- 1. [10 Marks] Answer the following questions.
 - (a) [2] Show that $[\hat{X}, \hat{P}] = i\hbar$, where \hat{X} and \hat{P} are position and momentum operators.
 - (b) [2] For a particle in a box, the wave function is given by

$$\Psi(x) = A\sqrt{x\left(L-x\right)}.$$

Find A and sketch the probability density function for position measurement.

- (c) [2] What is the probability that the particle in question 1(b) will be found in the interval $[0, \frac{L}{4}]$?
- (d) [2] Show that the eigenvalues of a unitary matrix are complex numbers with unit magnitude.
- (e) [2] Let \hat{p} be the momentum operator. Show that $\exp[i\hat{p}a/\hbar]f(x) = f(x+a)$ where a is a real constant. [Assume that f is a smooth function of a real variable.]

Solutions

- (a) $\left[\hat{X}\hat{P}-\hat{P}\hat{X}\right]f(x) = (-i\hbar)\left[x\frac{d}{dx}f(x)-\frac{d}{dx}(xf(x))\right] = (-i\hbar)(-f(x)) = i\hbar f(x)$ Thus, the result.
- (b) $\int_0^L A^2 x (L-x) dx = A^2 L^3 \left(\frac{1}{2} \frac{1}{3}\right) = A^2 L^3 / 6$. Thus $A = \sqrt{6/L^3}$. Sketch is given below.
- (c) $\int_0^{L/4} A^2 x (L-x) dx = \frac{6}{L^3} L^3 \left(\frac{1}{32} \frac{1}{192} \right) = \frac{5}{32}.$
- (d) Let O be a unitary operator with an eigenvalue λ and eigenvector u. Then,

$$Ou = \lambda u$$

Taking hermitian adjoint $\implies u^{\dagger}O^{\dagger} = \lambda^* u^{\dagger}.$

Thus,

$$u^{\dagger}O^{\dagger}Ou = \left(\lambda^{*}u^{\dagger}\right)(\lambda u)$$
$$\implies u^{\dagger}u = |\lambda|^{2} u^{\dagger}u$$
$$\implies |\lambda|^{2} = 1.$$

(e) Now,

$$e^{i\hat{p}a/\hbar}f(x) = e^{a\frac{d}{dx}}f(x)$$
$$= \sum_{n=0}^{\infty} \frac{a^n}{n!}\frac{d^n}{dx^n}f(x)$$
$$= f(x+a)$$

2. [10 Marks] The wave function of a free particle at some instant is given by

$$\Psi(x) = B \exp\left[i\frac{p_0 x}{\hbar}\right] \exp\left[-\frac{|x|}{2d}\right]$$

where, B, p_0 , and d are positive real constants.

- (a) [2] Find B by normalizing Ψ .
- (b) [3] Find $\langle \hat{x} \rangle$, $\langle \hat{x}^2 \rangle$.
- (c) [4] Find $\langle \hat{p} \rangle$, $\langle \hat{p}^2 \rangle$. [Hint: Calculate $\langle \hat{p}^2 \rangle$ by evaluating $\langle \hat{p}\Psi, \hat{p}\Psi \rangle$]
- (d) [1] Verify uncertainty principle.

Solution

(a) The square of the norm of Ψ is given by

$$\int_{-\infty}^{\infty} \Psi^*(x)\Psi(x)dx = B^2 \left[\left[\int_{-\infty}^{0} \Psi^*(x)\Psi(x)dx + \int_{0}^{\infty} \Psi^*(x)\Psi(x)dx \right] \right]$$
$$= B^2 \left[\int_{-\infty}^{0} e^{x/d}dx + \int_{0}^{\infty} e^{-x/d}dx \right]$$
$$= B^2 \left[d+d \right] = 2dB^2.$$

For the norm to be unity, $B = \sqrt{1/2d}$.

(b) Average of \hat{x} is

$$\int_{-\infty}^{\infty} \Psi^*(x) x \Psi(x) dx = B^2 \left[\int_{-\infty}^{0} \Psi^*(x) x \Psi(x) dx + \int_{0}^{\infty} \Psi^*(x) x \Psi(x) dx \right]$$

= $B^2 \left[\int_{-\infty}^{0} x e^{x/d} dx + \int_{0}^{\infty} x e^{-x/d} dx \right]$
= $B^2 \left[-d^2 + d^2 \right] = 0.$

Average of \hat{x}^2 is

$$\int_{-\infty}^{\infty} \Psi^*(x) x^2 \Psi(x) dx = B^2 \left[\int_{-\infty}^{0} \Psi^*(x) x^2 \Psi(x) dx + \int_{0}^{\infty} \Psi^*(x) x^2 \Psi(x) dx \right]$$
$$= B^2 \left[\int_{-\infty}^{0} x^2 e^{x/d} dx + \int_{0}^{\infty} x^2 e^{-x/d} dx \right]$$
$$= B^2 \left[2d^3 + 2d^3 \right] = 2d^2.$$

(c) Now,

$$\hat{p}\Psi(x) = \begin{cases} \left(p_0 - \frac{i\hbar}{2d}\right)\Psi(x) & x > 0\\ \left(p_0 + \frac{i\hbar}{2d}\right)\Psi(x) & x < 0 \end{cases}$$

Average of \hat{p} is

$$\begin{split} \int_{-\infty}^{\infty} \Psi^*(x) \left(\hat{p} \Psi(x) \right) dx &= B \left[\int_{-\infty}^{0} \Psi^*(x) \hat{p} \Psi(x) dx + \int_{0}^{\infty} \Psi^*(x) \hat{p} \Psi(x) dx \right] \\ &= B^2 \left[\left(p_0 + \frac{i\hbar}{2d} \right) \int_{-\infty}^{0} \Psi^*(x) \Psi(x) dx + \left(p_0 - \frac{i\hbar}{2d} \right) \int_{0}^{\infty} \Psi^*(x) \Psi(x) dx \right] \\ &= B^2 \left[\left(p_0 + \frac{i\hbar}{2d} \right) d + \left(p_0 - \frac{i\hbar}{2d} \right) d \right] = p_0. \end{split}$$

and average of \hat{p}^2 is

$$\begin{split} \int_{-\infty}^{\infty} \left(\hat{p}\Psi(x) \right)^* \left(\hat{p}\Psi(x) \right) dx &= B \left[\int_{-\infty}^{0} \left(\hat{p}\Psi(x) \right)^* \hat{p}\Psi(x) dx + \int_{0}^{\infty} \left(\hat{p}\Psi(x) \right)^* \hat{p}\Psi(x) dx \right] \\ &= B^2 \left[\left(p_0 + \frac{i\hbar}{2d} \right) \left(p_0 - \frac{i\hbar}{2d} \right) d + \left(p_0 - \frac{i\hbar}{2d} \right) \left(p_0 + \frac{i\hbar}{2d} \right) d \right] \\ &= \left(p_0^2 + \frac{\hbar^2}{4d^2} \right). \end{split}$$

(d) Thus $\sigma_x = \sqrt{2}d$ and $\sigma_p = \hbar/2d$, and $\sigma_x \sigma_p = \hbar/\sqrt{2} > \hbar/2$.

3. [6 Marks] A particle is in the ground state of an infinite potential well of width L. Now the well is suddenly expanded **symmetrically** to the width of 2L, leaving the wavefunction undisturbed. Show that the probability of finding the particle in the ground state of the new well is $(8/3\pi)^2$.

Solution

The eigen energies and eigen functions of the new well are given by

$$u_n(x) = \sqrt{\frac{1}{L}} \sin\left(\frac{n\pi x}{2L}\right)$$
$$\epsilon_n = \frac{\hbar^2 \pi^2}{8mL^2} n^2$$

The wave function just after the well changes to the new well will be

$$\Psi(x) = \begin{cases} 0 & x \in [0, L/2] \\ \sqrt{\frac{1}{L}} \sin\left(\frac{\pi}{L} \left(x - \frac{L}{2}\right)\right) & x \in [L/2, 3L/2] \\ 0 & x \in [3L/2, L] \end{cases}$$

Then, if $\Psi = \sum_{n} c_n u_n$, then

$$c_1 = \int_0^{2L} \Psi(x) u_n(x) dx$$

= $-\sqrt{\frac{2}{L}} \int_{L/2}^{3L/2} \cos\left(\frac{\pi x}{L}\right) \sin\left(\frac{\pi x}{2L}\right) dx$
= $\frac{8}{3\pi}$.

Thus the probability of finding the particle in the ground state of the new well is $(8/3\pi)^2$.

4. [4 Marks] Consider a *n* dimensional complex inner product space V_n with elements given by a $n \times 1$ column matrix. The inner product of two elements is defined as

$$\langle u, v \rangle = u^{\dagger} v$$

where u^{\dagger} is the complex conjugate of the transpose of u. Let $B = \{e_1, e_2, \ldots e_n\}$ be an orthonormal basis. A family of projection operators is defined as

$$\mathbf{P}_j u = \langle e_j, u \rangle e_j \qquad j = 1, 2, \dots n.$$

- (a) [1] Show that the projection operators are hermitian.
- (b) [1] Find the matrix of \mathbf{P}_i wrt the basis B.
- (c) [1] Show that $\mathbf{P}_i \mathbf{P}_j = \delta_{ij} \mathbf{P}_i$.
- (d) [1] Show that $\sum_{i=1}^{n} \mathbf{P}_{i} = \mathbf{I}$, where **I** is an identity operator.

Solution

(a) For any $u, v \in V_n$, we must show that $\langle u, \mathbf{P}_i v \rangle = \langle \mathbf{P}_i u, v \rangle$.

$$RHS = \langle u, \mathbf{P}_{j}v \rangle = \langle u, \langle e_{j}, v \rangle e_{j} \rangle = \langle u, e_{j} \rangle \langle e_{j}, v \rangle$$
$$LHS = \langle \mathbf{P}_{j}u, v \rangle = \langle \langle e_{j}, u \rangle e_{j}, v \rangle = \langle u, e_{j} \rangle \langle e_{j}, v \rangle$$

Thus \mathbf{P}_{j} is hermitian.

(b)
$$[\mathbf{P}_j]_{ik} = \langle e_i, \mathbf{P}_j e_k \rangle = \langle e_i, \langle e_j, e_k \rangle e_j \rangle = \delta_{j,k} \delta_{j,i}$$
. Thus,

$$\mathbf{P}_{j} = \begin{bmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & & \vdots & & \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix} j^{\text{th}} \text{ row.}$$

(c)
$$\mathbf{P}_i \mathbf{P}_j u = \langle e_j, u \rangle \mathbf{P}_i e_j = \langle e_j, u \rangle \langle e_i, e_j \rangle e_i = \delta_{ij} \langle e_i, u \rangle e_i = \delta_{ij} \mathbf{P}_i u.$$

(d) Let $u = \sum c_n e_n$. Then $\mathbf{P}_j u = \sum c_n \mathbf{P}_j e_n = \sum c_n \langle e_j, e_n \rangle e_j = c_j e_j$. Thus $\sum_j \mathbf{P}_j u = \sum_j c_j e_j = u$. Thus $\sum_j \mathbf{P}_j = I$