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Abstract

The assessment of uninterrupted traffic flow is traditionally based on empirical methods.  We

develop some analytic queueing models based on traffic counts and we model the behavior of

traffic flows as a function of some of the most relevant determinants. These analytic models

allow for parameterized experiments, which pave the way towards our research objectives:

assessing what-if scenario’s and sensitivity analysis for traffic management, congestion control,

traffic design and the environmental impact of road traffic (e.g. emission models).  The impact of

some crucial modelling parameters is studied in detail and links with the broader research

objectives are given. We illustrate our results for a highway, based on counted traffic flows in

Flanders.
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1.  Introduction

When modeling the environmental impact of road traffic, we can distinguish between both a

static and dynamic impact of infrastructures and vehicles on emissions and waste (figure 1).  On

the one hand, roads can be considered as a visual intrusion.  In addition, they may cause damage

to natural watercourses or threaten the natural habitat of wildlife. Vehicles in turn consume

natural resources and impose a strain on the environment at the end of their life cycle.

On the other hand, as they form part of traffic flows, infrastructures and vehicles also have a

dynamic impact on the environment.  Vehicles in use produce emissions and noise.  Toxic fumes

escape in the atmosphere when fuel tanks are filled, while driving leads to further emissions

(CO2, NOx and SO2) and dust (concrete, asphalt and rubber dust).  Furthermore, an increase in

garbage, accidents (physical and material damage) and, occasionally, distortion of infrastructures

and nature elements (trees, animals,etc.) can be observed.  Because traffic flows are a function of

both the number of vehicles on the roads and the vehicle speed, the resulting environmental

impact will also be a function of these parameters3.

Figure 1: Static and dynamic impact of road traffic on emissions and waste

As traffic flows occupy a central position in the assessment of road traffic emissions, a robust

traffic flow model is required.  Traditionally, traffic flows are modeled empirically, using origin-

destination matrices.  The objective of this approach is mainly explorative and explanatory. These

descriptive models give an empirical justification of the well-known speed-flow and speed-density

diagrams, but are limited in terms of predictive power and the possibility of sensitivity analysis.

The construction of origin-destination matrices consists of five steps: transport generation,

transport distribution, the modal split, assignment and calibration (Yang and Zhou,1998).  An

                                                          
3 In the long run, traffic flow, vehicles and infrastructures are interdependent.  For example: due to the increased
number of cars, government may decide to increase the number of lanes for particular highways, which leads to a
change in traffic flows.  Although it is possible to cope with these interactions,  they are not considered in this article.
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alternative approach is to use speed-flow, speed-density and flow-density diagrams, in which data

on traffic flows are collected and are fit into curves (Daganzo, 1997).  The power of these two

approaches lies in the description and explanation of traffic flows.  Compared to these

descriptive models, this paper presents a more operational approach using queueing theory.

Queueing theory is almost exclusively used to describe traffic behavior at signalized and

unsignalized intersections (Heidemann, 1991, 1994, 1997).  In this paper we will use queueing

theory to describe uninterrupted traffic flows.  The speed-flow-density diagrams will be

constructed analytically, which makes it possible to assess the (future) environmental impact,

perform sensitivity analyses and facilitate congestion management.

In the next section we will discuss several queueing models.  The last section illustrates the two

most realistic models with a real-life example.

2.  The Queueing Approach

Queues occur whenever instantaneous demand exceeds the capacity to provide a service.

Queueing theory involves the mathematical study of these waiting lines.  Using a large number of

alternative mathematical models, queueing theory provides various characteristics of the waiting

line, like waiting time or length of the queue.

2.1. Structure of  a Queueing Model

On of the most important equations in traffic flow theory incorporates the interdependence of

traffic flow q, traffic density E and speed s:

q = E * s.  (1)

When two of the three variables are known, the third variable can easily be obtained.  If traffic

count data are available, traffic flows can be assumed as given, which leaves us to calculate either

traffic density or speed to complete the formula and use either as input for the appropriate

queueing model.  Table 1 gives an overview of the parameters used in this paper.
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Table 1: Overview of used parameters

Parameter Description
E Traffic density (veh/km)
C Maximum traffic density (veh/km)
s Effective speed (km/h)
r Relative speed
SN Nominal speed (km/h)
q Traffic flow (veh/h)
λ Arrival rate (veh/h)
µ Service rate (veh/h)
ρ Traffic intensity = λ / µ
W Time in the system (h)

In our model we define C as the maximum traffic density4.  Roads are divided into segments of

equal length 1/C, which matches the minimal length needed by one vehicle on that particular

road.  Each road segment is considered as a service station, in which vehicles arrive at rate λ and

get served at rate µ (figure 2).

Figure 2: Queueing representation of traffic flows

We define W as the total time a vehicle spends in the system, which equals the sum of waiting

time (due to congestion) and service time.  The higher the traffic intensity, the higher the time in

the system becomes (the exact relation between W and ρ depends upon the specific queueing

model).

When W is known, the effective speed can easily be calculated as:

(2)

The relative speed r, by definition, becomes: 

(3)

Plotting the traffic flow, density and (relative and effective) speed on a graph gives us the well-

known speed-flow-density diagrams.  The exact shape of these diagrams depends upon the

queueing model and the characteristics of the arrival and service processes.  In the sequel of this

paper, we will develop the following queueing models (table 2) with their respective underlying

                                                          
4 The maximum traffic density depends on the type of road (number of lanes, etc.).
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assumptions.  Queueing models are often refered to using the Kendall notation, consisting of

several symbols - e.g. M/G/1.  The first symbol is shorthand for the distribution of inter-arrival

times, the second for the distribution of service times and the last one indicates the number of

servers in the system.

Table 2: Characteristics of the used queueing models

Model Arrival Process Service Process
M/M/1 Poisson Poisson
M/G/1 Poisson General
G/G/1 General General
G/G/1 State Dependent General General

1.2. The M/M/1 Model

The inter-arrival times are exponentially distributed (the arrival rate follows a Poisson

distribution) with expected inter-arrival time equal to 1/λ (with λ equal to the product of the

traffic density E and the nominal speed SN).   The service time delineates the time needed for a

vehicle to pass one road segment and is exponentially distributed with expected service time

µ (the service rate follows a Poisson distribution).  When a vehicle drives at nominal speed SN,

service time can be written as: 1 / (SN * C) and µ equals the product of nominal speed SN with

the maximum traffic density C.

Using these formulas for λ and µ, we obtain W as:

(4)

Using this expression for W, the effective speed and relative speed are obtained:

(5)

with ρ the traffic intensity:

(6)

Substituting for E (= q/s) in (5) the following expression is obtained:

(7)

Maximizing f(s,q) for s and substituting this value into (7), qmax can be written as:

(8)
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From (5)  we see that there exists a negative linear relationship between effective speed and

traffic density E (figure 3).

Figure 3: The speed-density diagram for the M/M/1 model

If traffic density is low, vehicles do not obstruct one another, which leads to higher effective

speeds.  When more vehicles arrive on the road, the effective speed s decreases.  Using equation

(1): q = E * s and the above formula for s, we can construct the speed-flow (figure 4) and the

flow-density diagrams (figure 5) for the M/M/1 model.

Figure 4: The speed-flow diagram for the M/M/1 model

The speed-flow diagram is the envelope of all possible combinations of the effective speed and

traffic flow.  Figure 4 also illustrates that although every speed s corresponds with one unique

traffic flow q, the reverse is not true.  There are two speeds for every traffic flow: an upper

branch (s2) where speed decreases with flow and an lower branch (s1) with an increasing speed in

terms of flow.  An intuitive explanation can be as follows: as the flow moves from SN to qmax,

congestion increases but the flow rises because the decline in speed is offset by the higher

C

SN

Density E (veh/km)

Effective speed s (km/h)
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 q qmax
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volume.  If traffic continues to enter the flow past qmax, flow falls because the decline in speed

more than offsets the additional vehicle numbers further increasing congestion  (Daganzo, 1997).

An equivalent representation is the flow-density diagram (figure 5).  This diagram can be

interpreted in the same way as the speed-flow diagram: the left side of the graph (E1)

corresponds to the upper part of figure 4, the right side (E2) to the lower part.

Figure 5: The flow-density diagram for the M/M/1 model

The M/M/1 model is interesting as a base case, but is inadequate to represent real-life traffic

flows.  In the next two sections we will relax the M/M/1 model: first, the service times follow a

general distribution (M/G/1) and, secondly, both arrival and service times follow a general

distribution (G/G/1).

1.3. The M/G/1 Model

As in the M/M/1 model inter-arrival times follow an exponential distribution with expected

inter-arrival time 1/λ, λ being the product of traffic density and nominal speed.  The service time

however is generally distributed with an expected service time of 1/µ and a standard deviation of

σ.  Expected service rate is µ, which equals the product of nominal speed SN with maximum

traffic density C.

Combining Little’s theorem and the Pollaczek-Khintchine formula for L5 (Hillier and

Liebermann, 1995) and substituting for λ and µ, we obtain the following formula for the total

time in the system W:

(9)

                                                          
5 L defined as the average number of cars in the system.
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Using the above expression for W, effective and relative speed can be calculated in an analog way

as in the M/M/1 model:

(10)

with β delineating the coefficient of variation of service time (or β = σ * SN * C).

Using these formulas we can construct the speed-flow, speed-density and flow-density diagrams

for the M/G/1 model.  The exact shape of these curves depends upon the variation coefficient

of the service time, β (figure 6).

Figure 6: The speed-density diagram for the M/G/1 model with β < 1, β = 1 and β > 1

Substituting E (= q/s) in above formula (8) and rewriting, the following expression for the speed-

flow diagram is obtained:

(11)

Maximizing this equation for s, we can calculate the maximum traffic flow (qmax):

0≥β (12)

1=β

The value of qmax is a function of the variation parameter β.
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1.4. The G/G/1 Model

With the G/G/1 model both arrival times and service times follow a general distribution with

expected arrival time 1/λ and standard deviation σa, expected service times 1/µ and standard

deviation of σb respectively. Consequently, the shape of the speed-flow-density diagrams will

depend not only on the variance of the service times but also on the variance of the inter-arrival

times.

Combining Little’s theorem and the Kraemer-Lagenbach-Belz (Kraemer and Lagenbach-Belz,

1976) formula for L and substituting for λ and µ, we obtain the following formulas for the total

time in the system W:

(13)

with ca2 representing the squared coefficient of variation of inter-arrival times and cb2 the squared

coefficient of variation of service time.

Using (5) and the above expressions for W, the effective speed formulas become:

12 ≤ac

12 >ac (14)

The exact shape of the diagrams depends not only on the variation coefficient of service times

but also on the variation coefficient of inter-arrival times.  In practice, these formulas generate no

explicit solution and are numerically obtained by the Newton-Raphson method (Wagner, 1975).

See appendix for an overview of the Newton – Raphson method.
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nominal speed SN is a function of the traffic flow or SN = f(q).  This function can either be

linear or exponential (Jain and Smith, 1997).

The linear function is written as follows (Jain and Smith, 1997):

(15)

The exponential form we use is the following:

(16)

with SNq delineating the nominal speed that occurs with q vehicles in the system and a the

pressure coefficient for the exponential function.

Figure 7 shows a graphical representation of both functions.  The shape of the exponential

function will depend upon the pressure coefficient a.  When this coefficient increases, the faster

the nominal speed declines at an increased rate.

Figure 7: Linear and different exponential functions for the nominal speed SNq

Plugging these functions in our G/G/1 model leads to the state dependent model.
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3.  Applications

This application shows some results of the G/G/1 model and the state dependent G/G/1

model for highway E19, from St-Job to Merksem (Antwerp).

In this example we make the nominal speed SN equal to the maximum speed allowed on a

highway in Belgium (or 120 km/h).  We dispose of hourly traffic counts for each weekday for the

years 1993, 1994 and 1995.  Figure 7 shows the average traffic flow over these three years per

hour. Traffic flow peaks at 8.00 a.m. with 3200 vehicles per hour and then remains fairly constant

at approximately 2000 vehicles per hour until 7.00 p.m..

Figure 8: Traffic flow (veh/h) on highway E19

The maximum traffic flow observed in the three years considered is 4350 vehicles per hour.

Assuming that this flow occurred in the best possible conditions (e.g. good weather) , we

calculate the maximum traffic density C with qmax equal to 4350 and the variation coefficients

both equal to 0.5 (low variance).  C is then equal to 74 vehicles per kilometer.

3.1. G/G/1 Model

Using formulas (14) we can construct the speed-flow-density diagrams for different values of the

variation parameters.  Figure 9 shows the speed-flow diagram: lower variance corresponds with

higher speeds and more cars being able to flow through the system.
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Figure 9: The speed-flow diagram for highway E19

We see that the variance on the arrival rate (ca = 1 and cs = 0) has a larger impact than the

variance on the service rate (ca = 0 and cs = 1).  Actions to increase traffic flow should primarily

be focused on the arrival rate variance.  A similar conclusion can be obtained using the flow-

density diagram (figure 10).

Figure 10: The flow-density diagram for highway E19
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Finally, the speed-density diagram is constructed for a given density of 40 vehicles per km: we see

that the effective speed ranges from approximately 50 (high variance) to approximately 110 (low

variance) km/h.

Figure 11: the speed-density diagram for highway E19

Using the above constructed diagrams and the traffic flow data for this highway (figure 8), we can

calculate for each traffic flow q the speeds s1 and s2.  Table 3 shows the results obtained from the

G/G/1 model, using the different variation parameters ca and cs.
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Table 3: Upper and lower speeds for highway E19, using different variation parameters

qmax 4350 3551 2983 2165

ca=0,5 en cs=0,5 ca=0 en cs =1 ca=1 en cs=0 ca=1 en cs=1

Hour q (veh/h) q/qmax s1 s2 q/qmax s1 s2 q/qmax s1 s2 q/qmax s1 s2

1 340 8% 5 120 10% 5 120 11% 5 119 16% 5 117

2 225 5% 3 120 6% 3 120 8% 3 120 10% 3 118

3 178 4% 2 120 5% 2 120 6% 2 120 8% 2 119

4 180 4% 2 120 5% 2 120 6% 2 120 8% 3 119

5 303 7% 4 120 9% 4 120 10% 4 119 14% 4 117

6 787 18% 11 120 22% 11 120 26% 11 116 36% 12 110

7 1826 42% 26 120 51% 28 120 61% 29 106 84% 36 88

8 3180 73% 50 117 90% 60 109 107% * * 147% * *

9 2612 60% 39 119 74% 45 116 88% 47 95 121% * *

10 2235 52% 33 120 63% 36 119 75% 37 100 103% * *

11 2109 49% 31 120 59% 34 119 71% 35 102 97% 50 77

12 2016 47% 29 120 57% 32 120 68% 33 103 93% 44 81

13 1978 46% 29 120 56% 31 120 66% 32 104 91% 42 83

14 2095 48% 31 120 59% 33 119 70% 34 102 97% 49 78

15 1911 44% 28 120 54% 30 120 64% 31 105 88% 39 85

16 1892 44% 27 120 53% 30 120 63% 30 105 87% 38 86

17 1987 46% 29 120 56% 31 120 67% 32 104 92% 42 82

18 1977 46% 29 120 56% 31 120 66% 32 104 91% 42 83

19 1964 45% 29 120 55% 31 120 66% 32 104 91% 41 83

20 1755 40% 25 120 49% 27 120 59% 27 106 81% 33 90

21 1243 29% 18 120 35% 18 120 42% 18 112 57% 21 102

22 1008 23% 14 120 28% 15 120 34% 15 114 47% 16 106

23 762 18% 11 120 21% 11 120 26% 11 116 35% 12 110

24 562 13% 8 120 16% 8 120 19% 8 117 26% 8 113

The results can easily be compared with the constructed speed-flow-density diagrams.  For the

case with high variances (ca and cs both equal to one), at hour 8.00, 9.00 and 10.00 a.m., the

observed traffic flow becomes larger than the maximum possible traffic flow on the highway

given these variance parameters.  Consequently there are no speeds that can be calculated for

these instances.

3.2. State Dependent G/G/1 Model

Using the preceding linear and exponential functions, we now illustrate the state dependent

G/G/1 model with the same example.

The speed-density diagram shown in figure 12 shows that speed lowers fast in the beginning and

then remains at a constant level of approximately 20 km/h if we employ the exponential model.

The linear model, by contrast, shows a more gradually decreasing speed.



A QUEUEING BASED TRAFFIC FLOW MODEL

- 16 -

Figure 12: The speed-density diagram for the State dependent G/G/1 model

The speed-flow and flow-density diagrams can be constructed in the same way.  Using the

diagrams and the traffic flow data for this highway (figure 8), we can calculate for each traffic

flow q the speeds s1 and s2 for this model.  Table 4 shows the results obtained from the state

dependent G/G/1 model, using the different variation parameters ca and cs and the pressure

coefficient of 5 (see figure 7).
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Table 4: Upper and lower speeds for highway E19, using different variation parameters
qmax 2397 1418 2805 1494

Linear ca=0,5 en

cs=0,5

Linear ca=1 en

cs=1

Exponential ca=0,5

en cs=0,5

Exponential ca=1

en cs=1

Hour q (veh/h) q/qmax s1 s2 q/qmax s1 s2 q/qmax s1 s2 q/qmax s1 s2

1 409 17% 5 112 29% 5 107 15% 5 95 27% 5 94

2 294 12% 3 115 21% 3 112 10% 3 103 20% 3 103

3 232 10% 2 117 16% 2 114 8% 2 107 16% 3 106

4 214 9% 2 117 15% 3 114 8% 2 107 14% 3 106

5 297 12% 4 113 21% 4 109 11% 4 98 20% 4 97

6 657 27% 11 100 46% 12 88 23% 12 68 44% 14 65

7 1393 58% 29 69 98% * * 50% * * 93% * *

8 2360 98% * * 166% * * 84% * * 158% * *

9 2107 88% * * 149% * * 75% * * 141% * *

10 2015 84% * * 142% * * 72% * * 135% * *

11 1991 83% 39 57 140% * * 71% * * 133% * *

12 1931 81% 34 61 136% * * 69% * * 129% * *

13 1880 78% 33 63 133% * * 67% * * 126% * *

14 1988 83% 38 57 140% * * 71% * * 133% * *

15 1796 75% 31 65 127% * * 64% * * 120% * *

16 1723 72% 30 66 121% * * 61% * * 115% * *

17 1806 75% 33 62 127% * * 64% * * 121% * *

18 1856 77% 33 63 131% * * 66% * * 124% * *

19 1848 77% 33 63 130% * * 66% * * 124% * *

20 1676 70% 27 71 118% * * 60% * * 112% * *

21 1223 51% 18 87 86% 24 65 44% 27 43 82% * *

22 1022 43% 14 94 72% 17 77 36% 17 57 68% 22 51

23 777 32% 11 100 55% 12 89 28% 12 69 52% 13 66

24 572 24% 8 106 40% 8 98 20% 8 81 38% 9 79

As in the previous example we see that there are many speeds that cannot be calculated as a

consequence of the number of vehicles being larger than the maximum vehicles qmax.  This could

happen for instance in case of a snowstorm.

4.  Conclusions

Based on queueing theory we analytically constructed the well-known speed-flow-density

diagrams.  Using several queueing models, speed is determined, based on different arrival and

service processes.  The exact shape of the different speed-flow-density diagrams is largely

determined by the model parameters.  Therefore we believe that a good choice of parameters can

help to adequately describe reality. We illustrated this with an example, using the most general

models (including a state dependent model) for a highway.  Due to the fact that speeds have a
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significant influence on vehicle emissions, our models can be effectively used to assess the

environmental impact of road traffic.

The authors like to thank two anonymous referees for their valuable comments.

5.  Appendix

This appendix is based on Wagner (1975).

Nonlinear functions c(s) which have no anlytical solution, are often solved using the following

standardized format:

Step 1: Select an arbitrary initial trial point s0;

Step 2: Terminate the iterations if 0=
∂
∂

js
c

, for j = 1, 2, …, n at the trial point sk.

Otherwise, determine values k
jy , for j = 1, 2, …,n and continue to step 3;

Step 3: Calculate a new trial point: k
j

k
j

k
j yss +=+1 , for j = 1, 2, …, n.

Various algorithms for selecting k
jy , are available.  Many of these methods consist in the

combination of the direction k
jd , and the step size kt . Direction is based on information about

how c(s) behaves near the trial point sk, thus based on the local properties of c(s).  Step size

depends on how c(s) changes when proceeding in the selected direction k
jd .  Then, k

jy is

calculated as: k
j

kk
j dty *= .

The Newton – Rapson method calculates the direction k
jd as a quadratic fit of the objective

function.  This method results in using the second-order partial derivatives to form a weighted

average of the first-order partial derivatives. Specifically, the k
jd are found by solving following

linear system: ∑ ∂
∂−=

∂∂
∂

i
j

ji s
cd

ss
c2

.
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