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Vector Mechanics for Engineers: Dynamics

Introduction

« The fundamental relations developed for

the plane motion of rigid bodies may also
be applied to the general motion of three
dimensional bodies.

The relation Hg = I@ which was used
to determine the angular momentum of a
rigid slab is not valid for general three
dimensional bodies and motion.

The current chapter is concerned with
evaluation of the angular momentum and
Its rate of change for three dimensional
motion and application to effective
forces, the impulse-momentum and the
work-energy principles.
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Rigid Body Angular Momentum in Three Dimensions
« Angular momentum of a body about its mass center,

Ao =i<rrxvmmi>=i[ﬁ'x@xwmi]

~» Thex component of the angular momentum,

. HX:Z y,(a)x? (<1 ]Am|
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Rigid Body Angular Momentum in Three Dimensions

- Transformation of @ into Hg is characterized
by the inertia tensor for the body,

+1, - fxy — 1y,
“lye #ly =y
-l —ly +l;
5  With respect to the principal axes of inertia,

] v 0 0
0 Ty 0
0 0 Iy

HXr = Ixra)xr Hyr = Iyra)yr HZr = Izra)zr

; = —lyoy —lyoy+1;,0,  « The angular momentum H of a rigid body
and its angular velocity @ have the same
direction if, and only if, @ is directed along a
principal axis of inertia.
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Rigid Body Angular Momentum in Three Dimensions

' He « The momenta of the particles of a rigid body can
A; g = be reduced to:

L = linear momentum
=mv

Hg =angular momentum about G

—1

H xa)x_lzy y + 170,

L
< « The angular momentum about any other given
B point O is

Fio =rxmv + FiG
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Rigid Body Angular Momentum in Three Dimensions

« The angular momentum of a body constrained to
rotate about a fixed point may be calculated from

Fio =FxmvV + HG

 Or, the angular momentum may be computed
directly from the moments and products of inertia
with respect to the Oxyz frame.

S

H,y =+Ixa)x—Ixya)y—lxza)Z
Hy =—lyox +1yoy -1y,0,
H

N
Il



Vector Mechanics for Engineers: Dynamics

Principle of Impulse and Momentum

(He )y

 The principle of impulse and momentum can be applied directly to the
three-dimensional motion of a rigid body,

Syst Momenta, + Syst Ext Imp,_, = Syst Momenta,

o
< « The free-body diagram equation is used to develop component and
5 moment equations.

 For bodies rotating about a fixed point, eliminate the impulse of the
reactions at O by writing equation for moments of momenta and
Impulses about O.
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Kinetic Energy

 Kinetic energy of particles forming rigid body,

12 1% 2
— !
T :Emv +EZAmiVi
i=1
12 15
=§mv +§Z‘a)><r‘ Am
i=1
C1lmo? L1 a2 2
k =>Mmv +2(I a)x+lya)y+lza)Z 2lxya)xa)y
X
=2l ,0y0, - 21 y0,0y)
Z
Al « |f the axes correspond instantaneously with the
principle axes,

2 1(7 2 7 2 i .2
2 +§(IX’wx'+Iy'a)y’+Iz'wz’)

< T=lmv
>

« With these results, the principles of work and
energy and conservation of energy may be applied
to the three-dimensional motion of a rigid body.

18-9
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Kinetic Energy

« Kinetic energy of a rigid body with a fixed point,
T =1(Iyox + 1 o] + 1,07 -2l o0,
=2l y,0y0; =21 j0,04)
« |If the axes Oxyz correspond instantaneously with
the principle axes Ox’y’z’,

_1 2 2 2
T —E(Ix'a)x’ + Iy’a)y’ + Iz'a)z’)
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Sample Problem 18.1

= Rectangular plate of mass m that is
suspended from two wires is hitat D in
& a direction perpendicular to the plate.

Bl Immediately after the impact,

determine a) the velocity of the mass
center G, and b) the angular velocity of
the plate.

Mc
Graw
Hill

SOLUTION:

» Apply the principle of impulse and

momentum. Since the initial momenta
IS zero, the system of impulses must be
equivalent to the final system of
momenta.

Assume that the supporting cables
remain taut such that the vertical velocity
and the rotation about an axis normal to
the plate is zero.

* Principle of impulse and momentum

yields to two equations for linear
momentum and two equations for
angular momentum.

« Solve for the two horizontal components

of the linear and angular velocity
vectors.
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Sample Problem 18.1

TyAL g

—_— —
<

Ty At

ro | S

F At

SOLUTION:

ER}

W At

« Apply the principle of impulse and momentum. Since the initial momenta is zero,
the system of impulses must be equivalent to the final system of momenta.

« Assume that the supporting cables remain taut such that the vertical velocity and the
rotation about an axis normal to the plate is zero.

V=Vl +V,k

=y +oy]

Since the x, y, and z axes are principal axes of inertia,

1 2 2
mb M +12ma a)yj
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Sample Problem 18.1

FI“,\ A[

W At

* Principle of impulse and momentum yields two equations for linear momentum and
two equations for angular momentum.

ia3 - Solve for the two horizontal components of the linear and angular velocity vectors.
0=mv, — FAt =mv, %bFAt:HX —%aFAt:Hy
@ v, =0 vV, =—FAt/m _ %mbza)x _ %maza)y
> V =—(FAt/m)k o, = 6FAt/mb wy =—(6FAt/ma)
&= ar +b7)

mab
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Sample Problem 18.1

TaAth Tg At

bo | S

V —(FAt/m)k

Hg =5 mb e w0 +i;ma‘wy |
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Sample Problem 18.2

A homogeneous disk of mass m is
mounted on an axle OG of negligible
mass. The disk rotates counter-

@) clockwise at the rate o, about OG.

Determine: a) the angular velocity of

S| the disk, b) its angular momentum about

5 O, ¢) its kinetic energy, and d) the

vector and couple at G equivalent to the

momenta of the particles of the disk.

Mc
Graw
Hill

SOLUTION:

The disk rotates about the vertical axis
through O as well as about OG.
Combine the rotation components for
the angular velocity of the disk.

Compute the angular momentum of the
disk using principle axes of inertia and
noting that O is a fixed point.

The kinetic energy is computed from the
angular velocity and moments of inertia.

The vector and couple at G are also
computed from the angular velocity and
moments of inertia.
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Sample Problem 18.2

SOLUTION:

L | « The disk rotates about the vertical axis through O as well
as about OG. Combine the rotation components for the
angular velocity of the disk.

=
\

a3=a)lf+w217

Noting that the velocity at C is zero,

Ve = xTc =0
0= (a)1T+w2T)x(LT— ri)
:(La)2 — ra)l)lz
wy =rawy/L

o —(ren/L)j

@
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Sample Problem 18.2

« Compute the angular momentum of the disk using
principle axes of inertia and noting that O is a fixed point.

Ho = lo,i + Iya)yf+ |,k

X XX

—(1mr?
Lo, =(3mr?) o,
y yoy

H
H, = 1,0, =(m*+imr®)(-re, /L)
H (ML +4mr?)0=0

= IZa)Z

—

Ho =3mriei —m(L* +4r®) (rey /L) ]

 The kinetic energy is computed from the angular velocity
and moments of inertia.

_1 2 2 2
T=4(10f +1,0] +1,07)

=4[ mrta? (L +20%) (~ray /LY ]

2l 6 r 2
mr +?a)l
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Sample Problem 18.2

» The vector and couple at G are also computed from the
P L | angular velocity and moments of inertia.

mv = mrak

Hg = [yo,0 + I_y'a)yi + Iyw,k

=Imrloi +imr(-ro/L)j

Hg = %mrza){f L ])
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Motion of a Rigid Body in Three Dimensions

« Angular momentum and its rate of change are
taken with respect to centroidal axes GX'Y’Z’ of
fixed orientation.

« Transformation of @ into H is independent of
the system of coordinate axes.

« Convenient to use body fixed axes Gxyz where
moments and products of inertia are not time
dependent.

» Define rate of change of change of Hg with
respect to the rotating frame,

(ﬁG)GXyZ —H i +H,+H,K
Then,
I:.iG :(ﬁG)nyZ+'éx FiG 0

|
)]
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Euler’'s Eqgs of Motion & D’Alembert’s Principle

« With ©2=@® and Gxyz chosen to correspond
to the principal axes of inertia,

> Mg = (Hg Joey, + 2% Fa
Euler’s Equations:
> My = o, —(fy —1, )coya)z
> My ya)y —(1, =1, ), 0,
ZMZ = 1,0, _( X~ I_y)@xa)y
« System of external forces and effective forces

are equivalent for general three dimensional
motion.

- System of external forces are equivalent to
the vector and couple, maand Hg.
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Motion About a Fixed Point or a Fixed Axis
 For a rigid body rotation around a fixed point,

> Mg =Hpg
- (ﬁo )Oxyz +QxHg

 For a rigid body rotation around a fixed axis,
Hy, =—-I,,0 Hy=—lyza) H,=-1l,w

S Mo =(Ho Joxys + @ Ho
:( |0 — yZJ+I k)a)
+a)k( |0 — yZJ+IZIZ)a)
(-l = g T+ 1 K o (= g T+ 11 o

S My =—la+ly, ?

ZM Za+lxza)2
>M; =1a
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Rotation About a Fixed Axis

 For a rigid body rotation around a fixed axis,
> My =-lya+1y,0°

2

SMy =-ly,a+ 0

« If symmetrical with respect to the xy plane,
2My=0 >M;=0 >M,;=1c

« If not symmetrical, the sum of external moments
will not be zero, even if a=0,

Zszlyza)2 ZM xza)2 2.M; =0

- Arotating shaft requires both static (w =0) and
dynamic( = 0) balancing to avoid excessive
vibration and bearing reactions.
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Sample Problem 18.3

SOLUTION:

 Evaluate the system of effective forces
by reducing them to a vector ma
attached at G and couple Hg.

« EXxpressing that the system of external
forces is equivalent to the system of
effective forces, write vector expressions
for the sum of moments about A and the
summation of forces.

Rod AB with weight W =40 N is

pinned at A to a vertical axle which « Solve for the wire tension and the
rotates with constant angular velocity reactions at A.

@ =15 rad/s. The rod position is

maintained by a horizontal wire BC.

M) V] (A [A] e}

Determine the tension in the wire and
the reaction at A.
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Sample Problem 18.3

SOLUTION:

 Evaluate the system of effective forces by reducing them
to a vector ma attached at G and couple H.

i =4, = —ro’l =—(Lcos fJo’T
- (450 mvs?)r

md = 40( 450) = —(1800 NI
g
Hg = lyoud + Iy J + [,k
P 2 P 2
I, =5mL I, =0 [, =ZmL
Wy =—®C0Sf wy=wsnpf w,=0
Hg mLZa)cos,Bl

:( )nyz+a)XHG
= 0+(-wcos BT +wsin B T)x%mLza)COS,BT)
=1 ml?0’sin Bcos Sk =(2078.4 N-m)K

18 -24
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Sample Problem 18.3

 Expressing that the system of external forces is equivalent
to the system of effective forces, write vector expressions
for the sum of moments about A and the summation of
forces.

ZMA = Z(MA)eff

5,937 x (~TT )+ 2T x (- 407 ) = 3.46J x (18007 )+ 2078 .4K
(6.93T —80)K =(6228+2078.4)K

T=1210N

ma

- f

3.46 m

Z F = Z(If)eff

A=—(590 N)I +(40N)J

a

<] |

/A , Rk o )
< AT +A J+ A, K —12101 — 407 =—1800i
>
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Vector Mechanics for Engineers: Dynamics
Motion of a Gyroscope. Eulerian Angles

A gyroscope consists of a rotor with its mass center
fixed in space but which can spin freely about its
geometric axis and assume any orientation.

« From a reference position with gimbals and a
reference diameter of the rotor aligned, the
gyroscope may be brought to any orientation
through a succession of three steps:

a) rotation of outer gimbal through j about 44",
b) rotation of inner gimbal through g about
c) rotation of the rotor through y about CC".

¢, 6, and ware called the Eulerian Angles and

¢ = rate of precession

@ = rate of nutation

¥ =rate of spin
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Motion of a Gyroscope. Eulerian Angles
« The angular velocity of the gyroscope,

& =gK +07 +PKk

with K =—sinéi +cos@]
& =—¢sinoi +07 + (¥ +gcosOk
 Equation of motion,

> Mo = (Ho Joxs +2x o

o =—1'gsindi +1'0] + 1(¥ + gcosO K
Q=9¢K +0j

S My =—1"(¢sind +204cosd)+ 16(# + dcosh)
> M,y = I’(é?'—qiz sin9c030)+ 14sind(¥ + gcoso)

>M, =1 %(W+¢5cos(9)
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Steady Precession of a Gyroscope

VA

Z

__—Precession axis

A oK Couple axis

&l Steady precession, Y Mo _OxH o When the precession and spin
o y . axisare ataright angle,
= 0,9,y are constant = (Ia)Z — | ¢cos@)¢sm 0] 0 —90°
> & =—gsin O +w,k Couple is applied about an axis >Mg =1¥%4]

Fo = —1'gsin 6T + 1w,k perpen_d|cular to the precession Gyroscope will precess about an
. . . and spin axes : :

0 =—¢sin@1 + pcosfk axis perpendicular to both the

spin axis and couple axis.

18 - 28
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Motion of an Axisymmetrical Body Under No Force

Z

Fixed direction sy

Hep

 Consider motion about its mass center of an
axisymmetrical body under no force but its own
weight, e.g., projectiles, satellites, and space craft.

Hg =0  Hg =constant
- Define the Z axis to be aligned with Hg and z in a

rotating axes system along the axis of symmetry.
The x axis is chosen to lie in the Zz plane.

H, =—Hg sind = l'm, wx:_HGIS,'”H
Hy=0=1'o, wy =0
H, =Hg cosé = lw, a)zzHGCOSQ

I
* 0 = constant and body Is in steady precession.
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Motion of an Axisymmetrical Body Under No Force

Two cases of motion of an axisymmetrical body
which under no force which involve no precession:

Fixed direction \w~/ 7=
« Body set to spin about its axis of symmetry,
wy =H, =0
@ and Hg arealigned
and body keeps spinning about its axis of
symmetry.

 Body is set to spin about its transverse axis,
w,=H, =0
@ and Hg arealigned

and body keeps spinning about the given
transverse axis.
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Motion of an Axisymmetrical Body Under No Force

/ The motion of a body about a fixed point (or its mass
center) can be represented by the motion of a body
cone rolling on a space cone. In the case of steady
precession the two cones are circular.

« | <I’. Case of an elongated body. y < 6 and the
vector o lies inside the angle ZGz. The space
cone and body cone are tangent externally; the
spin and precession are both counterclockwise
from the positive z axis. The precession is said to
be direct.

« | >]’". Case of a flattened body. y > 6 and the
vector o lies outside the angle ZGz. The space
cone Is inside the body cone; the spin and
precession have opposite senses. The precession
IS said to be retrograde.



	Rigid Body-L2
	IMG_20170329_0001
	IMG_20170329_0002
	IMG_20170329_0003
	IMG_20170329_0004
	IMG_20170329_0005

	PowerPoint_Slides_Beer_Chapter_18

