
π

L
N2
R +

∑
q>0

qb†qbq

)
, (12)

Ψ†R(x) =
1√
L
eiϕ

+
R(x)eiθReiϕ

−
R(x), (13)

where ϕ+
R(x) = (ϕ−R(x))†, and

ϕ−R(x) = πNR(x/L) + i
∑
q>0

√
(2π/qL)e−iqxbq. (14)

Note that there is no cutoff parameter of any kind in this expression.
Note that the equivalence of fermionic and bosonic forms are exact operator identities for chiral fermions in the

Hilbert space described above. It is easy to check this with explicit calculations. Consider 〈ψ2|Ψ†R(x)|ψ1〉 where, for
example

|ψ1〉 = b†q|0〉, |ψ2〉 = |1〉.

In the fermionic formalism, with k0 = π/L,

|ψ1〉 =
√

(2π/qL)
∑

−q<k<0

c†k+qck|0〉, |ψ2〉 = c†k0 |0〉.

Then

〈ψ2|Ψ†R(x)|ψ1〉 =
1√
L

√
(2π/qL)

∑
kk′

eikx〈0|ck0c
†
kc
†
k′+qck′ |0〉 = − 1√

L

√
(2π/qL)ei(k0−q)x.

In the bosonized form, this is given by

1√
L
〈0|e−iθReik0xeiθR(1 + i(i

√
(2π/qL)e−iqxbq))b

†
q|0〉,

which gives the same result. This exercise can be repeated with more complicated states, as the equivalence of the
the two forms of Ψ†R(x) is an exact mathematical identity.

Now consider the boson-normal-ordered forms of the operators

ΨR(x)Ψ†R(x′) =
i

2L sin(π(x− x′)/L)
ei(ϕ

+
R(x)−ϕ+

R(x′))ei(ϕ
−
R(x)−ϕ−R(x′)),

Ψ†R(x′)ΨR(x) =
i

2L sin(π(x′ − x)/L)
ei(ϕ

+
R(x)−ϕ+

R(x′))ei(ϕ
−
R(x)−ϕ−R(x′)). (15)

For x 6= x′ (mod L) we get, as required

ΨR(x)Ψ†R(x′) + Ψ†R(x′)ΨR(x) = 0, e2πi(x−x′)/L) 6= 1. (16)

Each term diverges as exp(2πi(x − x′)/L → 1. In this case, to make sense of the divergence and correctly recover
the anticommutator as the Dirac delta function, we must use the “ε-regularized” form of one or both of the two field
operators:

ΨR(x, ε) =
1√
L
e−iϕ

+
R(x+iε)e−iθRe−iϕ

−
R(x−iε), Ψ†R(x, ε) ≡ (ΨR(x, ε))

†
=

1√
L
eiϕ

+
R(x+iε)eiθReiϕ

−
R(x−iε), (17)
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with real positive ε (replace x ± iε by x ∓ iε for left-movers). A different ε can be used for each fermion field. Note

that the “bosonically-regulated” operator ΨR(x, ε) is distinct from the “fermionically-regulated” operator Ψf
R(x, ε)

(3), but they both have the same unregulated limit, so that

lim
ε→0+

〈ψ1|ΨR(x, ε)|ψ2〉 = lim
ε→0+

〈ψ1|Ψf
R(x, ε)|ψ2〉, (18)

where |ψ1〉 and |ψ2〉 are normalizable states in the Hilbert space spanned by eigenstates of PR with finite eigenvalue.
The key algebraic result is

exp
(
−[θR + ϕ−R(x− iε), θR + ϕ+

R(x+ iε′)]
)

= 2i sin (π((x− x′)− i(ε+ ε′))/L)) . (19)

From this,

{ΨR(x, ε),Ψ†R(x′, ε′)} =

(
i

2L sin(π(x− x′ + i(ε+ ε′))/L)
+

i

2L sin(π(x′ − x+ i(ε+ ε′)/L)

)
× ei(ϕ

+
R(x+iε)−ϕ+

R(x′+iε′))ei(ϕ
−
R(x−iε)−ϕ−R(x′−iε′)). (20)

On taking the limit ε, ε′ → 0+, the RHS becomes equal to the antiperiodically-repeated Dirac delta function∑
n(−1)nδ(x− x′ + nL). Similarly,

Ψ†R(x, ε)Ψ†R(x′, ε′) =
2i

L
sin(π((x− x′)− i(ε+ ε′))/L)×

ei(ϕ
+
R(x+iε)+ϕ+

R(x′+iε′)e2iθRei(ϕ
−
R(x−iε)+ϕ−R(x′−iε′). (21)

Taking the limit ε, ε′ → 0+ of this normal-ordered operator gives:

{Ψ†R(x),Ψ†R(x′)} = 0. (22)

The density operator is given by

ρR(x) =
1

L

(
NR +

∑
q>0

√
(qL/2π)

(
eiqxb†q + e−iqxbq

))
. (23)

The normalized state |ψR(x, ε)〉≡
√

(2L sinh(2πε/L)) Ψ†R(x, ε)|0〉 has the periodically-repeated width-2ε Lorentzian
particle density

〈ψR(x, ε)|ρR(x′)|ψR(x, ε)〉 =
1

L

∑
q

e−|q|εeiq(x−x
′), (24)

where the sum is over all q obeying exp iqL = 1. This becomes a (periodically-repeated) delta function when ε→ 0+.
Bosonization is a strict operator identity only for “complete” chiral fermions without a cutoff on |k − kF |, kF

= 2πNR/L, in a Fock space of states where (for right-movers) nk → (1, 0) as k → (−∞,∞). A cutoff produces
non-locality, and equality (“=”) gets replaced by long-wavelength proportional equivalence (“∼”).

BOSONIZATION ON THE INFINITE LINE

In this case we need to use the regularized form, and undo the boson normal-ordering. On the circle,

Ψ†R(x, ε) =
1√
L
e

1
2 ([θR+ϕ+

R(x+iε),θR+ϕ−R(x−iε)]eiϕR(x,α)

=
1√

(2L sinh(2πε/L)
eiϕR(x,α) (25)

with

ϕR(x, ε) = ϕ+
R(x+ iε) + θR + ϕ−R(x− iε). (26)
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Note that ϕR(x, ε) is Hermitian.
Now take the limit L→∞, N0 →∞, 2πN0/L → kFR, with finite ε, and NR = N0 + N ′R, where N ′R is finite.
Then

Ψ†R(x, ε) =
1√

(4πε)
eiϕR(x,ε). (27)

with

[ϕR(x, ε), ϕR(x′, ε′)] = −2i tan−1

(
x− x′

ε+ ε′

)
. (28)

Also define

ρR(x, ε) =
1

2π
∂xϕ(x, ε), (29)

with

[ϕR(x, ε), ρR(x′, ε′)] =
i

π

(
ε+ ε′

(x− x′)2 + (ε+ ε′)2

)
. (30)

Then ∫ ∞
−∞

dx ρR(x, ε) = N ′R (31)

is independent of ε, and has the important property

[N ′R, e
±iϕR(x,ε)] = ±eiϕR(x,ε). (32)

These commutation relations can be represented in terms of a chiral bosonic field AR(q) with the Heisenberg algebra
commutation relations

[AR(q), AR(q′)] = q′δ(q + q′), AR(q)† = AR(−q), (33)

where

ϕR(x, ε) = kFRx− i
∫ ∞
−∞

dq

q
e−|q|εeiqxAR(q), N ′R = AR(0). (34)

A shift of the background ground state charge density to kFR/2π has been made, so that the integer N ′R represents
a finite number of extra particles added to this background. Note that

[NR, ϕR(x, ε)] = −i
∫ ∞
−∞

dq e−|q|εeiqx[AR(0), q−1AR(q)] = −i, (35)

where [AR(0), q−1AR(q)] = δ(q) has been used. This allows the identification

lim
α→0+

−i
∫ α

−α

dq

q
AR(q) = θR. (36)

The singular structure at q = 0 of the algebra (33) on the infinite line thus reproduces the action-angle variables of
the circle geometry.

Primary states (fixed charge ground states) are defined by

AR(0)|N〉 = N |N〉, AR(q)|N〉 = 0, q < 0. (37)

For any operator

Ô =

∫ ∞
−∞

dq O(q)AR(q) (38)
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there is a decompositon

Ô = Ô+ + Ô0 + Ô−,

Ô+ = lim
α→0+

∫ ∞
α

dq O(q)AR(q),

Ô0 = lim
α→0+

∫ α

−α
dq O(q)AR(q),

Ô− = lim
α→0+

∫ −α
−∞

dq O(q)AR(q). (39)

Normal ordering places all occurences of AR(q) with q > 0 to the left of those of AR(0), and all occurences of AR(q)
with q < 0 to the right. In particular,

: eiÔ :≡ eiÔ
+

eiÔ
0

eiÔ
−
, (40)

and

eiÔ = lim
α→0+

exp

(
− 1

2

∫ ∞
α

qdq O(q)O(−q)
)

: eiÔ : . (41)

Now consider the normal-ordered form of a product of fermion operators

Ô =
1√

(4πε1)
ein1ϕR(x1,ε1) 1√

(4πε2)
ein2ϕR(x2,ε2) . . . , (42)

where ni = ±1. First use the BCH formula and the fundamental commutation relation (28) to combine them into a
single exponential:

Ô =

(∏
i

1√
(4πεi)

)∏
i<j

(
(εi + εj) + i(xi − xj)√
((εi + εj)2 + (xi − xj)2)

)ninj

 eiΘ, Θ =
∑
j

njϕR(xj , εj). (43)

Now carry out the normal-ordering:

eiΘ = lim
α→0+

∏
ij

exp−ninj
(

1
2

∫ ∞
α

dq

q
e−q(εi+εj)

)
×

∏
i<j

exp

(
ninj

∫ ∞
0

dq

q
e−q(εi+εj)(1− cos(q(xi − xj))

)
: eiΘ :

= (eCα)
1
2 (

∑
j nj)2

(∏
i

√
(2εi)

)∏
i<j

(√
((xi − xj)2 + (εi + εj)

2)
)ninj

 : eiΘ : , (44)

where C is Catalan’s constant. It is useful to define α′ = αeC. Reassembling the parts,

Ô = lim
α→0+

(α′)
1
2 (

∑
i ni)

2

(∏
i

1√
2π

)∏
i<j

((εi + εj) + i(xi − xj))ninj

 : eiΘ : . (45)

This expression corresponds to replacing 2π/L by α′ in the circle-geometry expressions, and taking the limit α′|xi −
xj | � 1, with fixed xi, In these expressions, the formal limit α → 0+ is not actually taken; instead the limiting
power-law behavior as a function of α in this limit is extracted as the scaling dimension of the normal-ordered
operator.

Note that provided all the xi are distinct, the ultra-violet cutoffs εi have vanished from the prefactor, which depends
only on the infra-red cutoff α′ as (α′)∆, where ∆ = 1

2 (
∑
i ni)

2 is the scaling dimension of Ô as α→ 0+. The absence
of the ultraviolet cutoff from the prefactor of the normal ordered form is a very special feature of free fermion systems,
where there is no mixing of low-energy physics with processes at the ultra-violet cutoff scale, and the limits εi → 0+

can be taken.



6

Using this result,

{Ψ†R(x, ε),Ψ†R(x′, ε′)} =
α′

2π
2(ε+ ε′) : ei(ϕR(x,ε)+ϕR(x′,ε′)) : (46)

which correctly vanishes when the limits ε, ε′ → 0+ are taken. Similarly

{ΨR(x, ε),Ψ†R(x′, ε′)} =
1

2π

(
i

(x− x′) + i(ε+ ε′)
+

i

(x′ − x) + i(ε+ ε′)

)
: ei(ϕR(x′,ε′)−ϕR(x,ε)) : (47)

becomes equal to δ(x− x′) when the limits ε, ε′ → 0+ are taken.
In the Luttinger liquids, once couplings

H ′ = g

∫
dxρR(x)ρL(x) (48)

are introduced between fields with opposite chirality, the scaling dimensions of the fermion operators depend on g
and ultra-violet cutoffs appear in the prefactor. This is because the “engineering dimension” of the fermion field is
1
2 , and to keep the “engineering dimension” of the operator fixed as its scaling dimension ∆(g) (the power of α in the

prefactor of their boson-normal-ordered forms) changes with g, a counterterm ε∆(g)− 1
2 must also be present in the

prefactor.


