1. Verify, by direct substitution, that $G_{ \pm}=e^{ \pm i k r} / r$ are solutions of

$$
\left(\nabla^{2}+k^{2}\right) G(\mathbf{r})=-4 \pi \delta(\mathbf{r}) .
$$

2. Show that

$$
k\left|\vec{r}-\overrightarrow{r^{\prime}}\right|=k r-k\left(\hat{r} \cdot \overrightarrow{r^{\prime}}\right)+\frac{k\left(\hat{r} \times \overrightarrow{r^{\prime}}\right)^{2}}{2 r}+\cdots .
$$

Solution is

$$
\begin{aligned}
\left|\bar{r}-\bar{r}^{\prime}\right| & =r\left(1+\left(\frac{r^{\prime}}{r}\right)^{2}-2\left(\frac{r^{\prime}}{r}\right) \hat{r} \cdot \hat{r}^{\prime}\right)^{1 / 2} \\
& =r\left(1-\left(\frac{r^{\prime}}{r}\right) \hat{r} \cdot \hat{r}^{\prime}+\frac{1}{2}\left(\frac{r^{\prime}}{r}\right)^{2}-\frac{1}{2}\left(\frac{r^{\prime}}{r}\right)^{2}\left(\hat{r} \cdot \hat{r}^{\prime}\right)^{2}+\cdots\right) \\
& =r-\hat{r} \cdot \bar{r}^{\prime}+\frac{\left(\hat{r} \times \bar{r}^{\prime}\right)^{2}}{2 r}+\cdots
\end{aligned}
$$

since

- $\left(\hat{r} \times \hat{r}^{\prime}\right)^{2}=\sin ^{2} \theta=1-\cos ^{2} \theta=1-\left(\hat{r} \cdot \hat{r}^{\prime}\right)^{2}$
- $(1+x)^{1 / 2}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+O\left(x^{5}\right)$

3. Show that the gaussian wave packet moves without appreciable change in the width over time t if $t \ll 2 m / \hbar(\Delta k)^{2}$. The Gaussian wave packet is given by

$$
|\Psi(x, t)|^{2}=\frac{1}{\sqrt{\pi} \sigma(t)} \exp \left[-\frac{\left(x-\frac{\hbar k_{0}}{m} t\right)^{2}}{\sigma^{2}(t)}\right]
$$

where $\sigma(t)=\sigma_{0}\left(1+\frac{\hbar^{2}}{m^{2} \sigma_{0}^{G}} t^{2}\right)$ indicates the spread in the wave packet at time t. If $t \ll \frac{m \sigma_{0}^{2}}{\hbar}$, then the spread does not change appreciably. And $\Delta k=\frac{\sqrt{2}}{\sigma_{0}}$.
4. Apply the Born approximation to obtain differential cross section for the following potentials:
(a) The square well potential

$$
\begin{align*}
V(r) & =-V_{0} \text { for } r<a \tag{1}\\
& =0 \text { for } \quad r>a \tag{2}
\end{align*}
$$

First we find $V(\mathbf{q})$.

$$
\begin{aligned}
V(\mathbf{q}) & =\frac{1}{(2 \pi)^{3}} \int d^{3} r V(\mathbf{r}) e^{i \mathbf{q} \cdot \mathbf{r}} \\
& =\frac{1}{(2 \pi)^{3}} \int r^{2} d r V(r) \int_{0}^{\pi} e^{i q r \cos \theta} \sin \theta d \theta \\
& =\frac{1}{(2 \pi)^{3}} \frac{2}{q} \int r d r V(r) \sin (q r) \\
& =-\frac{1}{(2 \pi)^{3}} \frac{2 V_{0}}{q} \int_{0}^{a} r \sin (q r) d r \\
& =\frac{1}{(2 \pi)^{3}} \frac{2 V_{0}}{q^{3}}(a q \cos a q-\sin a q)
\end{aligned}
$$

Then the differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{m^{2} V_{0}^{2}}{\pi^{2} \hbar^{2} q^{6}}(a q \cos a q-\sin a q)^{2}
$$

where $q=2 k \sin (\Theta / 2)$
(b) The Gaussian Potential

$$
V(r)=-V_{0} \exp \left[-\frac{1}{2}\left(\frac{r}{a}\right)^{2}\right]
$$

To find $V(\mathbf{q})$,

$$
\begin{aligned}
V(\mathbf{q}) & =\frac{1}{(2 \pi)^{3}} \int d^{3} r V(\mathbf{r}) e^{i \mathbf{q} \cdot \mathbf{r}} \\
& =\frac{1}{(2 \pi)^{3}} \frac{2}{q} \int r d r V(r) \sin (q r) \\
& =-\frac{1}{(2 \pi)^{3}} \frac{2 V_{0}}{q} \int_{0}^{\infty} r \exp \left(-\frac{1}{2}\left(\frac{r}{a}\right)^{2}\right) \sin (q r) d r \\
& =-\frac{1}{(2 \pi)^{3}} \frac{2 V_{0}}{q} \frac{1}{2 i} \int_{-\infty}^{\infty} r e^{-\frac{1}{2} \frac{r^{2}}{a^{2}}+i q r} d r \\
& =-\frac{1}{(2 \pi)^{3}} 2 \sqrt{\pi} V_{0} a^{3} e^{-\frac{1}{2} a^{2} q^{2}}
\end{aligned}
$$

The scattering amplitude is given by

$$
f_{k}(\hat{r})=\frac{m V_{0} a^{3}}{\pi \hbar^{2}} \sqrt{\pi} e^{-\frac{1}{2} a^{2} q^{2}}
$$

And hence the differenetial cross section is given by

$$
=\frac{m^{2} V_{0}^{2} a^{6}}{\pi \hbar^{4}} e^{-a^{2} q^{2}}
$$

(c) The Exponential Potential

$$
V(r)=-V_{0} \exp \left(-\frac{r}{a}\right)
$$

To find $V(\mathbf{q})$,

$$
\begin{aligned}
V(\mathbf{q}) & =\frac{1}{(2 \pi)^{3}} \int d^{3} r V(\mathbf{r}) e^{i \mathbf{q} \cdot \mathbf{r}} \\
& =\frac{1}{(2 \pi)^{3}} \frac{2}{q} \int r d r V(r) \sin (q r) \\
& =-\frac{1}{(2 \pi)^{3}} \frac{2 V_{0}}{q} \int_{0}^{\infty} r \exp \left(-\frac{r}{a}\right) \sin (q r) d r \\
& =-\frac{1}{(2 \pi)^{3}} \frac{4 V_{0}}{q} \frac{a^{3} q}{1+2 a^{2} q^{2}+a^{4} q^{4}}
\end{aligned}
$$

Plot the differential cross section in each case.
5. The scattering of fast electrons by a complex atom can be, in many cases, represented fairly accurately by the following form for the potential energy distribution:

$$
V=-\frac{Z e^{2}}{r}+Z e^{2} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime}
$$

For the hydrogen atom in ground state, we may write

$$
\rho(r)=\left|\psi_{1 s}\right|^{2}
$$

Calculate differential cross section.
Suppose a charge distribution is given by $\rho(\mathbf{r})$, then the potential energy of another charge Q due to potential of $\rho(r)$ is

$$
V(\mathbf{r})=Q \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r^{\prime}
$$

The the Fourier transform of V

$$
\begin{aligned}
V(\mathbf{q}) & =\int V(\mathbf{r}) e^{-i \mathbf{q} \cdot \mathbf{r}} d^{3} r \\
& =Q \iint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} e^{-i \mathbf{q} \cdot \mathbf{r}} d^{3} r^{\prime} d^{3} r \\
& =Q \int \rho\left(\mathbf{r}^{\prime}\right) d^{3} r^{\prime} \int \frac{e^{-i \mathbf{q} \cdot \mathbf{r}}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r \\
& =\frac{4 \pi Q}{q^{2}} \int \rho\left(\mathbf{r}^{\prime}\right) e^{-i \mathbf{q} \cdot \mathbf{r}^{\prime}} d^{3} r^{\prime} \\
& =\frac{4 \pi Q}{q^{2}} \rho(\mathbf{q})
\end{aligned}
$$

Now since $\left|\psi_{1 s}(r)\right|^{2}=\frac{1}{\pi a^{3}} \exp (-2 r / a)$. The net charge distribution for this problem is given by

$$
\rho(\mathbf{r})=-\frac{Z e}{r} \delta(\mathbf{r})+\frac{Z e}{\pi a^{3}} e^{-2 r / a}
$$

Now we only need to calculate Fourier transform of this.

