- 1. Find an average and standard deviation of n integers. First input n and then input the integers. Possible algorithm is given here. Notice use of the variable Counter to control the loop.
 - (a) Input n
 - (b) Sum = 0
 - (c) SquaredSum = 0
 - (d) Counter = 0
 - (e) if Counter >n goto step k
 - (f) Input a
 - (g) Add a to Sum
 - (h) Add a^2 to SquaredSum
 - (i) Increase counter by one
 - (j) goto step e
 - (k) Average = Sum/n
 - (l) Variance = SquaredSum/n Average*Average
 - (m) print Average, Variance
 - (n) end
- 2. Generate all terms of Fibonacci sequence which are less than m. Fibonacci sequence is defined by a recursion relation

$$a_0 = a_1 = 1$$

 $a_n = a_{n-1} + a_{n-2}$

for $n \ge 2$. Here we do not know, in advance, how many terms need to be generated. Notice the condition used to stop the loop.

- (a) Input m
- (b) a0 = a1 = 1
- (c) Print a0, a1
- (d) a2 = a0 + a1
- (e) if a2 >m goto step k
- (f) print a2
- (g) a0 = a1
- (h) a1 = a2
- (i) a2 = a0 + a1
- (j) goto step e
- (k) end
- 3. A class of 10 students have finished their exam. Input their marks and grade them based on the following table.
 - <30 Fail, >=30 and <60 Pass, >=60 and <80 Good, >=80 Excellent.
- 4. Calculate sum of the first n terms of the Taylor series expansion of $\sin(x)$. Input n, x. Print the sum and remainder.
- 5. Input a positive number and determine if it is a prime.