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Abstract

Real-time and embedded systems are moving from the traditional design paradigm to integration of multiple

functionalities onto a single computing platform. Some of the functionalities are safety-critical and subject

to certification. The rest of the functionalities are non-safety critical and don’t need to be certified. Designing

efficient scheduling algorithms which can be used to meet the certification requirement is challenging. Our research

considers the time-triggered approach to scheduling of mixed-criticality jobs with two criticality levels. The first

proposed algorithm for the time-triggered approach is based on the OCBP scheduling algorithm which finds a

fixed-priority order of jobs. Based on this priority order, the existing algorithm constructs two scheduling tables

Soc
LO andSoc

HI. The scheduler uses these tables to find a scheduling strategy. Another time-triggered algorithm

called MCEDF was proposed as an improvement over the OCBP-based algorithm. Here we propose an algorithm

which directly constructs two scheduling tables without using a priority order. Furthermore, we show that our

algorithm schedules a strict superset of instances which can be scheduled by the OCBP-based algorithm as well

as by MCEDF. We show that our algorithm outperforms both the OCBP-based algorithm and MCEDF in terms

of the number of instances scheduled in a randomly generated set of instances. We generalize our algorithm for

jobs with m criticality levels. Subsequently, we extend our algorithm to find scheduling tables for periodic and

dependent jobs. Finally, we show that our algorithm is also applicable to mixed-criticality synchronous programs

upon uniprocessor platforms and schedules a bigger set of instances than the existing algorithm.

1 Introduction

Now-a-days, there is a rapid increase in the use of real-time and embedded systems in day to day life. A real-time

system is required to produce not only the correct result but it should produce it within the stipulated time. The

growing demand of real-time systems leads to the complexity in the design of such systems. The applications of

real-time systems are in the field of defense and space systems, networked multimedia systems, embedded automotive

systems and avionics. Generally a real-time system used to be based on a single criticality level. But the current trend

is towards systems with multiple functionalities of different criticality levels. In such a system, some functionalities

are more critical than others. For example, unmanned aerial vehicles (UAV’s) must fly safely and then capture

images. Some of the functionalities are subject to mandatory certification requirements by statutory organizations.

It is extremely difficult to come up with procedures that will allow for the cost effective certification of such mixed-

criticality systems. There are many organizations who have mixed-criticality architecture requirements (MCAR)

program for streamlining the certification process. In recent times, some of the software standards like AUTOSAR

and ARINC in the automotive and avionics domain confront mixed-criticality issues.

Mixed-criticality Systems: A mixed-criticality real-time system (MCRTS) [1, 2, 3, 4, 5, 6, 7] is one that has

two or more distinct levels of criticality, such as, safety-critical, mission-critical, non-critical, etc. Typical names of

the criticality levels used in industries are ASIL (Automotive Safety and Integrity Levels) and SIL (Safety Integrity

Level), etc.

We introduce the mixed-criticality scheduling problem with an example [1] from the domain of unmanned aerial

vehicles (UAV’s). The functionalities of UAV’s may be classified into two categories, i.e., mission-critical and

flight-critical.

• Mission-critical functionalities include capturing images from the ground and transmitting those to the base

station, etc.

• Flight-critical functionalities include safe operation while performing the mission.

Here it is mandatory that the flight-critical functionality must be certified to be correct because if this functionality

fails then it will be catastrophic. There are different certification authorities (CAs) for different functionalities. The

CAs for flight-critical jobs tend to be very conservative. These authorities are not concerned with the mission-critical

functionalities. During the certification process, the CAs focus mainly on the run-time behavior of the systems. The

analytical tools, techniques and methodologies used by the CAs estimate more pessimistic results than the system
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designers. The mission-critical functionalities are validated by the system designers. System designers are interested

in both flight-critical and mission-critical functionalities but are not as rigorous as compared to the CAs with respect

to the notion of correctness. For example, computation of the exact worst-case execution time (WCET) of a non-

trivial piece of code is extremely difficult due to the complex architecture of today’s systems. So, a safe upper

bound on the actual WCET requires great effort. A CA may estimate the WCET of the piece of code to be far

higher (pessimistic) while the system designer may choose a little lower estimate. This leads to two different WCET

estimates, i.e., one by the CA which is very pessimistic and the other one by the system designer which is probably

lower. The gaps between the CAs and the system designers are more likely to increase in future as pointed out in [8].

It is unlikely that a system would realize the higher WCET estimate for the piece of code. As a result, most of the

resources which are provided to run the piece of code go unused if the pessimistic estimates are adhered to.

Example 1: Consider the system in the table below with two jobs: J1 is a flight-critical (HI-criticality) job and J2

is a mission-critical (LO-criticality) job. Since job J1 has higher criticality than job J2, its WCET estimate of 4 by

the CAs is more than that of 2 by the system designers.

Job Arrival Deadline Criticality LO-criticality HI-criticality

WCET WCET

J1 0 4 HI 2 4

J2 0 2 LO 2 2

So J1 needs certification whereas J2 doesn’t, being a LO-criticality job.

The challenge in scheduling such mixed-criticality systems is to find a single scheduling policy so that the

requirements of both the system designers and the CAs are met. In Example 1 this means that when both the

jobs complete their executions by their LO-criticality WCETs, they must both be scheduled correctly. On the

other hand, when the execution time of the HI-criticality job exceeds its LO-criticality WCET, then it is only this

job which needs to meet its deadline to satisfy the CAs. In this report we focus on time-triggered scheduling of

mixed-criticality jobs proposed by Baruah and Fohler [9] and present an algorithm that can schedule a superset of

instances than can be scheduled by their algorithm as well as by MCEDF [10].

Time-triggered Scheduling: The scheduling activities in a time-triggered paradigm of real-time scheduling are

activated by the progression of time. In such an approach a complete schedule for the entire duration is calculated

before run-time. Generally, this pre-calculated schedule is kept in a table format. The scheduler takes the scheduling

decisions according to this pre-calculated scheduling table. It is not possible to modify the scheduling table at run-

time. Various types of time-triggered scheduling paradigm have been proposed, for example:

• Slot shifting: In this paradigm, the pre-computed scheduling table is partially calculated. Some of the

additional scheduling decisions are made depending on the occurrence of run-time events.

• Mode change This is the paradigm adopted in this report. In this paradigm, there are various pre-computed

scheduling tables. The occurrence of certain run-time events trigger a transition from one scheduling table to

another. The transitions are pre-computed as well and it is also taken care that the ongoing activities are not

interrupted.

Mixed-criticality Synchronous Reactive Systems: The time-triggered mode change paradigm is used in [11]

to find time triggered schedules for mixed-criticality synchronous reactive (SR) programs upon uniprocessor plat-

forms. A synchronous reactive model [12] is a discrete system where signals are absent at all times except at ticks of a

global clock. The synchronous reactive model is widely used in the design and implementation of real-time systems.

The behavioral aspects of reactive systems are specified using an assumption called the synchrony hypothesis [13].

The behavior of a system is an infinite series of steps, i.e., the system reads its input at each logical time instant t

and computes its output based on the current state and the inputs received and the same process continue at time

(t+ 1) and so on. These models are very easy to formally verify. There are many tools available in the market for
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this purpose. But the main aim of these tools is to validate the design and not their implementations. But it is

important to verify these implementations with respect to conservative assumptions about execution times.

In this report, we propose an algorithm which constructs time-triggered scheduling tables for mixed-criticality

instances. Then we show the dominance of the proposed algorithm over existing algorithms. The proposed algorithm

is generalized for m criticality levels, with m ≥ 2 and extended for periodic and dependent jobs. Finally, we focus

on how to implement mixed-criticality synchronous programs upon a uniprocessor platform using the time-triggered

paradigm with efficient use of the resources and compare our method with the existing OCBP-based algorithm.

The rest of the report is organized as follows: Section 2 describes the system model and presents definitions

and related work on mixed-criticality real-time systems and time-triggered scheduling. In Section 3, we propose a

new algorithm which constructs two tables to find a time-triggered schedule for a dual-criticality MC instance. In

Section 4, we extend our algorithm to construct m tables which can find a time-triggered schedule for m criticality

MC systems. Sections 6 and 5 discuss the scheduling of mixed-criticality periodic and dependent jobs respectively.

Section 7 describes our algorithm for the time-triggered scheduling of mixed-criticality synchronous programs. Sec-

tion 8 includes experimental results based on a large number of randomly generated mixed-criticality instances.

Section 9 concludes the report.

2 Problem Definition

The mixed-criticality model used in this section is based on at most two levels of criticality, LO and HI. A job is

characterized by a 5-tuple of parameters: ji = (ai, di, χi, Ci(LO), Ci(HI)), where

• ai ∈ N denotes the arrival time.

• di ∈ N+ denotes the absolute deadline.

• χi ∈ {LO,HI} denotes the criticality level.

• Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.

• Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

We assume that the system is preemptive and Ci(LO) ≤ Ci(HI) for 1 ≤ i ≤ n. Note that in this report, we

consider arbitrary arrival times of jobs.

An instance of mixed-criticality (MC) [1] job set can be defined as a finite collection of MC jobs, i.e., I =

{j1, j2, ..., jn}. The job ji in the instance I is available for execution at time ai and should finish its execution before

di. The job ji must execute for ci amount of time which is the actual execution time between ai and di, but this

can be known only at the time of execution. The collection of actual execution time (ci) of the jobs in an instance

I at run time is called a scenario. The scenarios in our model can be of two types, i.e., LO-criticality scenarios

and HI-criticality scenarios. When each job ji in instance I executes ci units of time and signals completion before

its Ci(LO) execution time, it is called a LO-criticality scenario. If any job ji in instance I executes ci units of time

and doesn’t signal its completion after it completes the Ci(LO) execution time, then this is called a HI-criticality

scenario.

Each mixed-criticality instance needs to be scheduled by a scheduling strategy where both kinds of scenarios (LO

and HI) can be scheduled. If we have prior knowledge about the scenario, then the scheduling strategy is known as a

clairvoyant scheduling strategy. If we don’t have prior knowledge about the scenario, then the scheduling strategy is

called an online scheduling strategy. We can check that the instance given in Example 1 is clairvoyantly schedulable

but doesn’t have an online scheduling strategy. Here we assume that if any job continues its execution without

signaling its completion at Ci(LO) then no LO-criticality jobs are required to complete by their deadlines. Now, we

define the notion of MC-schedulability.

Definition 1: An instance I is MC-schedulable if it admits a correct online scheduling policy.
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Here we focus on the time-triggered schedules [9] of MC instances. We will construct two tables SHI

and SLO for a given instance I for use at run time. The length of the tables is the length of the interval

[minji∈I{ai},maxji∈I{di}]. The rules to use the tables SHI and SLO at run time, (i.e., the scheduler) are as follows:

• The criticality level indicator Γ is initialized to LO.

• While (Γ = LO), at each time instant t the job available at time t in the table SLO will execute.

• If a job executes for more than its LO-criticality WCET without signaling completion, then Γ is changed to

HI.

• While (Γ = HI), at each time instant t the job available at time t in the table SHI will execute.

Definition 2: A dual-criticality MC instance I is said to be time-triggered schedulable [9] if it is possible to

construct the two schedules SHI and SLO for I, such that the run-time scheduler algorithm described above schedules

I in a correct manner.

2.1 Related Work

Vestal [6] introduced the notion of mixed-criticality real-time systems (MCRTS) by using an extension of the standard

fixed priority (FP) real-time scheduling theory. The paper showed that both the deadline monotonic and rate

monotonic algorithms are not optimal for MCRTS. Baruah and Vestal [7] generalized the problem by using a

sporadic task model with fixed job-priority and dynamic priority scheduling algorithms. They showed that the

earliest deadline first (EDF) algorithm [14] doesn’t outperform fixed-priority schemes in the presence of criticality

levels. They also showed that some of the feasible systems are not schedulable by EDF.

Burns and Baruah [5] proposed three schedulability algorithm based on the response time analysis of the task set.

They proved that the proposed algorithms dominate the existing fixed-priority algorithms for traditional real-time

systems.

Baruah et. al. [1] proved MC-schedulability is NP-hard in the strong sense. They also proved the problem to

be in NP if the number of criticality levels is bounded by a fixed constant. They have shown that the general case

where the criticality is part of the input belongs to the class PSPACE. They showed that the MC-schedulability

problem with the same deadline for all the jobs is an easier problem.

Baruah et al [1] proposed a priority-based scheduling technique known as OCBP (Own Criticality Based Priority

scheduling) for mixed-criticality jobs. The OCBP algorithm chooses a job ji and assigns it the lowest priority if

there is at least Ci(χi) time units available between its arrival time and its deadline when every other job jk is

executed with higher priority than ji for Ck(χi) time units.

Baruah and Fohler [9] introduced a technique to schedule MC jobs using the time-triggered framework. Their

objective was to ensure that adequate resources are reserved for each application to be able to guarantee the timing

requirements. They used the OCBP algorithm to assign priorities to the jobs. Using this priority, they constructed

two tables Soc
LO and Soc

HI which are used by the dispatch algorithm [9] to schedule the jobs. We show in Section 3 that

our algorithm can schedule a strict superset of instances schedulable by the OCBP-based algorithm. In Section 8

we quantify the number of instances scheduled by the two algorithms on a set of randomly generated instances and

show that our algorithm has better performance.

Socci et al [10], [15] proposed a fixed priority scheduling approach called MCEDF for mixed-criticality jobs. In

this paper, they construct two priority tables, i.e., PTLO and PTHI. The scheduling of jobs starts with the table

PTLO, while the table PTHI is used after a mode change occurs. In Section 8 we quantify the number of instances

scheduled by MCEDF and our algorithm and show that the latter performs better.

In [16] Theis et al present a backtracking based iterative deepening algorithm for the generation of the scheduling

tables. We were not able to compare this algorithm with ours because of the absence of implementation details.

Baruah [11], [17] proposed a schedule-generation algorithm for mixed-criticality synchronous programs upon

uniprocessor platforms. He proved that proposed algorithm for single-rate synchronous programs is optimal. He
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then proved that an efficient and optimal schedule generation problem for multi-rate synchronous program is NP-hard

in the strong sense. He also proposed a schedule generation algorithm based on OCBP for multi-rate synchronous

programs. In Section 7, we show that our algorithm can schedule a strict superset of instances of this OCBP-based

algorithm.

2.2 Our Work

We know that OCBP and MCEDF are unable to schedule all the MC-instances that are MC-schedulable. In this

report, we present an algorithm which can schedule not only the instances which are schedulable by the OCBP-based

algorithm [9] and MCEDF algorithm [10] but additional ones as well. Then we generalize the algorithm for the m

criticality case. Subsequently we extend the algorithm to construct the scheduling tables for periodic and dependent

jobs.

Example 2: Consider the MC instance of 6 jobs given in Table 1.

Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 0 14 HI 1 8

j2 0 3 LO 1 1

j3 0 8 LO 2 2

j4 0 8 LO 2 2

j5 8 13 HI 2 3

j6 0 12 HI 2 3

Table 1: Instance for Example 2

The above MC instance is not OCBP schedulable because we will not be able to assign a priority order as shown

below.

• If j1 is assigned the lowest priority, then j2, j3, j4 and j6 could consume 8 units of time (i.e., C2(HI) + C3(HI)

+ C4(HI) + C6(LO)) over [0, 8) as j1 is a HI-criticality job. In the interval [8, 11), j5 execute its C5(HI) units

of execution, thus leaving no time for j1 to execute its C1(HI) before its deadline.

• If j2 is assigned the lowest priority, then j1, j3, j4 and j6could consume 7 units of time (i.e., C1(LO) + C3(LO)

+ C4(LO) + C4(LO)) over [0, 7). This leaves no time for j2 to execute its C2(LO) time to finish by its deadline.

• If j3 is assigned the lowest priority, then j1, j2, j4 and j6 could consume 6 units of time (i.e., C1(LO) + C2(LO)

+ C4(LO) + C6(LO)) over [0, 6). Job j5 execute its C5(LO) units of execution over [8, 11), thus leaving two

units of space over [6, 8) for j3 to execute its C3(LO) units of execution before its deadline. So, j3 can be

assigned the lowest priority.

• Similarly, job j4 can also be assigned as the lowest priority jobs among {j1, j2, j4, j5, j6} after removing job j3.

Next, we remove the job j4 and consider {j1, j2, j5, j6} and try to assign the next lowest priority.

• If j1 is assigned the lowest priority, then j2 and j6 could consume 4 units of time (i.e., C2(HI) + C6(HI)) over

[0, 4) and j5 could consume 3 units of C2(HI) execution time over [8, 11), thus leaving 7 units of time for j1

to execute its C1(HI) units of execution before its deadline which is not possible.

• If j2 is assigned the lowest priority, then j1 and j6 could consume 3 units of time (i.e., C1(LO) + C6(LO))

over [0, 3), thus leaving no time for j2 to execute its C2(LO) units of execution before its deadline which is

not possible.
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• If j5 is assigned the lowest priority, then j1, j2 and j6 could consume 12 units of time (i.e., C1(HI) + C2(HI)

+ C6(HI)) over [0, 12), thus leaving 1 unit of time for j5 to execute its C5(HI) units of execution before its

deadline which is not possible.

• If j6 is assigned the lowest priority, then j1, j2 and j5 could consume 12 units of time (i.e., C1(HI) + C2(HI)

+ C5(HI)) over [0, 12), thus leaving no time for j6 to execute its C6(HI) units of execution before its deadline

which is not possible.

Since, no other job can be assigned the lowest priority, we declare the MC instance is not OCBP-schedulable. So

due to the unavailability of an OCBP order, we cannot construct a time-triggered schedule.

Now we try to schedule the same instance with the MCEDF algorithm [10], [15]. We find the two priority tables

PTLO and PTHI and check the schedulability. According to the MCEDF algorithm, if the instance is schedulable in

the LO scenario, then it generates a priority tree. The nodes of the priority tree are sorted using topological sort [18].

The table PTLO is constructed from the order generated by the topological sort. The table PTHI is nothing but a

simple EDF order of HI-criticality jobs. The algorithm checks for each possible HI scenario failure. If it doesn’t get

any HI scenario failure, then the algorithm declares success, otherwise it declares failure.

The EDF order of the above instance given in Table 1 is (2, 3, 4, 6, 5, 1). The MCEDF algorithm generates the

priority tree shown in Fig. 1. The instance is schedulable in LO scenario. The instance has one busy interval, i.e.,

[0, 10]. This means the lowest priority job of this interval will be the root of the priority tree. In this busy interval,

jLateLO is job j4 and jLateHI is job j1. Clearly, j1 is chosen to be the lowest priority job as the deadline of j4 is less

than 10. Next, j1 is removed which splits the busy interval into two, i.e., [0, 7] and [8, 10]. Job j5 is the single job

in the busy interval [8, 10]. So it can be assigned as one of the children of the root, i.e., job j5 is removed from the

interval. In the busy interval [0, 7], jLateLO is job j4 and jLateHI is job j6. Here the MCEDF algorithm chooses job j4 as

one of the lowest priority job as its deadline is greater than 7. After removal of j4, the busy interval splits into two

intervals, i.e., [0, 3] and [5, 7]. Now the priority tree generation steps are trivial. The resulting priority tree is given

in Fig. 1.

j1

j4 j5

j3 j6

j2

PTEDF = {j2, j3, j4, j6, j5, j1}
Busy Interval (BI) = [0,10]

PTEDF = {j2, j3, j4, j6}
BI = [0,6]

PTEDF = {j2, j3}
BI = [0,3]

PTEDF = {j5}
BI = [8,10]

PTEDF = {j6}
BI = [5,7]

PTEDF = {j2}
BI = [0,1]

Figure 1: Priority tree of the instance given in Table 1

Now the MCEDF algorithm uses topological sort to find a priority order of the instance which in this case could

be chosen to be {j2, j3, j6, j4, j5, j1}. The table PTLO according to the priority order is given in Fig. 2.

j2 j3 j6 j4 j1 j5

0 1 3 5 7 8 10 14

Figure 2: Table PTLO of the instance given in Table 1
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Then the MCEDF algorithm checks all possible HI-criticality scenarios for a deadline miss. When the job j6 at

time instant 5 doesn’t signal its completion, there must be sufficient time for 1, 3 and 8 units of execution for jobs

j6, j5 and j1 respectively before time instant 14. But, we have only 9 units of time left to complete these 12 units

of execution. So, MCEDF cannot schedule the given instance.

We propose an algorithm which can construct a time-triggered schedule for this instance and is an improvement

over OCBP in terms of the set of instances that can be scheduled. We show through experiments that the number

of instances schedulable by our algorithm exceeds those schedulable by OCBP and MCEDF by a significant amount

on randomly generated instances. We describe the algorithm in detail in the next section. The two scheduling tables

generated by our algorithm for the instance in Table 1 are shown in Fig. 3.

SLO j6 j2 j1 j3 j4 j5

0 2 3 4 6 8 10 14

SHI j6 j1 j5 j1

0 3 8 11 14

Figure 3: Tables SLO and SHI constructed by our algorithm for the instance given in Table 1

3 The Proposed Algorithm

From Section 2.2, it is clear that both the MCEDF and OCBP algorithms fail to schedule some instances due to

a fixed priority assignment to the jobs. Both these algorithms construct the scheduling tables from the priority

order of the jobs. That means, if the algorithms don’t find a priority order then they will not be able to construct

the scheduling tables. We propose an algorithm which can directly construct the scheduling tables without using

priorities. We also focus on scheduling more number of instances than the OCBP and MCEDF algorithms. The

main insight behind our algorithm is as follows.

• We want to find a time-triggered schedule not based on a priority order.

• We want to find the exact time to run a job in a scheduling table by merging two tables TLO and THI containing

jobs of the two different criticality levels.

• The LO-criticality execution time of HI-criticality jobs must be completed at a time instant t such that there

is sufficient time to complete the remaining execution before its deadline.

• We want to construct the table SLO by filling the vacant time slots of THI by the available jobs of TLO at those

time slots.

3.1 The Algorithm

In this section, we propose an algorithm which can schedule more instances than the OCBP-based algorithm. This

algorithm has a pseudo-polynomial time complexity. The proposed algorithm constructs two tables SHI and SLO for

the given MC instance, if possible. Our intention is to find SLO and then construct SHI keeping the same starting

time for all the jobs as in SLO.

We define Dmax which is the maximum deadline of the MC instance I.

Dmax = max{di} (1)

We construct SLO from two temporary tables TLO and THI. Algorithm 1 and 2 describe the construction processes

of TLO and THI. The length of the two temporary tables THI and TLO is the same as the length of SLO and SHI.
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Algorithm 1 Construct TLO(I)

Notation:

I = {j1, j2, ..., jn}, where

ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Input : I

Output : TLO
Assume earliest arrival time is 0.

1: Find the maximum deadline (Dmax) of the jobs;

2: Prepare a temporary table TLO of maximum length Dmax;

3: Let Ψ be the set of LO-criticality jobs of instance I;

4: Let O be the EDF order of the jobs of Ψ on the time-line using Ci(LO) units of execution for job ji ;

5: if (any job cannot be scheduled) then

6: Declare failure;

7: end if

8: Starting from the rightmost job segment of the EDF order of Ψ, move each segment of a job ji as close to its

deadline as possible in TLO.

Algorithm 1 constructs the temporary table TLO. This algorithm chooses the LO-criticality jobs from the instance

I and orders them in EDF order [14]. Then, all the job segments of the EDF schedule are moved as close to their

deadline as possible so that no job misses its deadline in TLO. For example, we have an EDF order of three jobs

as in Fig. 4 whose arrival times are 0, 2, 5, execution times 6, 4, 2 and deadlines 16, 11, 10, respectively. The up and

down arrows in the figure refer to the release and completion times respectively. Then, starting from the right end

of the schedule, we shift each job segment as close to its deadline as possible so that no job misses its deadline. Here

we move the rightmost job segment, i.e., j1’s segment as close to its deadline, i.e., from [8,12] to [12,16]. Then we

move the next job segment of j2 from [7,8] to [10,11]. Then the job segment of j3 is moved right from [5,7] to [8,10]

as the deadline of j3 is 10. Then the job segment of j2 is moved right from [2,5] to [5,8]. Finally, j1’s segment in

the interval [0,2] is moved as close to its deadline as possible. Since at this stage there is an empty space at [11,12],

j1’s segment in the interval [0,2] is distributed over [4,5] and [11,12]. The resulting table TLO is given in Fig. 5.

Note that, if the arrival times of the jobs are not the same, then the jobs may execute in more than one segment, in

general. If the arrival times of all the jobs are the same then, the jobs will execute in one segment.

j1 j2 j3 j2 j1

0 2 5 7 8 12 16

Figure 4: EDF order of three jobs. Up arrows indicate arrival and down arrows indicate completion times

j1 j2 j3 j2 j1 j1

0 4 5 8 10 11 12 16

Figure 5: After the shifting of jobs

Algorithm 2 constructs the temporary table THI. This algorithm chooses the HI-criticality jobs from the instance

I and orders them in EDF order. Then, all the job segments of the EDF schedule are moved as close to their deadline

as possible so that no job misses its deadline in THI. Then, out of the total allocation so far, the algorithm allocates

Ci(LO) units of execution of job ji in THI from the beginning of its slot and leaves the rest of the execution time of ji

9



Algorithm 2 Construct THI(I)

Notation:

I = {j1, j2, ..., jn}, where

ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Input : I

Output : THI

Assume earliest arrival time is 0.

1: Find the maximum deadline (Dmax) of the jobs;

2: Prepare a temporary table THI of maximum length Dmax;

3: Let Ψ be the set of HI-critical jobs of instance I;

4: Let O be the EDF order of the jobs of Ψ on the time-line using Ci(HI) units of execution for job ji ;

5: if (any job cannot be scheduled) then

6: Declare failure;

7: end if

8: Starting from the rightmost job segment of the EDF order of Ψ, move each segment of a job ji as close to its

deadline as possible in THI.

9: for i := 1 to m do

10: Allocate Ci(LO) units of execution to job ji from its starting time in THI and leave the rest unallocated;

11: end for

unallocated in THI. Suppose, there is an instance I which contains three HI-criticality jobs j1, j2 and j3 with arrival

times 0, 2, 5, execution times (2, 6), (2, 4), (2, 2) and deadlines 16, 11, 10, respectively. This instance is arranged in

EDF order and then each job segment is shifted as close to its deadline as possible. The resulting allocation is given

at the top of Fig. 6, which happens to be the same as in the earlier example for TLO. Then algorithm 2 allocates

Ci(LO) units of execution and leaves (Ci(HI)− Ci(LO)) units of execution unallocated. The resulting allocation is

shown at the bottom of Fig. 6.

j1 j2 j3 j2 j1 j1

0 4 5 8 10 11 12 16

j1 j2 j3 j1

0 4 5 7 8 10 11 12 16

Figure 6: Allocating Ci(LO) units of execution only

Now, we use Algorithm 3 to construct the table SLO from TLO and THI. The algorithm starts the construction

of SLO from time 0 and checks the tables TLO and THI simultaneously. There are four possibilities while merging

the two temporary tables to construct SLO.

At time slot t, one of the following situations can occur.

1. Both TLO and THI are empty.

2. Both TLO and THI are not empty.

3. TLO is empty and THI is not empty.

10



Algorithm 3 TT Merge(I, TLO, THI)

Notation:

I = {j1, j2, ..., jn}.
ji =< ai, di, χi, Ci(LO), Ci(HI) >.

Input : I, TLO, THI

Output : Tables SLO and SHI

1: Construction of SLO.

2: Find the maximum deadline (Dmax) of the jobs;

3: The maximum length of tables SHI and SLO are both Dmax;

4: t := 0;

5: while (t ≤ Dmax) do

6: if (TLO[t] = NULL & THI[t] = NULL) then

7: Search the tables TLO and THI simultaneously from the beginning to find the first available job at time t;

8: Let k be the first occurrence of a job ji in TLO or THI;

9: if (Both LO-criticality & HI-criticality job are found) then

10: SLO[t] := TLO[k];

11: TLO[k] := NULL;

12: else if (LO-criticality job is found) then

13: SLO[t] := TLO[k];

14: TLO[k] := NULL;

15: else if (HI-criticality job is found) then

16: SLO[t] := THI[k];

17: THI[k] := NULL;

18: else if (NO job is found) then

19: SLO[t] := NULL

20: t := t+ 1;

21: end if

22: else if (TLO[t] = NULL & THI[t] != NULL) then

23: SLO[t] := THI[t];

24: THI[t] := NULL;

25: t := t+ 1;

26: else if (TLO[t] != NULL & THI[t] = NULL) then

27: SLO[t] := TLO[t];

28: TLO[t] := NULL;

29: t := t+ 1;

30: else if (TLO[t] != NULL & THI[t] != NULL) then

31: Declare failure;

32: end if

33: end while

34: This is the table SLO;

35:

36: Construction of SHI

37: Copy all the jobs from table SLO to table SHI;

38: Scan the table SHI from left to right:

39: for each HI-criticality job ji, allocate an additional Ci(HI)−Ci(LO) time units immediately after the rightmost

segment of job ji, recursively pushing all the overlapping HI-criticality job segments in SHI (except those whose

allocation time is same as in THI) to the right and overwriting any LO-criticality jobs in the process.

11



4. TLO is not empty and THI is empty.

If situation 1 occurs, then the algorithm will allocate the nearest ready job to the right at time slot t where a

LO-criticality job gets higher priority over a HI-criticality job. In this case, the place of the ready job in TLO or THI

is marked as empty. In case of situation 2, the algorithm declares failure to schedule. In situation 3, the algorithm

allocates the HI-criticality job from THI, whereas in situation 4, the algorithm allocates the LO-criticality job from

TLO. Once an instant of a job is allocated in SLO, the place where it was scheduled in TLO or THI is emptied.

We then construct the table SHI from SLO. We first copy the jobs of table SLO to SHI. Then the HI-criticality

jobs are allocated Ci(HI) − Ci(LO) units of HI-criticality execution time after their Ci(LO) units of execution in

SHI. These additional time units are allocated by pushing all overlapping HI-criticality jobs in SHI to the right and

overwriting any LO-criticality job in the process. An exception to this is when the allocation time of an overlapping

HI-criticality job is the same in both the tables SHI and THI, in which case the additional time units are allocated

after this job. A LO-criticality job jk present in table SLO will not appear in table SHI if and only if the additional

Ci(HI)− Ci(LO) time units of allocation of any HI-criticality job overlaps with the allocation of jk in table SLO.

3.2 Intuition behind the Algorithm

In the following subsections, we show that our algorithm dominates both the existing mixed-criticality time-triggered

scheduling algorithms by being able to schedule a larger subset of instances. Here we briefly explain the working of

our algorithm, contrasting it with the existing algorithms.

The OCBP algorithm fails to find a priority order for instance I, if it is unable to choose a lowest priority job from

I. For example, a HI-criticality job ji is assigned the lowest priority if all other jobs can finish their HI-criticality

execution times before their deadlines and still leave sufficient time for ji to finish its execution. But this is too

strong a requirement, since in a HI-criticality scenario the LO-criticality jobs need not meet their deadlines. Since

it is not possible for OCBP to check the worst-case starting and completion time of each job separately at each

criticality level, it fails to assign priorities in some cases. We construct an algorithm which doesn’t depend on any

priority, while finding a time-triggered schedule. We construct two separate schedules for the two different criticality

levels. We merge the two tables to find a LO-criticality schedule and then find the HI-criticality schedule using this

LO-criticality schedule.

The core idea behind our algorithm is to allocate jobs at each instant of the time-triggered schedule without

depending on any priority such that both the scenarios (HI-criticality and LO-criticality) can be successfully sched-

uled. To this end, we find the worst-case starting and completion times of each job of the same criticality for the

LO-criticality scenario separately in the tables TLO and THI. Algorithms 1 and 2 find the tables TLO and THI by

shifting the job segments of the EDF order of jobs as close to their deadlines as possible considering Ci(LO) and

Ci(HI) units of executions, respectively. Then Algorithm 2 keeps Ci(LO) units of execution for each HI-criticality job

in THI and empties the rest of the slots. From table THI, we know the worst-case completion time of a LO-criticality

execution of a HI-criticality job. These two tables are identical to the OCBP order for the jobs of the same criticality,

which we prove later in Lemma 4 and 5. Algorithm 3 merges the tables TLO and THI to construct the table SLO,

where all the tables have the same schedule length, i.e., Dmax. Algorithm 3 keeps the jobs of table THI at their

assigned slots and fills the empty places of this table with the jobs of the table TLO. This guarantees the timely

execution of HI-criticality jobs in both the scenarios which is not always possible in the case of the OCBP-based and

MCEDF algorithms. Since jobs of the table TLO fill the empty spaces of the table THI, we prefer a LO-criticality

job to be allocated at time t, if both the tables are empty at time t. If a LO-criticality job is not available at t and

a HI-criticality job is available, then that HI-criticality job segment is chosen to be allocated at t.

We illustrate the operation of this algorithm by an example.

Example 3: Consider the MC instance given in Table 2.

Let us first find the two temporary tables TLO and THI in which the LO-criticality and HI-criticality jobs are allocated
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Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 1 8 HI 1 2

j2 1 6 HI 1 2

j3 2 4 HI 1 2

j4 0 4 LO 1 1

j5 0 4 LO 2 2

Table 2: Instance for Example 3

respectively.

• Dmax = 8.

• The maximum length of TLO and THI is 8.

• According to Algorithm 1, we choose the LO-criticality jobs and allocate them in TLO in EDF order. Then,

each segment of the jobs in EDF order are shifted as close to their deadlines as possible according to their

Ci(LO) units of execution. So j4 is allocated in the interval [1,2] and j5 is allocated in the interval [2,4]. The

resulting table TLO is given in Fig. 7.

j4 j5

0 1 2 4 8

Figure 7: Temporary table TLO

• According to Algorithm 2, we choose the HI-criticality jobs to allocate them in THI in EDF order. Then, each

segment of the jobs in EDF order are shifted as close to their deadlines as possible according to their Ci(HI)

units of execution. So j3 is allocated in the interval [2,4], j2 is allocated in the interval [4,6] and j1 is allocated

in the interval [6,8]. The resulting table THI is given in Fig. 8.

j3 j2 j1

0 2 4 6 8

Figure 8: Intermediate temporary table THI

• Then, we allocate Ci(LO) units of execution of ji and leave the (Ci(HI)−Ci(LO)) units of execution unallocated.

Here j3 has been allocated its Ci(LO) units of execution time in the interval [2,3]. So we empty the occurrence

of j3 in the interval [3,4]. We repeat the same process for both j2 and j1. After this modification of THI, the

resulting table THI is given in Fig. 9.

• Finally, we construct SLO from these two temporary tables.

We construct the table SLO according to Algorithm 3.

• We start from time t = 0.

• At t = 0, both TLO and THI are empty. So we allocate the LO-criticality job from TLO which is ready at t = 0,

i.e., j4. We empty the interval [1,2] in TLO from where the first occurrence of j4 is found.
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j3 j2 j1

0 2 3 4 5 6 7 8

Figure 9: Temporary table THI

• At t = 1, both TLO and THI are empty. So we allocate the LO-criticality job from TLO which is ready at t = 1,

i.e., j5. We empty the interval [2,3] in TLO from where the first occurrence of j5 is found.

• At t = 2, TLO is empty and THI contains j3. So we allocate j3 from THI and empty the interval [2,3] of THI.

• At t = 3, TLO contains j5 and THI is empty. So we allocate j5 from TLO and empty the interval [3,4] of TLO.

• At t = 4, TLO is empty and THI contains j2. So we allocate j2 from THI and empty the interval [4,5] of THI.

• At t = 5, both TLO and THI are empty. So we allocate a ready LO-criticality job from TLO. But, no LO-

criticality jobs are there to be allocated. So we allocate the remaining jobs of THI.

• The resulting table SLO is given in Fig. 10.

j4 j5 j3 j5 j2 j1

0 1 2 3 4 5 6 8

Figure 10: Table SLO

Now, we construct the table SHI from SLO using the steps shown in Fig. 11.

• We copy the table SLO to table SHI.

• For the first HI-criticality job j3, C3(HI)− C3(LO) units of execution time are allocated in the interval [3, 4].

In this process, we overwrite job j5 which was present in the interval [3, 4]. This is shown in the top table of

Fig. 11.

• Then C2(LO) units of execution time of j2 are allocated in the interval [4, 5] followed by C2(HI) − C2(LO)

units of execution time in the interval [5, 6]. In this process, we push job j1 to its right, i.e., to the interval

[6, 7] from [5, 6]. Finally, j1 is allocated in the interval [6,8]. This is shown in the middle table of Fig. 11.

• The resulting table SHI is given in the table at the bottom of Fig. 11.

j4 j5 j3 j2 j1

0 1 2 4 5 6 8
Allocate j3, overwrite j5 in the interval [3, 4]

j4 j5 j3 j2 j1

0 1 2 4 6 7 8
Allocate j2 in the interval [5, 6], push j1 to right

j4 j5 j3 j2 j1

0 1 2 4 6 8
Final table SHI

Figure 11: Construction of table SHI
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Now we present an example to show the tables constructed by different existing algorithm and our algorithm for

the same instance.

Example 4: The point of this example is to show how the tables constructed by our algorithm differ from the ones

constructed by the OCBP-based algorithm, when both the algorithms are successful. Consider the MC instance

given in Table 3. Fig. 12 shows the tables constructed using the OCBP-based algorithm. The MCEDF algorithm

Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 0 2 LO 1 1

j2 0 7 HI 2 3

j3 2 10 LO 4 4

j4 5 10 HI 2 5

Table 3: Instance for Example 4

Soc
HI j1 j2 j3 j4

0 1 4 5 10

Soc
LO j1 j2 j3 j4 j3

0 1 3 5 7 9 10

Figure 12: Scheduling tables according to OCBP-based algorithm

computes the same priority order as OCBP. So it constructs the same tables as OCBP. Fig. 13 shows the scheduling

tables according to our algorithm.

THI j2 j4

0 2 4 5 7 10

TLO j1 j3

0 1 2 6 10
Intermediate tables THI and TLO

SLO j1 j2 j3 j2 j3 j4 j3

0 1 2 3 4 5 7 9 10

SHI j1 j2 j3 j2 j4

0 1 2 3 5 10
Final scheduling tables SLO and SHI

Figure 13: Scheduling tables according to our algorithm

3.3 Correctness Proof

For correctness, we have to show that if our algorithm finds the two scheduling tables SLO and SHI, then these two

tables will give a correct scheduling strategy. We start with the proof of some properties of the schedule.

Observation 1: The table THI shows the latest possible allocation of the initial (LO-criticality) segment of a HI-

criticality job that can still meet its deadline in a schedule. To see this, recall that the table THI is constructed from

the EDF order of the HI-criticality jobs. Each job segment in the EDF order is pushed as close to its deadline as

possible. Then the initial Ci(LO) time units of each job are kept and the rest are unallocated. By the construction,

no job segment can be pushed further to the right and still meet its deadline.
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Remark: We know that the table SLO allocates each HI-criticality job on or before its allocation in THI. Then no

job can be pushed to the right in the table SHI after its allocation in THI as it will miss its deadline. This follows

from Observation 1.

Lemma 1: If Algorithm 3 doesn’t declare failure, then each job ji receives Ci(LO) units of execution in SLO and

each HI-criticality job jk receives Ck(HI) units of execution in SHI by its deadline.

Proof. First, we show that any job ji receives Ci(LO) units of execution in SLO. We construct SLO from the

temporary tables TLO and THI. Each job ji can be scheduled in SLO on or before its scheduled time in TLO and THI.

If our algorithm finds the table SLO then each job must receive Ci(LO) units of execution.

Next we show that any HI-criticality job jk receives Ck(HI) units of execution in SHI. We start constructing SHI

by copying the jobs in SLO. But according to our algorithm, the HI-criticality jobs are allocated their remaining

Ck(HI)− Ck(LO) units of allocation in SHI after they complete their Ck(LO) units of allocation in SHI by pushing

recursively all the following HI-criticality job segments to the right except those whose allocation is the same as in

table THI. This means we can push a job segment to the right in SHI only if it is allocated before its allocation in

THI and moreover, no job is pushed beyond its allocation in THI, because if the construction of THI doesn’t declare

failure then it allocates enough time for the execution of all the HI-criticality jobs. In this case, all the jobs can get

sufficient time to schedule their Ck(HI)−Ck(LO) units of execution as they are allocated on or before the allocation

in table THI. This is clear from the remark following Observation 1. If a HI-criticality job jh cannot be pushed to

the right then it will get its remaining Ch(HI)−Ch(LO) units of execution time in table SHI by a similar reasoning

as above.

Lemma 2: At any time t, if a job ji is present in SHI but not in SLO, then the job ji has finished its LO-criticality

execution before time t in SLO.

Proof. We use the same order of jobs in SLO to construct SHI. We know the HI-criticality jobs are allocated their

Ci(HI)−Ci(LO) units of execution after the allocation of Ci(LO) units of execution in SHI. In SHI, the HI-criticality

jobs are preferred over the LO-criticality jobs, i.e., a HI-criticality job is chosen to be allocated in table SHI if a

LO-criticality job is found in SLO while allocating Ci(HI)−Ci(LO) units of execution in table SHI. This means each

of the job segments present in table SHI is either at the same position in SLO or to the right of it. When a job ji is

present in SHI and not in SLO at time t, it means this has already completed its LO-criticality execution in SLO.

Lemma 3: At any time t, when a mode change occurs, each HI-criticality job still has Ci(HI)−ci units of execution

in SHI after time t to complete its execution, where ci is the execution time already completed by job ji before time

t in SLO.

Proof. Suppose a mode change occurs at time t. This means all the HI-criticality jobs scheduled before time

t have either signaled their completion or the current HI-criticality job is the first one to complete its Ci(LO)

units of execution without signaling its completion. We know that all the HI-criticality jobs are allocated their

Ci(HI) − Ci(LO) units of execution in SHI after the completion of their Ci(LO) units of execution in both SLO
and SHI. If a job ji has already executed its Ci(LO) units of execution in SLO, then it requires Ci(HI) − Ci(LO)

units of time to be completed in SHI. When job ji initiates the mode change, this is the first job which doesn’t

signal its completion after completing its Ci(LO) units of execution. Before time t, the scheduler uses the table

SLO to schedule the jobs, while subsequently the scheduler uses table SHI due to the mode change. If a job ji has

already executed its ci units of execution in SLO, then it requires Ci(HI)− ci units of time to be completed in SHI

its execution. We know that the tables SHI and SLO have same order and according to lemma 1 and 2, each job will

get sufficient time to complete its Ci(HI) units of execution. Hence, each HI-criticality job will get Ci(HI)− ci units

of time in SHI to complete its execution after the mode change at time t.

Theorem 1: If the scheduler dispatches the jobs according to SLO and SHI, then it will be a correct scheduling

strategy.
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Proof. For LO-criticality scenarios, all jobs can be correctly scheduled by the table SLO as proved in Lemma 1.

Now, we need to prove that in a HI-criticality scenario, all the HI-criticality jobs can be correctly scheduled by the

table SHI. In Lemma 1, we have already proved that all the HI-criticality jobs get sufficient units of time in SHI

to complete their execution. In Lemma 3, we have proved that when the mode change occurs at time t, all the

HI-criticality jobs can be scheduled without missing their deadline. So from Lemma 1 and Lemma 3, it is clear that

if the scheduler uses the tables SLO and SHI to dispatch the jobs then it will be a correct scheduling strategy.

3.4 Dominance over OCBP-based Algorithm

We know that the algorithm proposed by Baruah and Fohler [9] is based on the OCBP order [1] and constructs the

tables Soc
LO and Soc

HI based on this order. We show that if the OCBP-based algorithm constructs the tables Soc
LO and

Soc
HI for an instance then our algorithm will also construct the two tables SLO and SHI for the same instance.

Notation: We use Soc
LO and Soc

HI for the tables constructed by the OCBP-based algorithm and SLO and SHI for the

tables constructed by our algorithm. Further, we use TLO and THI for the two temporary tables in our algorithm.

Lemma 4: If OCBP chooses a latest deadline job as the lowest priority job at each stage, then the OCBP priority

order of jobs of the same criticality is the same as that assigned by EDF.

Proof. See observation 1 of Lemma 2 from Park and Kim [19] for the proof of this lemma.

Lemma 5: If OCBP finds a priority order for an instance I, then there exists an OCBP priority order for I in which

all jobs of the same criticality are in EDF order.

Proof. Suppose there exists an OCBP priority order for instance I. Let ji and jk be two jobs of the same criticality,

where ji is assigned higher priority than jk by OCBP and di ≥ dk. OCBP assigns lower priority to jk because all

other jobs including ji finish their C(χk) units of execution and there is sufficient time in the interval [ak, dk] for

jk to finish its C(χk) units of execution. If we swap the priority levels of ji and jk, then jk certainly meets its

deadline and even though the execution segments of ji are shifted to the right, its deadline di is not violated, since

di ≥ dk. So we can exchange their priority which means there exists a priority order for I in which all jobs of the

same criticality are in EDF order.

Without loss of generality, by Lemma 5 all the jobs in the table Soc
LO constructed by the OCBP-based algorithm

of the same criticality are in EDF order.

Lemma 6: If OCBP finds a priority order for an instance I, then Algorithms 1 and 2 can construct the tables TLO
and THI and these are obtained from the OCBP order by moving the job segments to the right starting from the

right end of the schedule for the LO-criticality and HI-criticality jobs respectively.

Proof. Follows from Lemma 4 and 5.

Theorem 2: If an instance I is schedulable by the OCBP-based scheduling algorithm, then it is also schedulable

by our algorithm.

Proof. OCBP generates a priority order for an instance I. Then the OCBP-based algorithm finds the tables Soc
LO and

Soc
HI for the instance I using this priority order. We need to show that if there exists tables Soc

LO and Soc
HI constructed

by the OCBP-based algorithm, then our algorithm will not encounter a situation where at time slot t TLO and THI

are non-empty, for any t.

We know that Ci(LO) units of execution are allocated to each job ji for constructing the tables TLO and THI.

Each job in TLO and THI is allocated as close to its deadline as possible. That means no job can execute after its

allocation time in TLO and THI without affecting the schedule of any other job and still meet its deadline. Algorithm 3

declares failure if it finds a non-empty slot at any time t in both the tables TLO and THI. This means the two jobs
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which are found in the tables TLO and THI respectively cannot be scheduled with all other remaining jobs from this

point, because all the jobs to the right have already been moved as far to the right as possible.

Suppose there is an OCBP priority order of the jobs of instance I and the LO-criticality table Soc
LO follows this

priority order.

Let jl and jh be two jobs in TLO and THI respectively found at time t during the construction of table SLO by

our algorithm, which means all job segments in the interval [0, t− 1] from TLO and THI have already been assigned

in SLO. But, we know that OCBP has assigned priorities to these jobs jl and jh. There are two cases to consider.

In the first case, assume jl is assigned lower priority than jh by OCBP. Let al be the arrival time of job jl and tl

and tl
′ be the starting and completion times of jl in TLO computed by Algorithm 1. Since job jl can be scheduled

only on or after the arrival time al, we need to show that the job segment of jl found at time t cannot be scheduled

in the interval [al, t− 1] by the OCBP-based algorithm. We know that Algorithm 3 can allocate a job in table SLO
on or before its allocation in TLO and THI. But Algorithm 3 has not allocated the job segments found in TLO and

THI at time t in the interval [al, t − 1] of the table SLO and by Lemma 6 this is due to the presence of equal or

higher priority job segments of the OCBP priority order in TLO and THI. We know that all the jobs in TLO in the

interval [al, t] and the jobs in THI including job jh in the interval [al, t] are of priority greater or equal to that of jl

according to OCBP since, by moving job segments to the right starting from the OCBP schedule the jobs to the left

of jl are of priority greater than or equal to that of jl. This means the jobs in the interval [al, t − 1] of table SLO
are either equal or higher priority jobs than jl according to OCBP. So both the algorithms, the OCBP-based one

and ours, allocate higher or equal priority jobs (or, job segments according to Algorithm 3) before time t. Then it

is clear that after the jobs of higher priority than jl finish their C(LO) units of execution by time t, there will not

be sufficient time for jl to finish its Cl(LO) units of execution in the interval [al, tl
′] in the OCBP schedule. This is

because at time t, the OCBP-based algorithm has already allocated all ready jobs with higher or equal priority than

jl (according to OCBP) in the interval [al, t] with no vacant slot for further allocation of jl’s segment found at time

slot t, which is the case for Algorithm 3 as well. A similar statement holds for jh. Therefore jh and jl cannot be

simultaneously scheduled to meet their deadlines in the remaining time, according to the OCBP-based algorithm.

In the second case, assume jh is assigned lower priority than jl by OCBP. Let ah be the arrival time of job jh

and let the starting and completion times of the LO-criticality execution of jh be th and th
′ respectively, and the

completion time of the HI-criticality execution be te. As in the previous case, all the jobs in THI in the interval

[ah, t] and the jobs in TLO, including job jl, in the interval [ah, t] are of priority (according to OCBP) greater than

or equal to that of jh. OCBP considers C(HI) units of execution time to assign a priority to a HI-criticality job. As

seen above, it is clear that after the jobs of higher priority than jh finish their C(LO) units of execution by time t,

there will not be sufficient time for jh to finish its Ch(LO) units of execution in the interval [ah, th
′] according to

OCBP. We know that C(LO) ≤ C(HI). If job jh doesn’t get sufficient time to execute its Ch(LO) units of execution

in the interval [ah, th
′], then it will not get sufficient time to execute its Ch(HI) units of execution in the interval

[ah, te] either.

From the above two cases, it is clear that OCBP cannot assign priorities to job jl and jh, which is a contradiction.

This means if there exists an OCBP priority order for instance I, then our algorithm will not encounter a situation

where both the tables TLO and THI are non-empty at any time t for the instance I.

Note that we need to consider only the LO-criticality scenarios in the proof since Lemma 3 implies that if SLO
can be constructed, then so can SHI.

3.5 Dominance over MCEDF Algorithm

Now we show the dominance of our algorithm over the MCEDF algorithm [10].

Lemma 7: If MCEDF finds a priority order for an instance I, then there exists an MCEDF priority order for I in

which all jobs of the same criticality are in EDF order.

Proof. This can be derived directly from the priority assignment to the jobs by the MCEDF algorithm.
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Theorem 3: If an instance I is schedulable by the MCEDF algorithm, then it is also schedulable by our algorithm.

Proof. The MCEDF algorithm generates a priority order for an instance I. This priority order is used to find the

table PTLO. We need to show that if there exists a table PTLO and the anyHIscenarioFailure() subroutine in

Algorithm MCEDF on page 95 of [10] doesn’t fail, then our algorithm will not encounter a situation where TLO and

THI are non-empty at any time slot t.

We know that Ci(LO) units of execution are allocated to each job ji for constructing the tables TLO and THI.

Each job in TLO and THI is allocated as close to its deadline as possible. That means no job can execute after its

allocation time in TLO and THI without affecting the schedule of any other job and still meet its deadline. Algorithm

3 declares failure if it finds a non-empty slot at any time t in both the tables TLO and THI. This means the two jobs

which are found in the tables TLO and THI respectively cannot be scheduled with all other remaining jobs from this

point, because all the jobs to the right have already been moved as far to the right as possible.

By Lemma 7, without loss of generality, the MCEDF order is the same as the EDF orders for jobs of the same

criticality. So the tables TLO and THI are obtained from the MCEDF order by moving the job segments to the right

starting from the right end of the schedule for the LO-criticality and HI-criticality jobs respectively.

Suppose there is an MCEDF priority order of the jobs of instance I and a table PTLO according to this priority

order and suppose the anyHIscenarioFailure() subroutine doesn’t fail.

Let jl and jh be two jobs in TLO and THI respectively found at time t during the construction of table SLO by our

algorithm, which means all the job segments in the interval [0, t− 1] from TLO and THI have already been assigned

in SLO. But, we know that MCEDF has assigned priorities to these jobs jl and jh. Now there are two cases.

In the first case, assume jl is assigned lower priority than jh by MCEDF. Let al be the arrival time of job jl and

tl and tl
′ be the starting and completion times of jl in TLO computed by Algorithm 1. Since job jl can be scheduled

only on or after the arrival time al, we need to show that the job segment of jl found at time t cannot be scheduled

in the interval [al, t − 1] by the MCEDF algorithm. We know that Algorithm 3 can allocate a job in table SLO on

or before its allocation in TLO and THI. But Algorithm 3 has not allocated the job segments found in TLO and THI

at time t in the interval [al, t− 1] of the table SLO, and by Lemma 7, this is due to the presence of equal or higher

priority job segments of the MCEDF priority order in TLO and THI. We know that all the jobs in TLO in the interval

[al, t] and the jobs in THI including job jh in the interval [al, t] are of priority greater or equal to that of jl according

to the MCEDF algorithm since, by moving job segments to the right starting from the EDF schedule, the jobs to

the left of jl are of priority greater than or equal to that of jl. This means the jobs in the interval [al, t− 1] of table

SLO are either equal or higher priority jobs than jl according to MCEDF. So both the algorithms, MCEDF and

ours, allocate higher or equal priority jobs (or, job segments according to Algorithm 3) before time t. Then it is

clear that after the jobs of higher priority than jl finish their C(LO) units of execution, there will not be sufficient

time for jl to finish its Cl(LO) units of execution in the interval [al, tl
′] in the MCEDF schedule. This is because at

time t, the MCEDF algorithm has already allocated all ready jobs with higher or equal priority than jl (according

to MCEDF) in the interval [al, t] with no vacant slot for further allocation of jl’s segment found at time slot t, which

is the case for Algorithm 3 as well. A similar statement holds for jh. Therefore jh and jl cannot be simultaneously

scheduled to meet their deadlines in the remaining time, according to MCEDF. In the second case, assume jh is

assigned lower priority than jl by MCEDF. Let ah be the arrival time of job jh and let the starting and completion

times of the LO-criticality execution of jh be th and th
′ respectively, and the completion time of the HI-criticality

execution be te. As in the previous case, all the jobs in THI in the interval [ah, t] and the jobs in TLO, including job

jl, in the interval [ah, t] are of priority (according to MCEDF) greater or equal to that of jh. MCEDF considers

C(HI) units of execution time to assign a priority to a HI-criticality job. As seen above, it is clear that after the

jobs of higher priority than jh finish their C(LO) units of execution, there will not be sufficient time for jh to finish

its Ch(LO) units of execution in the interval [ah, th
′] according to MCEDF. We know that C(LO) ≤ C(HI). If job

jh doesn’t get sufficient time to execute its Ch(LO) units of execution in the interval [ah, th
′], then it will not get

sufficient time to execute its Ch(HI) units of execution in the interval [ah, te] either.
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From the above two cases, it is clear that MCEDF may assign priorities to job jl and jh but the

anyHIscenarioFailure() subroutine will fail, which is a contradiction. This means if the MCEDF algorithm finds

a schedule for instance I, then our algorithm will not encounter a situation where both the tables TLO and THI are

non-empty at any time t for the instance I.

Note that we need to consider only the LO-criticality scenarios in the proof since Lemma 3 implies that if SLO
can be constructed, then so can SHI.

4 Extension for m criticality levels

The algorithm discussed in Section 3 constructs two scheduling tables SLO and SHI for the dual-criticality instances

which can be used by the scheduler to dispatch the jobs. Now we extend our algorithm for instances with m

criticality levels. Here we need to create m different tables for m criticality levels which can be used by the scheduler

to dispatch the jobs.

4.1 Model

A job is characterized by a 5-tuple of parameters: ji = (ai, di, χi, {Ci(1), Ci(2), . . . , Ci(m)}), where

• ai ∈ N denotes the arrival time.

• di ∈ N+ denotes the absolute deadline.

• χi ∈ N+ denotes the criticality level.

• {Ci(1), Ci(2), . . . , Ci(m)} denotes the worst-case execution time at each criticality level.

We assume that Ci(k) is monotonically increasing with increasing k, i.e., ∀i : Ci(1) ≤ Ci(2) ≤ . . . ≤ Ci(m), where

1 ≤ i ≤ n.

Definition 3: An m criticality MC instance I is said to be time-triggered schedulable if it is possible to construct

m tables S1, S2, . . . , Sm such that the scheduler can schedule any non-erroneous scenario of instance I.

The following scheduler algorithm is used to dispatch the jobs using the m tables at run time.

• Initially χi = 1

• The criticality level indicator Γ is initialized to χi.

• Repeat

– While (Γ = χi), at each time instant t the job available at time t in the table Sχi
will execute.

– If a job executes for more than its χi-criticality WCET without signaling completion, then Γ is changed

to χi + 1.

4.2 Algorithm

Here we need to construct m tables to find a time triggered schedule. Each table is of length Dmax as in Equation 1.

Algorithm 4 constructs m temporary tables T1, T2, . . . , Tm. For each table Tχi
where χi ∈ {1, 2, . . . ,m},

Algorithm 4 chooses jobs with χi-criticality level and orders them in EDF order. Then, all the job segments of the

EDF order are moved as close to their deadline as possible so that no job misses its deadline in Tχi
. Then out of

the total allocation so far, the algorithm allocates Ci(1) units of execution of ji in Tχi
from the beginning of its slot

and leaves the rest of the execution time of ji unallocated in Tχi . This is similar to the dual criticality case.

Now, we use Algorithm 5 to construct the table S1 from tables T1, T2, . . . , Tm. The algorithm starts the

construction of S1 from time 0 and checks all m tables simultaneously. There will be three situations while merging

these tables to construct S1. At time slot t, one of the following can occur:
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Algorithm 4 Construct TT m-crit Tχi(I)

Notation:

I = {j1, j2, . . . , jn}, where

ji =< ai, di, χi, {Ci(1), Ci(2), . . . ,Ci(m)} >.

Input : I

Output : T1, T2, . . . , Tm
Assume earliest arrival time is 0.

1: Find the maximum deadline (Dmax) of the jobs;

2: for χi := 1 to m do

3: Prepare a temporary table Tχi
of maximum length Dmax;

4: Let Ψ be the set of χi-criticality jobs of instance I;

5: Let O be the EDF order of the jobs of Ψ on the time-line using Ci(χi) units of execution for job ji ;

6: if (any job cannot be scheduled) then

7: Declare failure;

8: end if

9: Starting from the rightmost job segment of the EDF order of Ψ, move each segment of a job ji as close to its

deadline as possible in Tχi
.

10: for k := 1 to |Ψ| do

11: Allocate Ck(1) units of execution to job jk from its starting time in Tχi
and leave the rest unallocated;

12: end for

13: end for

1. All m tables are empty.

2. Two or more tables from the m tables are not empty.

3. Exactly one table from the m tables is not empty.

If situation 1 occurs, then the algorithm will allocate the nearest ready job to the right at time slot t where a

lower criticality job gets higher priority than a higher criticality job. After the allocation of the job ji in S1, that

instant of ji in Tχi
is marked empty. In case of situation 2, the algorithm declares failure to schedule. In situation 3,

the algorithm allocates the first available job from the table which is non-empty at time t in S1.

Then we construct the table S2 from S1. We first copy the jobs of table S1 to table S2. Then all the jobs whose

criticality are greater than 1 need to be allocated Ci(2)−Ci(1) units of execution time immediately after their Ci(1)

units of execution in S2. These additional time units is allocated by pushing all overlapping jobs whose criticality

is greater than or equal to 2 to the right and overwriting any job with criticality 1 in the process. If the allocation

time of a job whose criticality is 2 or more which needs to be pushed is same in both the tables S2 and T2, then the

additional time units are allocated after this job.

Similarly, we construct the table Sχi from Sχi−1. We first copy the jobs of table Sχi−1 to table Sχi . Then the

χi-criticality jobs are allocated Ci(χi) − Ci(χi − 1) units of χi-criticality execution time immediately after their

Ci(χi − 1) units of execution in Sχi
. These additional time units is allocated by pushing all overlapping jobs whose

criticality is greater than or equal to χi to the right and overwriting any job with criticality less than or equal to

(χi − 1) in the process. If the allocation time of a χi-criticality job which needs to be pushed is same in both the

tables Sχi
and Tχi

, then the additional time units are allocated after this job.
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Algorithm 5 TT Merge m-crit(I, T1, T2, . . . , Tm)

Notation:

I = {j1, j2, . . . , jn}.
ji =< ai, di, χi, {Ci(1), Ci(2), . . . ,Ci(m)} >.

Input : I, T1, T2, . . . , Tm
Output : Tables S1, S2, . . . , Sm

1: Construction of S1.

2: Find the maximum deadline (Dmax) of the jobs;

3: The maximum length of tables S1, S2,. . . , Sm are Dmax each;

4: t := 0;

5: while (t ≤ Dmax) do

6: if (|{χi|Tχi
[t] 6= NULL}| = 0) then

7: Search the tables Tχi
simultaneously from the beginning to find the first available job at time t;

8: Let k be the first occurrence, if any, of such a job ji in Tχi
;

9: if (more than one job is found) then

10: LC := the lowest criticality such that a job ji is found in TLC ;

11: S1[t] := TLC [k];

12: TLC [k] := NULL;

13: else if (only job of χi-criticality level is found) then

14: S1[t] := Tχi
[k];

15: Tχi
[k] := NULL;

16: else if (no job is found) then

17: S1[t] := NULL

18: t := t+ 1;

19: end if

20: else if (|{χi|Tχi
[t] 6= NULL}| = 1) then

21: S1[t] := Tχi
[t];

22: Tχi [t] := NULL;

23: t := t+ 1;

24: else if (|{χi|Tχi
[t] 6= NULL}| > 1) then

25: Declare failure;

26: end if

27: end while

28: This is the table S1;

29:

30: Construction of Sχi
where 2 ≤ χi ≤ m

31: for χi := 2 to m do

32: Copy all the jobs from table Sχi−1 to table Sχi
;

33: Scan the table Sχi
from left to right:

34: for each χi-criticality job jl, allocate an additional Cl(χi)−Cl(χi− 1) time units after the rightmost segment

of job jl, recursively pushing all the overlapping job segments with criticality greater or equal to χi-criticality in

Sχi
(except those whose allocation time is same as in Tχi

) to the right and overwriting any jobs with criticality

(χi − 1)-criticality or lesser in the process.

35: end for
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4.3 Correctness Proof

Theorem 4: If the scheduler dispatches the jobs according to tables S1, S2, . . . , Sm, then it will be a correct

scheduling strategy.

Proof. We prove the theorem by strong induction.

Let S(i) be the statement ”If the scheduler dispatches the jobs according to tables S1, S2, . . . , Si, then it will be a

correct scheduling strategy up to criticality level i.”

BASE STEP (i = 2): Since i = 2 is a dual criticality instance for which the correctness has already been proved in

the previous section, S(2) is true.

INDUCTIVE STEP: Fix some i ≥ 2, and assume that for every t satisfying 2 ≤ t ≤ i, the statement S(t) is true.

Now we need to show that S(i + 1) is true, i.e., if the algorithm finds a correct online scheduling policy up to the

i-criticality level using the first i scheduling tables, then there exists an online scheduling policy for (i+1)-criticality

levels using the first (i + 1) tables. We know that S(i) is true which means for the i-criticality level, the scheduler

dispatches the job according to the first i tables which is a correct online scheduling strategy for i-criticality levels.

Algorithm 5 starts constructing the table S(i+1) from the table Si keeping the same order of the jobs. According

to Algorithm 5, after Cl(i) units of execution for each job jl of χ(i+1)-criticality level is allocated, the remaining

{Cl(i + 1) − Cl(i)} units of execution has been allocated to them immediately after the rightmost job segment in

the table S(i+1) while following the job order of table Si. So, each job jl of χ(i+1)-criticality gets sufficient time to

execute their Cl(i+ 1) units of execution in S(i+1). This proof is similar to the dual criticality case. Hence, we get

a correct online scheduling policy.

5 Extension for dependent jobs

In previous sections we have considered instances with independent jobs. Now we consider the case of dual-criticality

instances with dependent jobs. In this section we design algorithms to find two scheduling tables such that if the

scheduler discussed in Section 2 dispatches the jobs according to these two tables then it will be a correct online

scheduling strategy without violating the dependencies between them. To the best of our knowledge, there is no

existing algorithm which can schedule the jobs of an instance I with dependencies, although a similar type of problem

is discussed in Baruah [11] based on synchronous programs. First we discuss the case of non-recurrent jobs and then

we extend it for recurrent or periodic jobs.

5.1 Model

A job is characterized by a 5-tuple of parameters: ji = (ai, di, χi, Ci(LO), Ci(HI)), where

• ai ∈ N denotes the arrival time.

• di ∈ N+ denotes the absolute deadline.

• χi ∈ {LO,HI} denotes the criticality level.

• Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.

• Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

We assume that ∀i : Ci(LO) ≤ Ci(HI), where 1 ≤ i ≤ n and χi ∈ {LO,HI}.
An instance of a mixed-criticality system with dependent jobs can be defined as a directed acyclic graph (DAG).

An instance I is represented in the form of I(V,E), where V represents the set of jobs {j1, j2, . . . , jn} and E represents

the dependencies between the jobs. We also assume that no HI-criticality job can depend on a LO-criticality job.

This means, there will be no instance where an outward edge from a LO-criticality job becomes an inward edge to

a HI-criticality job.
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Definition 4: A dual-criticality MC instance I with job dependencies is said to be time-triggered schedulable

if it is possible to construct the two schedules SLO and SHI for I without violating the dependencies, such that the

run-time scheduler algorithm described above schedules I in a correct manner.

5.2 The Algorithm

Here we propose an algorithm which can construct two scheduling tables SLO and SHI for a dual-criticality instance

with dependent jobs. If the scheduler discussed in Section 2 dispatches job according to these two tables, then this

will be a correct scheduling strategy.

We construct the tables SLO and SHI from two temporary tables TLO and THI. The length of all these tables are

Dmax, i.e., the length of the maximum deadline among all the jobs in the instance.

Algorithm 6 constructs a subgraph Ψ which consists of all the LO-criticality jobs and the edges between them.

Then it finds a job ji with the smallest deadline and no inward edges and allocates its Ci(LO) units of execution

in TLO. After Ci(LO) units of execution of the job is allocated, the job and all its outward edges are removed from

Ψ. The process continues until all the jobs in Ψ are scheduled. Then all job segments in TLO are shifted as close to

their deadlines as possible without violating the dependencies between them so that no job misses their deadline.

For an example see Fig. 4 and Fig. 5

Algorithm 6 Construct Dependency TLO(I)

Notation:

I = {j1, j2, . . . , jn}, where

ji =< ai, di, pi, χi, Ci(LO), Ci(HI) >.

Input : I

Output : TLO
Assume earliest arrival time is 0.

1: Find the maximum deadline (Dmax) of the jobs;

2: Prepare a temporary table TLO of maximum length Dmax;

3: Let Ψ be the subgraph of DAG I containing LO-criticality jobs and the edges between them;

4: repeat

5: Choose an available job ji from Ψ with the earliest deadline that doesn’t have an inward edge.

6: Allocate ji’s execution time at the next available slot in the temporary table TLO;

7: if (ji’s Ci(LO) units of execution is allocated) then

8: delete ji and its outward edges from Ψ;

9: end if

10: if (job ji misses its deadline) then

11: Declare failure and exit;

12: end if

13: until (all the jobs in Ψ are allocated)

14: Let O be the final order of the jobs of Ψ on the time-line of TLO using Ci(LO) units of execution for job ji;

15: Starting from the rightmost job segment of the order O, move each segment of a job ji as close to its deadline

as possible in TLO without violating the dependency;

Algorithm 7 constructs a subgraph Ψ which consists of all the HI-criticality jobs and the edges between them.

Then it finds a job ji with the smallest deadline and no inward edges and allocates Ci(HI) units of execution to it

in THI. After Ci(HI) units of execution of the job is allocated, the job and all its outward edges are removed from

Ψ. The process continues until all the jobs in Ψ are scheduled. Then all job segments in THI are shifted as close

to their deadlines as possible without violating the dependencies between them so that no job miss their deadline.
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Then out of the total allocation so far, it allocates Ci(LO) units of execution of job ji in THI from the beginning of

its slot and leaves the rest of the execution time of ji unallocated in THI, as in Fig. 5 and Fig. 6.

Algorithm 7 Construct Dependency THI(I)

Notation:

I = {j1, j2, . . . , jn}, where

ji =< ai, di, pi, χi, Ci(LO), Ci(HI) >.

Input : I

Output : THI

Assume earliest arrival time is 0.

1: Find the maximum deadline (Dmax) of the jobs;

2: Prepare a temporary table THI of maximum length Dmax;

3: Let Ψ be the subgraph of DAG I containing HI-criticality jobs that the edges between them;

4: repeat

5: Choose an available job ji from Ψ with the earliest deadline and doesn’t have an inward edge.

6: Allocate ji’s execution time at the next available slot in the temporary table THI;

7: if (ji’s Ci(HI) units of execution is allocated) then

8: delete ji and its outward edges from Ψ;

9: end if

10: if (job ji misses its deadline) then

11: Declare failure and exit;

12: end if

13: until (all the jobs in Ψ are allocated)

14: Let O be the final order of the jobs of Ψ on the time-line of THI using Ci(HI) units of execution for job ji ;

15: Starting from the rightmost job segment of the order O, move each segment of a job ji as close to its deadline

as possible in THI without violating the dependency.

16: for i := 1 to m do

17: Allocate Ci(LO) units of execution to job ji from its starting time in THI and leave the rest unallocated;

18: end for

Now, we use Algorithm 8 to construct the table SLO from TLO and THI and then construct SHI from SLO. The

algorithm starts the construction of SLO from time 0 and checks the tables TLO and THI simultaneously at each

instant. There are four possibilities while merging the two temporary tables to construct SLO.

At time t, one of the following situations can occur.

1. Both TLO and THI are empty.

2. Both TLO and THI are not empty.

3. TLO is empty and THI is not empty.

4. TLO is not empty and THI is empty.

If situation 1 occurs, then the algorithm will search both the tables TLO and THI to find the first available job in

both the table. Then, it allocates one of the available jobs at time t where a LO-criticality job gets higher priority

over a HI-criticality job. If a LO-criticality job is chosen to be allocated, then all the predecessor of that job must

be finished allocation. Then the place of the ready job in TLO or THI is marked as empty. In case of situation 2, the

algorithm declares failure to schedule. In situation 3, the algorithm allocates the HI-criticality job from THI whereas

in situation 4, it allocates the LO-criticality job from TLO if and only if all the predecessor of the job has already
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finished allocation. Once an instant of a job is allocated in SLO, the place where it was scheduled in TLO or THI is

emptied.

We then construct the table SHI from SLO. We first copy the jobs of table SLO to SHI. Then the HI-criticality

jobs are allocated their Ci(HI)−Ci(LO) units of HI-criticality execution time immediately after their Ci(LO) units

of execution in SHI. These additional time units are allocated by recursively pushing all overlapping HI-criticality

jobs in SHI to the right and overwriting any LO-criticality job in the process. An exception to this is when the

allocation time of an overlapping HI-criticality job is the same in both the tables SHI and THI, in which case the

additional time units are allocated after this job without violating the dependency constraints.

We illustrate the algorithm by an example.

Example 5: Consider the instance shown in Fig. 14. This is an instance with five jobs j1, j2, j3, j4 and j5 with

HI LO

HI HI HI

j1

j2

j3

j4 j5

(4) (4)

(4) (6) (8)

Figure 14: A DAG showing job dependencies. The numbers in parentheses indicates deadline

dependencies between them. The properties of these jobs can be seen from Table 4.

Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 0 4 HI 1 2

j2 0 4 HI 1 2

j3 0 4 LO 1 1

j4 0 6 HI 1 2

j5 3 8 HI 1 2

Table 4: Instance for Example 5

We find the two temporary tables as in Example 3. But, here we need to take care of the job dependencies. So,

we apply Algorithm 6 and 7 to construct the tables TLO and THI shown in Fig. 15 and 16.

j3

0 3 4 8

Figure 15: Temporary table TLO

j1 j2 j4 j5

0 1 2 3 4 5 6 7 8

Figure 16: Temporary table THI

Then we use Algorithm 8 to find the table SLO which is shown in Fig. 17. Finally, we construct the table SHI

from the table SLO which is shown in Fig. 18.
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Algorithm 8 TT Dependency Merge crit(I, TLO, THI)

I = {j1, j2, . . . , jn}.
ji =< ai, di, pi, χi, Ci(LO), Ci(HI) >.

Input : I, TLO, THI

Output : Tables SLO and SHI

1: Construction of SLO.

2: Find the maximum deadline (Dmax) of the jobs;

3: The maximum length of tables SHI and SLO are both Dmax;

4: t := 0;

5: while (t ≤ L) do

6: if (TLO[t] = NULL & THI[t] = NULL) then

7: Search the tables TLO and THI simultaneously from the beginning to find the first available job at time t;

8: Let k be the first occurrence of a job ji in TLO or THI;

9: if (Both LO-criticality & HI-criticality job are found) then

10: if (Predecessors of TLO[k] has been allocated its Ci(LO) execution time) then

11: SLO[t] := TLO[k];

12: TLO[k] := NULL;

13: else

14: SLO[t] := THI[k];

15: THI[k] := NULL;

16: end if

17: else if (LO-critical job is found) then

18: if (Predecessors of TLO[k] has been allocated its Ci(LO) execution time) then

19: SLO[t] := TLO[k];

20: TLO[k] := NULL;

21: else

22: SLO[t] := NULL;

23: t := t+ 1;

24: end if

25: else if (HI-criticality job is found) then

26: SLO[t] := THI[k];

27: THI[k] := NULL;

28: else if (NO job is found) then

29: SLO[t] := NULL

30: t := t+ 1;

31: end if

32: else if (TLO[t] = NULL & THI[t] != NULL) then

33: SLO[t] := THI[t];

34: THI[t] := NULL;

35: t := t+ 1;

36: else if (TLO[t] != NULL & THI[t] = NULL) then

37: SLO[t] := TLO[t];

38: TLO[t] := NULL;

39: t := t+ 1;
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40: else if (TLO[t] != NULL & THI[t] != NULL) then

41: Declare failure;

42: end if

43: end while

44: This is the table SLO;

45:

46: Construction of SHI

47: Copy all the jobs from table SLO to table SHI;

48: Scan the table SHI from left to right:

49: for each HI-criticality job ji, allocate an additional Ci(HI)−Ci(LO) time units immediately after the rightmost

segment of job ji, recursively pushing all the overlapping HI-criticality job segments in SHI (except those whose

allocation time is same as in THI) to the right and overwriting any LO-criticality jobs in the process.

j1 j3 j2 j4 j5

0 1 2 3 4 5 8

Figure 17: Final table SLO

j1 j2 j4 j5

0 2 4 6 8

Figure 18: Final table SHI

5.3 Correctness Proof

We need to show that if our algorithm finds the two tables SLO and SHI, then the scheduler can find an online

scheduling strategy using these tables.

Lemma 8: If Algorithm 8 doesn’t declare failure, then each job ji receives Ci(LO) units of execution in SLO and

each HI-criticality job jk receives Ck(HI) units of execution in SHI without violating the dependency constraints.

Proof. The table SLO is constructed from the two temporary tables TLO and THI. Each LO-criticality job ji can be

allocated in SLO on or before its scheduled time instant in TLO if and only if all of its predecessor jobs have completed

their allocation, which doesn’t violate the dependencies. We have already assumed that no HI-criticality job depends

on any LO-criticality job. We know that each job in THI is allocated according to its dependency constraints. So

each HI-criticality job ji can be allocated in SLO on or before its scheduled time instant in THI. If our algorithm

finds a table SLO then each job must receives Ci(LO) units of execution time.

Next we show that any HI-criticality job jk receives Ck(HI) units of execution in SHI. We start constructing SHI

by copying the jobs in SLO. But according to our algorithm, the HI-criticality jobs are allocated their remaining

Ck(HI)− Ck(LO) units of allocation in SHI after they complete their Ck(LO) units of allocation in SHI by pushing

recursively all the following HI-criticality job segments to the right except those whose allocation is the same as in

table THI and without violating the dependency constraints. This means we can push a job segment to the right

in SHI only if it is allocated before its allocation in THI and, moreover, no job is pushed beyond its allocation in

THI, because if THI doesn’t declare failure then it allocates enough time for the execution of all the HI-criticality

jobs without violating the dependency constraints. In this case, all the jobs can get sufficient time to schedule their

Ck(HI) − Ck(LO) units of execution as they are allocated on or before the allocation in table THI. This is clear

from the remark following Observation 1 which holds for dependent jobs as well. If a HI-criticality job jh cannot be

pushed to the right then it will get its remaining Ch(HI)−Ch(LO) units of execution time in table SHI by a similar

reasoning as above.
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Theorem 5: If the scheduler dispatches the jobs according to SLO and SHI, then it will be a correct scheduling

strategy without violating the dependency constraints.

Proof. Algorithm 6 and 7 take care of all the dependencies between LO-criticality and HI-criticality jobs respec-

tively. We know that Algorithm 8 checks the dependencies of the LO-criticality jobs on HI-criticality jobs before

allocating the LO-criticality jobs. We have assumed that no HI-criticality job depends on a LO-criticality job. So

the construction of the tables SLO and SHI doesn’t violate the dependency constraints of instance I. From Lemma 8,

it is clear that each job in SLO and SHI receives C(LO) and C(HI) units of execution respectively. The rest of the

proof is similar to that of Theorem 1.

5.4 Generalizing the algorithm for m criticality levels

We know that Algorithm 8 can find two tables SLO and SHI which can be used by the scheduler for correct online

scheduling policy. In Section 4, we have already proved that the dual-criticality algorithm can be modified to find

m number of tables which can be used by the scheduler to find a correct online scheduling strategy for m criticality

levels. Thus, we can say that the algorithm discussed in this section can be extended to find m tables which can be

used by the scheduler to find a correct online scheduling strategy.

6 Extension for periodic jobs

Now we extend our algorithm for periodic or recurrent jobs. Here, a job is characterized by a 5-tuple of parameters:

ji = (ai, pi, χi, Ci(LO), Ci(HI)), where

• ai ∈ N denotes the arrival time.

• pi ∈ N+ denotes the period.

• χi ∈ {LO,HI} denotes the criticality level.

• Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.

• Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

We assume that ∀i : Ci(LO) ≤ Ci(HI), where 1 ≤ i ≤ n and χi ∈ {LO,HI}. Note that in this report, we also

assume that pi = di, where di is the deadline and 1 ≤ i ≤ n.

As we can see that the job model is very much similar to the non-recurrent jobs except the periods which initiate

the new instance of the job. The process of constructing a time-triggered schedule for the jobs having the above

dual-criticality model will be very similar to the one we have discussed in Section 3. Here we follow the same

algorithms as in Section 3 to find the two tables SLO and SHI. These two tables will be used by the scheduler to

dispatch the jobs at each instant of time.

All algorithms discussed in Section 3 constructed the tables of length Dmax. But, in this case, all the tables will

have length equals to the lcm or hyper-period L of periods of all the jobs. Here we need to modify Algorithms 1

and 2 only. We find the EDF order of the LO-criticality and HI-criticality jobs up to the hyper-period L in the

tables TLO and THI respectively. Then we can use Algorithm 3 to find tables SLO and SHI.

7 Comparison with mixed-criticality synchronous programs

Baruah [11] proposed a technique to schedule mixed-criticality synchronous programs on a uniprocessor system. He

showed that the scheduling of mixed-criticality single-rate synchronous program is polynomial time solvable whereas

the optimal and efficient scheduling of mixed-criticality multi-rate synchronous program is NP-hard in the strong

sense. He also proved that the schedule generation algorithm which finds a schedule for single-rate synchronous
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programs is optimal. Baruah used graphs to represent the reactive blocks and their dependencies. The multi-rate

graph of a synchronous program is unrolled to find a directed acyclic graph (DAG) in which each invocation of each

block within an interval, of length equal to the lcm of the periods, is explicitly represented as a separate node. Each

node is then assigned a priority according to the OCBP algorithm. From the above priorities, two tables can be

constructed which can be used by the scheduler to dispatch the blocks. We present an algorithm which can construct

two tables with which we can schedule a strict superset of OCBP-schedulable mixed-criticality multi-rate programs.

7.1 Model

We follow the same model of synchronous program as suggested in [11]. The model is described as follows.

• The synchronous program is represented as a directed acyclic graph G(V,E), where V is the set of vertices and

E is the set of edges. The blocks (B1, . . . , Bn) of the synchronous program are represented as the vertices of

the graphs, i.e., Bi ∈ V . The dependencies between the blocks (Bi, Bj) is represented by the directed edges,

i.e., (Bi, Bj) ∈ E.

• Some of the blocks are designated as output blocks and input blocks; these generate output and input values

of the synchronous program. Other blocks are called internal blocks.

• Each block is characterized by a 5-tuple of parameters: Bi = (ai, pi, χi, Ci(LO),

Ci(HI)), where

– ai ∈ N denotes the arrival time.

– pi ∈ N+ denotes the period.

– χi ∈ {LO,HI} denotes the criticality level.

– Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.

– Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

• We assume that ∀i : Ci(LO) ≤ Ci(HI), where 1 ≤ i ≤ n and χi ∈ {LO,HI}. Note that in this report, we also

assume that pi = di, where di is the deadline.

• Each output block can either be a HI-criticality or a LO-criticality block. We assume that a HI-criticality

block cannot depend upon a LO-criticality block. This means if a block Bi is a HI-criticality block, then all

the preceding blocks of Bi will be HI-criticality blocks.

As discussed earlier, the CAs are interested in the certification of the values of the HI-criticality output blocks only,

whereas the system designers want to verify the correctness of all the blocks in a synchronous program.

Example 6: Let us consider an instance I given in Table 5 and its corresponding DAG in Fig. 19. Since we are

Block Arrival time Period Criticality Ci(LO) Ci(HI)

B1 0 14 HI 3 5

B2 2 14 HI 1 2

B3 0 7 LO 3 3

B4 0 14 HI 3 7

Table 5: Instance for Example 6

considering a periodic instance, the instance I is unrolled according to the method given in [11]. The resulting DAG

is given in Fig. 20. We try to apply the OCBP algorithm to find the priority from which the tables Soc
LO and Soc

HI

are constructed. As the procedure shown in [11], the blocks B3(1) is chosen to be assigned the lowest priority block.

Since B3(1) is a LO-criticality block, we need to consider C(LO) units of execution of each block. Now we can see
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Figure 19: DAG of instance I given in Table 5
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HI LO LO
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B1

B2

B3(0) B3(1)

B4

(14) (7) (14)

(14) (14)

Figure 20: DAG after unroll

that block B1 can execute over [0, 3], block B3(0) can execute over [3, 6], block B2 can execute over [6, 7] and block

B4 can execute over [7, 10]. So there is sufficient time for B3(1) to execute its three units of execution. Thus, block

B3(1) is assigned lowest priority. Now, we can see that no more blocks can be assigned a priority. Since, there is no

OCBP priority order, the algorithm discussed in [11] cannot construct the two scheduling tables Soc
LO and Soc

HI.

Now we apply our algorithm 8 on the synchronous program given in Example 6 to construct the two scheduling

tables SLO and SHI. We consider the unrolled synchronous program given in Fig. 20 to find the scheduling tables.

As we know, we need two temporary tables TLO and THI to construct the scheduling table SLO. Then SHI will be

constructed using SLO.

First, Algorithm 6 and 7 construct the two temporary tables as shown in Fig. 21. Then Algorithm 8 constructs

TLO B3(0) B3(1)

0 4 7 11 14

THI B1 B2 B4

0 3 5 6 7 10 14

Figure 21: Tables TLO and THI

the table SLO as shown in Fig. 22 from which the table SHI is constructed as shown in Fig. 23.

We follow all the Lemmas from Section 3.4 to prove Theorem 6.

Theorem 6: If a mixed-criticality synchronous program is schedulable by the OCBP-based algorithm, then it is

also schedulable by our algorithm.

Proof. The OCBP algorithm generates priority orders for the synchronous programs. Then the OCBP-based algo-

rithm finds tables Soc
LO and Soc

HI for the synchronous programs using this priority order. We need to show that if the

OCBP-based algorithm constructs the tables Soc
LO and Soc

HI for an instance, then our algorithm will not encounter a

situation where at time slot t the tables TLO and THI are non-empty, for any t.

We know that Ci(LO) units of execution is allocated to each block Bi for constructing the tables TLO and

THI. Each block in TLO and THI is allocated as close to its deadline as possible without violating the dependency

constraints. That means no block can execute after its allocation time in TLO and THI without affecting the schedule
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SLO B1 B3(0) B2B3(0) B4 B3(1)

0 3 5 6 7 10 14

Figure 22: Table SLO

SHI B1 B2 B4

0 5 7 14

Figure 23: Table SHI

of any other block and still meet its deadline. Algorithm 8 never allocates a block in SLO whose predecessors have

not completed its C(LO) units of execution in SLO. Because, Algorithm 6 and 7 take care of the dependencies

between the LO-criticality and HI-criticality blocks respectively and Algorithm 8 takes care the dependencies of a

LO-criticality block on HI-criticality block. Algorithm 8 declares failure if it finds a non-empty instant at any time

t in both the tables TLO and THI. This means the two blocks which are found in the tables TLO and THI respectively

cannot be scheduled with all other remaining blocks from this point, because all the blocks to the right have already

been moved as far to the right as possible.

Let there be an OCBP priority order of the blocks of synchronous program and a table SLO according to this

priority order.

Let Bl and Bh be two blocks in TLO and THI respectively found at time t during the construction of SLO, by our

algorithm which means all job segments in the interval [0, t − 1] from TLO and THI have already been assigned in

SLO. But, we know that OCBP has assigned priorities to these blocks Bl and Bh. Now there are two cases.

In the first case, assume Bl is assigned lower priority than Bh by OCBP. Let al be the arrival time of Bl and

the starting and completion times of Bl in TLO be tl and tl
′ respectively. Since block Bl can be scheduled only

on or after the arrival time al, we need to show that the block segment of Bl found at time t cannot be scheduled

in the interval [al, t − 1] by the OCBP-based algorithm. We know that Algorithm 8 can allocate a block in table

SLO on or before its allocation in TLO and THI without violating the dependency constraints. But Algorithm 8 has

not allocated the block segments found in TLO and THI at time t in the interval [al, t− 1] of the table SLO, and by

Lemma 6, this is due to the presence of equal or higher priority block segments of the OCBP priority order in TLO
and THI. We know that all the blocks in TLO in the interval [al, t] and the blocks in THI including block Bh in the

interval [al, t] are of priority greater or equal to that of Bl according to OCBP since, by moving block segments to

the right starting from the OCBP schedule the blocks to the left of Bl are of priority greater or equal to that of

Bl. This means the blocks in the interval [al, t − 1] of table SLO are either equal or higher priority blocks than Bl

according to OCBP. So both the algorithms, the OCBP-based one and ours, allocate higher or equal priority jobs

(or, block segments according to Algorithm 8) before time t. Then it is clear that after the blocks of higher priority

than Bl finish their C(LO) units of execution, there will not be sufficient time for Bl to finish its Cl(LO) units of

execution in the interval [al, tl
′] in the OCBP schedule. This is because at time t, the OCBP-based algorithm has

already allocated all ready blocks with higher or equal priority than Bl (according to OCBP) in the interval [al, t]

with no vacant slot for further allocation of Bl’s segment found at time slot t which is the case for Algorithm 8 as

well. A similar statement holds for Bh. Therefore Bh and Bl cannot be simultaneously scheduled to meet their

deadlines in the remaining time, according to the OCBP-based algorithm.

In the second case, assume Bh is assigned lower priority than Bl by OCBP. Let ah be the arrival time of block

Bh and let the starting and completion times of the LO-criticality execution of Bh be th and th
′, respectively and

the completion time of the HI-criticality execution be te. As in the previous case, all the blocks in THI in the interval

[ah, t] and the blocks in TLO, including block Bl, in the interval [ah, t] are of priority (according to OCBP) greater

than or equal to that of Bh. OCBP considers C(HI) units of execution time to assign a priority to a HI-criticality

block. As seen above, it is clear that after the blocks of higher priority than Bh finish their C(LO) units of execution,

there will not be sufficient time for Bh to finish its Ch(LO) units of execution in the interval [ah, th
′] according to
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OCBP. We know that C(LO) ≤ C(HI). If block Bh doesn’t get sufficient time to execute its Ch(LO) units of

execution in the interval [ah, th
′], then it will not get sufficient time to execute its Ch(HI) units of execution in the

interval [ah, te] either.

From the above two cases, it is clear that OCBP cannot assign priorities to job Bl and Bh, which is a contradiction.

This means if there exists an OCBP priority order for a synchronous program, then our algorithm will not encounter

a situation where both the tables TLO and THI are non-empty at any time t for the same synchronous program.

Note that we need to consider only the LO-criticality scenarios since Lemma 3 implies that if SLO can be

constructed, then so can SHI.

8 Results and Discussion

In this section we present the experiments conducted to evaluate our algorithm for the dual-criticality case. The

experiments show the impact of utilization on our algorithm versus the OCBP-based and MCEDF algorithms. The

comparison is done over a large number of instances with randomly generated parameters.

The job generation policy may have significant effect on the experiments. The details of the job generation policy

are as follows.

• The utilization (ui) of the jobs of instance I are generated according to the UUniFast algorithm [20].

• We use the exponential distribution proposed by Davis et al [21] to generate the deadline (di) of the jobs of

instance I.

• The Ci(LO) units of execution time of the jobs are calculated as ui × di.

• The Ci(HI) units of execution time of the jobs are calculated as Ci(HI) = CF × Ci(LO) where CF is the

criticality factor which varies between 2 and 6 for each HI-criticality job ji.

• Each instance I contains at least one HI-criticality job and one LO-criticality job.

• For each point on the X-axis, we have plotted the average result of 10 runs.

In the first experiment, we fix the utilization at LO-criticality level of each instance at 0.9 and let the deadline

of the jobs vary between 1 and 2000. The number of jobs in each instance is set to 10. The graph in Fig. 24 shows

the number of schedulable instances out of different numbers of randomly generated instances.
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Figure 24: Comparison of number of MC-schedulable instances at an utilization of 0.9
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From the graph in Fig. 24, it is clear that our algorithm schedules more instances successfully than both the OCBP-

based algorithm and the MCEDF algorithm. As can be seen from Fig. 24, for an utilization of 0.9 about 620 instances

out of 1000 instances are successfully scheduled by our algorithm which is two times more than the OCBP-based

algorithm and 1.25 times more than the MCEDF algorithm. As the number of instances increases, the success ratio

is more or less stable.

The next experiment checks the impact of the utilizations on the schedulable instances. Here the number of jobs

in an instance is fixed at 20. The deadlines of the jobs in an instance range between 1 and 2000. The utilizations

at LO-criticality level of the instances are varied between 0.1 and 0.9. The graph in Fig. 25 shows the number of

schedulable instances from 1000 randomly generated instances.
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Figure 25: Comparison of number of MC-schedulable instances with different utilizations

From the graph, it is clear that our algorithm constructs more tables SLO and SHI successfully than the OCBP-

based scheduling algorithm. We can see that our algorithm also schedules more instances than MCEDF by a factor

of 1.25. Typically our algorithm is successful in scheduling twice the number of instances than the OCBP-based

algorithm. We can see that the number of schedulable instances decrease with the increase in the utilization.

We have done another experiment where the number of jobs in an instance varied between 5 and 100. For this

experiment, we fix the utilization at LO-criticality level of each instance at 0.9 and let the deadline of the jobs vary

between 1 and 2000. We plot the result from 1000 randomly generated instances in Fig. 26.

From the graph in Fig. 26 it is clear that our algorithm successfully schedules significantly more (by a factor of

two) instances successfully than the OCBP-based algorithm and also schedules more instances than the MCEDF

algorithm.

9 Conclusion

In this report, we proposed a new algorithm for the time-triggered scheduling of mixed-criticality systems. We

proved that our algorithm can schedule a bigger set of instances than the previous algorithm based on OCBP.

We also show that our algorithm schedules more instances than MCEDF. The experiments show the differences in

number of schedulable instances between our algorithm and the OCBP-based algorithm and MCEDF. We have also

extended the work for periodic and dependent jobs. Finally, we proved that our algorithm for dependent jobs can

be used to schedule the blocks of a synchronous program and for which it schedules a bigger set of instances than

the algorithm based on OCBP.

As part of future work we plan to extend this algorithm for multiprocessor systems and investigate resource

sharing aspects.
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