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An alternative to the conventional approach
to bosonization in one dimension that invokes
the Dirac equation in 1+1 dimension with chiral
‘right-movers’ and ‘left-movers’ is proposed that
works directly with the bounded parabolic en-
ergy bands relevant to Condensed Matter prob-
lems. This technique allows us to use a basis dif-
ferent from the plane wave basis that makes this
non-chiral approach ideally suited to study Lut-
tinger liquids that have boundary or impurities
that break translational symmetry. We provide
a simple solution to the electron Green function
for the problem of Luttinger liquid (LL) with a
boundary and also for a LL with a single im-
purity. The present method is significantly eas-
ier than the g-ology based standard bosonization
and other methods that require a combination
of RG along with bosonization/refermionization
techniques but our results are broadly consistent
with the ones obtained using those methods.
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I. A CRITIQUE OF CONVENTIONAL ‘CHIRAL’ BOSONIZATION

The subject of what is currently referred to as ‘bosonization’
started with the works of Coleman and also independently by
Luther. While Coleman showed that the fermion Green func-
tion massive of the Thirring model has a independent descrip-
tion in terms of bosonic variables of an ‘equivalent’ model in-
volving commuting variables namely the so-called Sine-Gordon
theory, other authors such as Luther and Mandelstam took
this to mean that the Fermi field operator itself has an ex-
pression in terms of bosonic variables. This latter assertion
is much stronger and is stated without proof in those arti-
cles making them subject to criticism. The stronger asser-
tion has been used by later researchers in Condensed Matter
Physics to generate hamiltonians of fermions in one dimen-
sion that go under the name ‘g-ology’. Here we argue that
the stronger assertion is in fact false making the g-ology pro-
gram in Condensed Matter Physics of questionable validity.
This approach has been used in highly cited works of Kane
and Fisher on impurities in Luttinger liquids and nearly ev-
erywhere in the textbook by Giamarchi. An alternative is
proposed, mainly for Condensed Matter problems, involving
an action for fermions in terms of hydrodynamic variables and
a prescription for generating the N-point functions of fermions
that allows one to go beyond the linear dispersion approxima-
tion and also the random phase approximation. The particle-
hole excitations of the Fermi system that make the kinetic
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energy diagonal in these operators are not bosons even ‘ap-
proximately’ making the term ‘bosonization’ a misnomer (The
belief in conventional bosonization that the kinetic energy
K = ∑

k εkc
†
kck = ∑

p>0 vFp b†p,Rbp,R + ∑
p>0 vFp b†p,Lbp,L + const

is an operator identity is shown to be false, it is merely a
mnemonic for generating the correlation functions. Coleman’s
assertion that ψ̄γµψ ≡ − β

2πε
µν∂νϕ is a metaphor only, for the

left hand side is a Grassmann number and the right hand side
is a real number - a Grassmann number can never be equal to
a real number though it can be equivalent to a real number).
We have some serious issues with the conventional approach

to bosonization. The purpose of this section is to motivate the
rest of the article by these criticisms. In his excellent textbook,
based on pioneering works of Haldane, Giamarchi trumpets the
formula for the field operator (Luther’s construction),

ψ†r(x) = Limε→0 ψ†r(x; ε) = Limε→0
1√
2εL

e−ir(kF−π
L)xeiφ

†
r(x,ε)+iφr(x,ε)U †

r

(1)
where r = ± corresponds to right and left movers and,

φr(x, ε) = −πrx

L
Nr + i

∑

p 6=0




2π

L|p|



1
2

e−
Lε|p|
2π Y (rp)bpe

ipx (2)

The main point we are making is that Eq.(1) is mathemati-
cally meaningless as the limit Limε→0 almost certainly does
not exist. In particular, it is not true that matrix elements of
the right hand side of Eq.(1) are the matrix elements of the
field operator (at least no such proof is forthcoming). Some
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authors recommend that we postpone taking the ε → 0 limit
until the end of the ‘calculation’. Until the end of what calcu-
lation ? What if I don’t want to do any calculation ? What
if I just want to stare at this operator itself ? If one insists
on a calculation, how about calculating the matrix elements
of the field operator ? All these rhetorical questions lead
to one conclusion - that is, all the ε’s have be the same for all
the field operators in the N-point function calculation and the
fermion commutation rules are recovered only at the level of
correlation functions and not at the level of operators. This is
in fact clear if one consults Coleman’s pioneering paper on the
equivalence of the massive Thirring model and Sine Gordon
equation, he only shows that the Green functions come out
right in both the languages, it is never shown that the matrix
elements of the field operator come out right. Thus the g-ology
program which involves a literal interpretation of the Luther
construction is on shaky ground.
Therefore, the following set of judgemental characterizations

are in order.

(a) Preposterous : The Fermi field operator has an ex-
pression in terms of bosons constructed out of Fermi bilinears
and other objects like Klein factors. No such claim has ever
been proven in the literature. In other words no proof exists
that all matrix elements, or indeed any matrix element of the
nonlocal combination of bosons is equal to the corresponding
matrix elements of the field operator.
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(b) Plausible but still untrue : Equal-time number
conserving products of Fermi fields are expressible in terms of
Fermi bilinears that are bosonic in character. This has also
never been proven – just showing that the propagator comes
out right is not enough. All matrix elements have to come out
right, showing the finite temperature case is also not enough
– that is just the diagonal matrix elements.

(c) Possible Fact : N-point functions have a non lo-
cal integral representation involving commuting variables that
may be simply related to Fermi bilinears such as current and
densities.

In the literature, the operator description is sometimes
replaced by a path integral version based on Hubbard
Stratanovich transformation making these ideas appear more
legitimate. However, both these approaches are flawed for the
same reason - they brazenly manipulate infinities under the
euphemism known as ‘normal ordering’. Our approach differs
from all these in several respects. The n-point Fermi functions
are reduced to a closed form that is shown to be exact in the
RPA limit kF ,m → ∞, vF = kF/m < ∞. It is shown to
reproduce the expected results when the impurity is turned
off and the two-body potential is on and vice versa. These
features are unlike the other approaches where some sort of
renormalization group analysis is also needed. Besides, no
mathematically questionable manipulations such as ‘normal
ordering’ are made. Now we go on to discuss our approach.
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II. IMPURITY IN A LUTTINGER LIQUID

For free electrons in an impurity potential V (x) = V0δ(x),
we list the following expressions for the propagator, which is
nothing but the sum of these four pieces (here θ(z) is the
Heaviside unit step function).

< T ΨR(x, t)Ψ†
R(x

′
, t
′
) >= eikF (x−x

′
) 1

[(x− x′)− vF (t− t′)]

[
i

2π
− V0

2πvF
(
θ(x

′
)θ(−x)

(
1− V0

i
vF

)

−θ(x)θ(−x
′
)

(
1 + V0

i
vF

) )]

< T ΨL(x, t)Ψ†
L(x

′
, t
′
) >= e−ikF (x−x

′
) 1

[−(x− x′)− vF (t− t′)]

[
i

2π
− V0

2πvF
(
θ(−x

′
)θ(x)

(
1− V0

i
vF

) − θ(−x)θ(x
′
)

(
1 + V0

i
vF

) )]
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< T ΨR(x, t)Ψ†
L(x

′
, t
′
) >= eikF (x+x

′
) V0

2πvF
(
θ(−x

′
)θ(−x)

(
1− V0

i
vF

)

− θ(x)θ(x
′
)

(
1 + V0

i
vF

))
1

(−x′ − x)− vF (t′ − t)

< T ΨL(x, t)Ψ†
R(x

′
, t
′
) >= eikF (−x−x

′
) V0

2πvF
(

θ(x
′
)θ(x)

(
1− V0

i
vF

)

−θ(−x)θ(−x
′
)

(
1 + V0

i
vF

) )
1

(x′ + x)− vF (t′ − t)
(3)

The average density and density correlation may be written as
follows.

< ρ(x, t) > −ρ0 = −V0

π2

mv2
F

(V 2
0 + v2

F )

∫ ∞
0

dq

q
cos(qx) Log




2kF + q

|2kF − q|



(4)
The density-density correlation function is,

< T ρ(x, t)ρ(x
′
, t
′
) > − < T ρ(x, t) >< T ρ(x

′
, t
′
) >

= − < T Ψ(x, t)Ψ†(x
′
, t
′
) >< T Ψ(x

′
, t
′
)Ψ†(x, t+) >
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If ρs(x, t) is the slowly varying part of the density,

< T ρs(x, t)ρs(x
′
, t
′
) > − < T ρs(x, t) >< T ρs(x

′
, t
′
) >=

− V 2
0

(2π)2
θ(xx

′
)

(v2
F + V 2

0 )
[

1

[(x′ + x) + vF (t′ − t)]2
+

1

[(x + x′) + vF (t− t′)]2
]

+
1

[(x− x′) + vF (t− t′)]2
[−θ(xx

′
)

(2π)2
− θ(−xx

′
)

(2π)2
v2

F

(v2
F + V 2

0 )
]

+
1

[(x− x′)− vF (t− t′)]2
[−θ(xx

′
)

(2π)2
−θ(−xx

′
)

(2π)2
v2

F

(v2
F + V 2

0 )
] (5)

The following expression for the field operator (also a
mnemonic only)
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ψ(x, t) =

CR,1(x) eikFx

e
iπ

∫ x
sgn(x)∞ dy ρ̃s(y,t)+i

∫ x
∞ sgn(x) dy v(y,t)

+CR,2(x) eikFx

e
iπ

∫ x
sgn(x)∞ dy ρ̃s(y,t)+2πi

∫ x
sgn(x)∞ dy ρ̃s(−y,t)+i

∫ x
∞ sgn(x) dy v(y,t)

+CL,1(x) e−ikFx

e
−iπ

∫ x
sgn(x)∞ dy ρ̃s(y,t)+i

∫ x
∞ sgn(x) dy v(y,t)

+CL,2(x) e−ikFx

e
−iπ

∫ x
sgn(x)∞ dy ρ̃s(y,t)−2πi

∫ x
sgn(x)∞ dy ρ̃s(−y,t)+i

∫ x
∞ sgn(x) dy v(y,t)

(6)

This should be thought of as short hand for the n-point func-
tions it generates. These functions will have the products
of several of the C-functions. These have to be independently
fixed by making contact with the corresponding expressions
obtained from Fermi algebra. This has been done and the
following expressions for the Green function of the interact-
ing system has been obtained. One last point before we do
this, fermion commutation rules inferred from Eq.(6) do come
out as expected namely ψ(x, t)ψ(x

′
, t) = −ψ(x

′
, t)ψ(x, t) and

ψ(x, t)ψ†(x
′
, t) = −ψ†(x

′
, t)ψ(x, t) for x 6= x

′
as can be easily

verified.
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Particle Propagator : If xx
′
> 0 :

< T ΨR(x, t)Ψ
†
R(x

′
, t
′
) > = eikF (x−x

′
) [

i

2π
]

< e
(iπ

∫x
sgn(x)∞ dy ρ̃s(y,t)+i

∫x∞ sgn(x) dy v(y,t))

e
(−iπ

∫x
′

sgn(x
′
)∞ dy

′
ρ̃s(y

′
,t
′
)−i

∫x
′
∞ sgn(x

′
)
dy
′
v(y

′
,t
′
))

>

< T ΨL(x, t)Ψ
†
L(x

′
, t
′
) > = e−ikF (x−x

′
)[

i

2π
]

< e
(−iπ

∫x
sgn(x)∞ dy ρ̃s(y,t)+i

∫x∞ sgn(x) dy v(y,t))

e
(iπ

∫x
′

sgn(x
′
)∞ dy

′
ρ̃s(y

′
,t
′
)−i

∫x
′
∞ sgn(x

′
)
dy
′
v(y

′
,t
′
))

>
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< T ΨR(x, t)Ψ†
L(x

′
, t
′
) > =

eikF (x+x
′
) V0

4πvF
(
θ(−x

′
)θ(−x)

(
1− V0

i
vF

)

− θ(x)θ(x
′
)

(
1 + V0

i
vF

))

e

2V 2
0 +v2

F
2(V 2

0 +v2
F )

Log(2x)

< e
(iπ

∫ x
sgn(x)∞ dy ρ̃s(y,t)+2πi

∫ x
sgn(x)∞ dy ρ̃s(−y,t)+i

∫ x
∞ sgn(x) dy v(y,t))

e
(iπ

∫ x
′

sgn(x
′
)∞ dy

′
ρ̃s(y

′
,t
′
)−i

∫ x
′

∞ sgn(x
′
)
dy
′

v(y
′
,t
′
))

>

+eikF (x+x
′
) V0

4πvF




θ(x
′
)θ(x)

(
1 + V0

i
vF

) − θ(−x)θ(−x
′
)

(
1− V0

i
vF

)




e

2V 2
0 +v2

F
2(V 2

0 +v2
F )

Log(2x
′
)

< e
(iπ

∫ x
sgn(x)∞ dz ρ̃s(z,t)+i

∫ x
∞ sgn(x) dz v(z,t))

e
(iπ

∫ x
′

sgn(x
′
)∞ dz

′
ρ̃s(z

′
,t
′
)+2πi

∫ x
′

sgn(x
′
)∞ dz

′
ρ̃s(−z

′
,t
′
)−i

∫ x
′

∞ sgn(x
′
)
dz
′

v(z
′
,t
′
))

>
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< T ΨL(x, t)Ψ†
R(x

′
, t
′
) > = eikF (−x−x

′
) V0

4πvF

(
θ(x

′
)θ(x)

(
1− V0

i
vF

)

−θ(−x)θ(−x
′
)

(
1 + V0

i
vF

) )

e

2V 2
0 +v2

F
2(V 2

0 +v2
F )

Log(2x)

< e
(−iπ

∫ x
sgn(x)∞ dy ρ̃s(y,t)−2πi

∫ x
sgn(x)∞ dy ρ̃s(−y,t)+i

∫ x
∞ sgn(x) dy v(y,t))

e
(−iπ

∫ x
′

sgn(x
′
)∞ dy

′
ρ̃s(y

′
,t
′
)−i

∫ x
′

∞ sgn(x
′
)
dy
′

v(y
′
,t
′
))

>

+e−ikF (x+x
′
) V0

4πvF



θ(−x

′
)θ(−x)

(
1 + V0

i
vF

) − θ(x)θ(x
′
)

(
1− V0

i
vF

)




e

2V 2
0 +v2

F
2(V 2

0 +v2
F )

Log(2x
′
)

< e
(−iπ

∫ x
sgn(x)∞ dz ρ̃s(z,t)+i

∫ x
∞ sgn(x) dz v(z,t))

e
(−iπ

∫ x
′

sgn(x
′
)∞ dz

′
ρ̃s(z

′
,t
′
)−2πi

∫ x
′

sgn(x
′
)∞ dz

′
ρ̃s(−z

′
,t
′
)−i

∫ x
′

∞ sgn(x
′
)
dz
′

v(z
′
,t
′
))

>
(7)
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For obtaining < ψ†(x
′
, t
′
)ψ(x, t) > we simply place all the x

′

terms to the left of all the x terms. The long wavelength part
of the density density correlation in the RPA limit with mutu-
tal interaction vq (forward scattering only) and the impurity
potential V0 is given by,

< ρ(x, t)ρ(x
′
, t
′
) >=

θ(xx
′
)

2π
(

1

((x + x′) + v′(t− t′))2
v3

F

2πv′(V 2
0 + v2

F )

− 1

((x + x′) + v(t− t′))2
vF

2πv
)

+
1

2π
(−θ(−xx

′
)

1

((x− x′) + v′(t− t′))2
v3

F

2πv′(V 2
0 + v2

F )

−θ(xx
′
)

1

((x− x′) + v(t− t′))2
vF

2πv
)

+
θ(xx

′
)

2π
(

1

((x + x′)− v′(t− t′))2
v3

F

2πv′(V 2
0 + v2

F )

− 1

((x + x′)− v(t− t′))2
vF

2πv
)

+
1

2π
(−θ(−xx

′
)

1

((x− x′)− v′(t− t′))2
v3

F

2πv′(V 2
0 + v2

F )

−θ(xx
′
)

1

((x− x′)− v(t− t′))2
vF

2πv
) (8)
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where,

v2 = v2
F +

vFvq

π

v
′2 = v2

F

(v2 + V 2
0 )

(V 2
0 + v2

F )

We can see that the equation Eq.(8) is consistent with Eq.(5)
since the former reduces to the latter when mutual interaction
between fermions is absent (v = v

′
= vF , V0 6= 0). Con-

versely, when the impurity is absent but mutual interactions
are present ( V0 = 0, v

′
= v 6= vF ) then,

< ρ(x, t)ρ(x
′
, t
′
) >V0=0 = −vF

v

1

(2π)2
(

1

((x− x′) + v(t− t′))2

+
1

((x− x′)− v(t− t′))2
) (9)

as it should be. Lastly, when V0 = ∞ we expect the results
to coincide with those of a Luttinger liquid with a boundary
obtained in an earlier section. The velocity and density are
related in the RPA limit as follows.

v(x, t) = −π ∂vF t

∫ x
sgn(x)∞ ρ̃(y

′
, t) dy

′
(10)

Using the form of the density-density correlation in the long-
wavelength limit, and the relation between velocity and density
and the Baker Hausdorff theorem we may evaluate the single
particle propagator.
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The particle propagator for right movers may be evaluated
to yield,

(a) For xx
′
> 0

< ψR(x, t)ψ†R(x
′
, t
′
) >=

eikF (x−x
′
) e

−[
v2
F

(V 2
0 +v2

F )
(−vF

4v
′+ v

′
4vF

)+(
vF
4v− v

4vF
)]Log(4xx

′
)

e

v2
F

(V 2
0 +v2

F )
(−vF

4v
′+ v

′
4vF

)Log((x+x
′
)2−v

′2(t−t
′
)2)

e
(
vF
4v− v

4vF
)Log((x+x

′
)2−v2(t−t

′
)2)

e
(1
2−

vF
4v− v

4vF
)Log((x−x

′
)+v(t−t

′
))

e
(−vF

4v− v
4vF

−1
2)Log((x−x

′
)−v(t−t

′
))

(11)

It is easy to see that this also has all the right limits. For
instance, when the impurity is absent V0 = 0, v = v

′ 6= vF ,
Eq.(11) reduces to,

< ψR(x, t)ψ†R(x
′
, t
′
) >V0=0= eikF (x−x

′
)

e
(1
2−

vF
4v− v

4vF
)Log((x−x

′
)+v(t−t

′
))

e
(−vF

4v− v
4vF

−1
2)Log((x−x

′
)−v(t−t

′
))

(12)

as it should. Conversely, if mutual interactions between
fermions are absent but the impurity is present then, V0 6= 0
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but v = v
′
= vF . In this case,

< ψR(x, t)ψ†R(x
′
, t
′
) >v=v

′
=vF

= e−Log((x−x
′
)−vF (t−t

′
)) (13)

again as it should be. Lastly, if V0 = ∞ (this also means
v = v

′
) we expect the results to coincide with those of a LL

with a boundary. In this case Eq.(11) becomes

< ψR(x, t)ψ†R(x
′
, t
′
) >V0=∞=

eikF (x−x
′
) e

−(
vF
4v− v

4vF
) Log(4xx

′
)

e
(
vF
4v− v

4vF
)Log((x+x

′
)2−v2(t−t

′
)2)

e
(1
2−

vF
4v− v

4vF
)Log((x−x

′
)+v(t−t

′
))

e
(−vF

4v− v
4vF

−1
2)Log((x−x

′
)−v(t−t

′
))

(14)

Now we may extract the dynamical density of states for right
movers.
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For this we examine the equal space and unequal time part
of the Green function. First we verify that far away from the
impurity we get what we expect.

< ψR(x →∞, t)ψ†R(x →∞, t
′
) > ∼ e

(−vF
2v− v

2vF
)Log(v(t−t

′
))

(15)
So that far away from the impurity D(ω) ∼ |ω|δ where δ =
v

2vF
+ vF

2v − 1. At the impurity we expect the exponent to be
very different.

< ψR(x = 0, t)ψ†R(x = 0, t
′
) >=

e
[

v2
F

(V 2
0 +v2

F )
(−vF

2v
′+ v

′
2vF

)− v
vF

] Log(t−t
′
)

(16)

From this we may conclude that at the impu-

rity, the density of states is D(ω) = |ω|δ′ where

δ
′
=

v2
F

(V 2
0 +v2

F )
( vF

2v
′ − v

′
2vF

) + v
vF
− 1 . A plot of δ

′
and δ ver-

sus v and V0 indicates that δ
′
> δ for repulsive interactions

(v > vF ) and δ
′
< δ for attractive interactions (v < vF ). We

may surmise that the exponent associated with a.c. conduc-
tivity is the difference between these two δ’s. Thus we may

suspect σ(ω) ∼ |ω|(δ′−δ). In other words, there is breaking
of the chain when repulsive interactions and the impurity are
both present and a healing of the defect when attractive in-
teractions and impurity are present. When any one of these is
absent, the conductivity becomes nonsingular (unremarkable).
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III. CLOSED FORM FOR PROPAGATOR OF LUTTINGER LIQUID
IN ONE DIMENSION WITH A SINGLE IMPURITY

If,

v2 = v2
F +

vFvq

π
vq = const mutual interaction forward scattering
only.

v
′2 = v2

F
(v2 + V 2

0 )

(V 2
0 + v2

F )

V0 is impurity strength.
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In general, we may write for the full particle prop-
agator,

< T ΨR(x, t)Ψ
†
R(x

′
, t
′
) > =

eikF (x−x
′
) [

i

2π
− V0

2πvF




θ(x
′
)θ(−x)


1− V0

i
vF



− θ(x)θ(−x

′
)


1 + V0

i
vF






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′
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F

) Log(4xx
′
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−(
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′
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′
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e
(−vF

4v− v
4vF

−1
2) Log((x+x

′
)−v(t−t
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′
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v
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Rev. B. 57, 10755 (1998)

58 Bond versus site doping models for the off chain doped Haldane gap system Y2BaNiO5, J. Lou, S. Qin, Z. Su and L. Yu,
Phys. Rev. B. 58, 12672 (1998)

59 Anderson localization vesus delocalization of interacting fermions in one dimension, P. Schmitteckert, T. Schulze, C. Schuster,
P. Schwab and U. Eckern, Phys. Rev. Lett. 80, 560 (1998)

60 Phase coherence in a random one dimensional system of interaction fermions: A density matrix renormalization group study,
P. Schmitteckert and U. Eckern, Phys. Rev. B. 53, 15397 (1996)

61 Effects of substituting the rare earth ion R by nonmagnetic impurties in R2BaNiO5: Theory and numerical density matrix
renormalization group results, T. -K. Ng, J. Lou and Z-. B. Su, Phys. Rev. B. 61, 11487 (2000)

62 Density matrix renormalization group approach to quantum impurity problems, S. Nishimoto and E. Jeckelmann, Journal of
Physics: Condensed Matter 16, 613 (2004)

63 Kondo screening cloud in the single impurity anderson model: A DMRG study, A. Holzner, I. P. McCulloch, U. Schollwöck,
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