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Introduction

GG HM

amF













• The fundamental relations developed for 

the plane motion of rigid bodies may also 

be applied to the general motion of three 

dimensional bodies.




IHG • The relation which was used 

to determine the angular momentum of a 

rigid slab is not valid for general three 

dimensional bodies and motion.

• The current chapter is concerned with 

evaluation of the angular momentum and 

its rate of change for three dimensional 

motion and application to effective 

forces, the impulse-momentum and the 

work-energy principles.
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Rigid Body Angular Momentum in Three Dimensions
• Angular momentum of a body about its mass center,

    



n

i
iii

n

i
iiiG mrrmvrH

11

Δ




• The x component of the angular momentum,

    

    

  

















n

i
iiiz

n

i
iiiy

n

i
iiix

n

i
iixiziiyixi

n

i
iyiiziix

mxzmyxmzy

mzxzxyy

mrzryH

111

22

1

1

ΔΔΔ

Δ

Δ








  dmzxdmxydmzyH zyxx    22

zxzyxyxx III  

zzyzyxzxz

zyzyyxyxy

IIIH

IIIH








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Rigid Body Angular Momentum in Three Dimensions

zzyzyxzxz

zyzyyxyxy

zxzyxyxxx

IIIH

IIIH

IIIH













• Transformation of       into        is characterized 

by the inertia tensor for the body,




GH
























zzyzx

yzyyx

xzxyx

III

III

III

• With respect to the principal axes of inertia,























z

y

x

I

I

I

00

00

00

zzzyyyxxx IHIHIH   

• The angular momentum        of a rigid body 

and its angular velocity      have the same 

direction if, and only if,      is directed along a 

principal axis of inertia.

GH







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Rigid Body Angular Momentum in Three Dimensions

• The momenta of the particles of a rigid body can 

be reduced to:

vm

L






 momentumlinear  

GHG about  momentumangular  


zzyzyxzxz

zyzyyxyxy

zxzyxyxxx

IIIH

IIIH

IIIH













• The angular momentum about any other given 

point O is 

GO HvmrH



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Rigid Body Angular Momentum in Three Dimensions
• The angular momentum of a body constrained to 

rotate about a fixed point may be calculated from

GO HvmrH




zzyzyxzxz

zyzyyxyxy

zxzyxyxxx

IIIH

IIIH

IIIH













• Or, the angular momentum may be computed 

directly from the moments and products of inertia 

with respect to the Oxyz frame.

 

  











n

i
iii

n

i
iiO

mrr

mvrH

1

1

Δ

Δ






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Principle of Impulse and Momentum 

• The principle of impulse and momentum can be applied directly to the 

three-dimensional motion of a rigid body,

Syst Momenta1 + Syst Ext Imp1-2 = Syst Momenta2

• The free-body diagram equation is used to develop component and 

moment equations.

• For bodies rotating about a fixed point, eliminate the impulse of the 

reactions at O by writing equation for moments of momenta and 

impulses about O.
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Kinetic Energy
• Kinetic energy of particles forming rigid body,

)22

2(

Δ

Δ

222

2
12

2
1

1

2

2
12

2
1

1

2

2
12

2
1

xzzxzyyz

yxxyzzyyxx

n

i
ii

n

i
ii

II

IIIIvm

mrvm

vmvmT

























• If the axes correspond instantaneously with the 

principle axes,

)( 222
2
12

2
1

zzyyxx IIIvmT   

• With these results, the principles of work and 

energy and conservation of energy may be applied 

to the three-dimensional motion of a rigid body.
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Kinetic Energy

• Kinetic energy of a rigid body with a fixed point,

)22

2( 222
2
1

xzzxzyyz

yxxyzzyyxx

II

IIIIT









• If the axes Oxyz correspond instantaneously with 

the principle axes Ox’y’z’,

)( 222
2
1

zzyyxx IIIT   
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Sample Problem 18.1

Rectangular plate of mass m that is 

suspended from two wires is hit at D in 

a direction perpendicular to the plate.

Immediately after the impact, 

determine a) the velocity of the mass 

center G, and b) the angular velocity of 

the plate.

SOLUTION:

• Apply the principle of impulse and 

momentum.  Since the initial momenta 

is zero, the system of impulses must be 

equivalent to the final system of 

momenta.

• Assume that the supporting cables 

remain taut such that the vertical velocity 

and the rotation about an axis normal to 

the plate is zero.

• Principle of impulse and momentum 

yields to two equations for linear 

momentum and two equations for 

angular momentum.

• Solve for the two horizontal components 

of the linear and angular velocity 

vectors.
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Sample Problem 18.1

SOLUTION:

• Apply the principle of impulse and momentum.  Since the initial momenta is zero, 

the system of impulses must be equivalent to the final system of momenta.

• Assume that the supporting cables remain taut such that the vertical velocity and the 

rotation about an axis normal to the plate is zero.

kvivv zx


 ji yx


 

Since the x, y, and z axes are principal axes of inertia,

jmaimbjIiIH yxyyxxG


 2

12
12

12
1 
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Sample Problem 18.1

• Principle of impulse and momentum yields two equations for linear momentum and 

two equations for angular momentum.

• Solve for the two horizontal components of the linear and angular velocity vectors.

xmv0

0xv

zvmtF  Δ

mtFvz Δ

 kmtFv


Δ

x

x

mb

HtbF

2

12
1

2
1 Δ





mbtFx Δ6

y

y

ma

HtaF

2

12
1

2
1 Δ





 matFy Δ6

 jbia
mab

tF 


Δ6

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Sample Problem 18.1

 kmtFv


Δ

 jbia
mab

tF 


Δ6


jmaimbH yxG


 2

12
12

12
1 
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Sample Problem 18.2

A homogeneous disk of mass m is 

mounted on an axle OG of negligible 

mass.  The disk rotates counter-

clockwise at the rate 1 about OG.

Determine:  a) the angular velocity of 

the disk, b) its angular momentum about 

O, c) its kinetic energy, and d) the 

vector and couple at G equivalent to the 

momenta of the particles of the disk.

SOLUTION:

• The disk rotates about the vertical axis 

through O as well as about OG.  

Combine the rotation components for 

the angular velocity of the disk.

• Compute the angular momentum of the 

disk using principle axes of inertia and  

noting that O is a fixed point.

• The kinetic energy is computed from the 

angular velocity and moments of inertia.

• The vector and couple at G are also 

computed from the angular velocity and 

moments of inertia.



© 2007 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

E
ig

h
th

E
d

itio
n

18 - 16

Sample Problem 18.2
SOLUTION:

• The disk rotates about the vertical axis through O as well 

as about OG.  Combine the rotation components for the 

angular velocity of the disk.

ji


21  

Noting that the velocity at C is zero,

   

 

Lr

krL

jriLji

rv CC

12

12

210

0























  jLri


11  
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Sample Problem 18.2
• Compute the angular momentum of the disk using 

principle axes of inertia and  noting that O is a fixed point.

  jLri


11  

kIjIiIH zzyyxxO


 

 

   

 

21
12

2 21
14

2 21
4

0 0

x x x

y y y

z z z

H I mr

H I mL mr r L

H I mL mr

 

 



 

   

   

   2 2 21 1
1 12 4OH mr i m L r r L j   

• The kinetic energy is computed from the angular velocity 

and moments of inertia.

 

   

2 2 21
2

22 2 2 21 1
1 12 4

x x y y z zT I I I

mr m L r r L

  

 

  

    
 

2
12

2
2

8
1 6 
















L

r
mrT
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Sample Problem 18.2

  jLri


11  

• The vector and couple at G are also computed from the 

angular velocity and moments of inertia.

kmrvm


1

  jLrmrimr

kIjIiIH zzyyxxG











 

2

4
1

1
2

2
1









 j

L

r
imrHG



2
1

2

2
1 
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Motion of a Rigid Body in Three Dimensions

GHM

amF













• Angular momentum and its rate of change are 

taken with respect to centroidal axes GX’Y’Z’ of 

fixed orientation.

• Convenient to use body fixed axes Gxyz where 

moments and products of inertia are not time 

dependent.

• Transformation of       into        is independent of 

the system of coordinate axes.




GH


• Define rate of change of change of         with 

respect to the rotating frame,
GH


  kHjHiHH zyxGxyzG


 

Then,

  
  GGxyzGG HHH
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Euler’s Eqs of Motion & D’Alembert’s Principle

  GGxyzGG HHM


 

• With               and Gxyz chosen to correspond 

to the principal axes of inertia,






 
 

  yxyxzzz

xzxzyyy

zyzyxxx

IIIM

IIIM

IIIM

























Euler’s Equations:

• System of external forces and effective forces 

are equivalent for general three dimensional 

motion.

• System of external forces are equivalent to 

the vector and couple, . and GHam 
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Motion About a Fixed Point or a Fixed Axis
• For a rigid body rotation around a fixed point,

  OOxyzO

OO

HH

HM










• For a rigid body rotation around a fixed axis,

 zzyzyxzx IHIHIH 

 
 

 

    2







iIjIkIjIiI

kIjIiIk

kIjIiI

HHM

yzxzzyzxz

zyzxz

zyzxz

OOxyzOO
























zz

xzyzy

yzxzx

IM

IIM

IIM













2

2
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Rotation About a Fixed Axis







zz

xzyzy

yzxzx

IM

IIM

IIM













2

2

• For a rigid body rotation around a fixed axis,

• If symmetrical with respect to the xy plane,

zzyx IMMM   00

• If not symmetrical, the sum of external moments 

will not be zero, even if   = 0,

022   zxzyyzx MIMIM 

• A rotating shaft requires both static               and 

dynamic              balancing to avoid excessive 

vibration and bearing reactions.

 0
 0
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Sample Problem 18.3

Rod AB with weight W = 40 N is 

pinned at A to a vertical axle which 

rotates with constant angular velocity 

 = 15 rad/s.  The rod position is 

maintained by a horizontal wire BC. 

Determine the tension in the wire and 

the reaction at A.

• Expressing that the system of external 

forces is equivalent to the system of  

effective forces, write vector expressions 

for the sum of moments about A and the 

summation of forces.  

• Solve for the wire tension and the 

reactions at A.

SOLUTION:

• Evaluate the system of effective forces 

by reducing them to a vector       

attached at G and couple

am


.GH

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Sample Problem 18.3
SOLUTION:

• Evaluate the system of effective forces by reducing them 

to a vector        attached at G and coupleam


.GH


 

 Is

ILIraa n





2

2

2
12

m/450

cos



 

   I
g

am


N1800450
40



kIjIiIH zzyyxxG


 

0sincos

0 2

2
12

2
1





zyx

zyx mLIImLI



imLHG


 cos2

12
1

 
   

 kkmL

imLji

HHH GGxyzGG







mN4.2078cossin

cossincos0

22

12
1

2

12
1












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Sample Problem 18.3
• Expressing that the system of external forces is equivalent 

to the system of  effective forces, write vector expressions 

for the sum of moments about A and the summation of 

forces.  

 
effAA MM  



     
   KKT

KIJJIITJ




4.207862288093.6

4.2078180046.340293.6





N1210T

 
effFF  



IJIKAJAIA ZYX


1800401210 

   JIA


N 40N590 
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Motion of a Gyroscope.  Eulerian Angles
• A gyroscope consists of a rotor with its mass center 

fixed in space but which can spin freely about its 

geometric axis and assume any orientation.

• From a reference position with gimbals and a 

reference diameter of the rotor aligned, the 

gyroscope may be brought to any orientation 

through a succession of three steps:

a) rotation of outer gimbal through j about AA’,

b) rotation of inner gimbal through q about 

c) rotation of the rotor through y about CC’.

• j, q, and y are called the Eulerian Angles and 

spin of rate  

nutation of rate  

precession of rate  









q








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Motion of a Gyroscope.  Eulerian Angles
• The angular velocity of the gyroscope,

kjK






q 

 kji

jiK






qqq

qq

cossin

cossinwith  





• Equation of motion,

  OOxyzOO HHM


 

 

jK

kIjIiIHO












q

qqq



 cossin

   

   

 q

qqqqq

qqqqq

cos

cossincossin

coscos2sin

2



















dt

d
IM

IIM

IIM

z

y

x
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Steady Precession of a Gyroscope

Steady precession,

constant are ,, yq 

ki

kIiIH

ki

zO

z











qq

q

q

cossin

sin

sin







  jII

HM

z

OO




qq



sincos



Couple is applied about an axis 

perpendicular to the precession 

and spin axes 

When the precession and spin 

axis are at a right angle,

jIM O






q







90

Gyroscope will precess about an 

axis perpendicular to both the 

spin axis and couple axis.



© 2007 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics

E
ig

h
th

E
d

itio
n

18 - 29

Motion of an Axisymmetrical Body Under No Force
• Consider motion about its mass center of an 

axisymmetrical body under no force but its own 

weight, e.g., projectiles, satellites, and space craft.

constant 0  GG HH


• Define the Z axis to be aligned with        and z in a 

rotating axes system along the axis of symmetry.  

The x axis is chosen to lie in the Zz plane.

GH


xGx IHH q  sin
I

HG
x




q


sin

yy IH  0 0y

zGz IHH q  cos
I

HG
z

q


cos


• q = constant and body is in steady precession.

• Note: q



tantan

I

I

z

x



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Motion of an Axisymmetrical Body Under No Force
Two cases of motion of an axisymmetrical body 

which under no force which involve no precession:

• Body set to spin about its axis of symmetry,

aligned are and

0

G

xx

H

H




 

and body keeps spinning about its axis of 

symmetry.

• Body is set to spin about its transverse axis,

aligned are and

0

G

zz

H

H




 

and body keeps spinning about the given 

transverse axis.
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Motion of an Axisymmetrical Body Under No Force
The motion of a body about a fixed point (or its mass 

center) can be represented by the motion of a body 

cone rolling on a space cone.  In the case of steady 

precession the two cones are circular.

• I < I’.  Case of an elongated body.   < q and the 

vector  lies inside the angle ZGz.  The space 

cone and body cone are tangent externally; the 

spin and precession are both counterclockwise 

from the positive z axis.  The precession is said to 

be direct.

• I > I’.  Case of a flattened body.   > q and the 

vector  lies outside the angle ZGz.  The space 

cone is inside the body cone; the spin and 

precession have opposite senses.  The precession 

is said to be retrograde.
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