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Example 15.1 e e

A disc C is mounted on a shaft AB in Fig. 15.9. The shaft and disc rotate
with a constant angular speed @, of 10 rad/sec relative to the platform to
which bearings A and B are attached. Meanwhile, the platform rotates at a
-onstant angular speed @, of 5 rad/sec relative to the ground in a direction
seralle] to the Z axis of the ground reference X¥Z. What is the angular

"=locity vectorw for the disc C relative to X¥Z? What are (dw/dr),.. and
wld?), . ?

The total angular velocity w of the disc relative to the ground is eas-
1 ziven at all times as follows:

® =, + w, rad/sec (a)

= e instant of interest as depicted by Fig. 15.9, we have for o:

® = 5k + 10 rad/sec

X Ground
Reference

Figure 15.9. Rotating disc on rotating platform.

= 2=t the first time derivative of w, we go back to Eq. (a), which is
= %25 valid and hence can be differentiated with respect to time. Using a
& o represent the time derivative as seen from XYZ, we have

i b= 6+, (b)
~msider now the vector w,,. Note that this vector is constrained in direction
= == zlways collinear with the axis AB of the bearings of the shaft. This
=== s a physical requirement. Also, since @, is of constant value, we
== Junk of the vector w, as fixed to the platform along AB. Therefore,
= D¢ platform has an angular velocity of w, relative to XYZ, we can say:

=

W, = Xw, (c)




Example 15.1 (Continued) __

As for @,, namely the other vector in Eq. (b), we note that as seen from
XYZ, w, is a constant vector and so at all times @, = 0. Hence Eq. (b) can
be written as follows:

h =0 Xo, “mm \‘}B‘(d)
This equation is valid at all times and so can be differentiated again. At the

instant of interest as depicted by Fig. 15.9, we have for c:
t

® = 5k X 10j = —50i rad/sec? (e)

To get w, we now differentiate (d) with respect to time. We have .
=0 X, +n Xu,
=0+ X (0w Xo,)

(f)

where we have used the fact that @, = 0 at all times as well as Eq. (c) for
@,. At the instant of interest, we have

® = 5k X (5k x 10j) = ~250; rad/sec®

Example 15.2

In Example 15.1, consider a position vector p between two points on the
rotating disc (see Fig. 15.10). The length of p is 100 mm and, at the instant
of interest, is in the vertical direction. What are the first and second time
derivatives of p at this instant as seen from the ground reference?

It should be obvious that the vector p is fixed to the disc which has
at all times an angular velocity relative to XYZ equal to ®, + o,. Hence,

at all times we can say: Lk qeaTd
pP=(w +tw,)Xp (a)
] ; Figure 15.10. Displacem==
At the instant of interest, we have noting that p = 100k in disc.
P = (5k +10j) x 100k = 1,000i mm/sec (b)

To get the second derivative of p, go back to Eq. (a) and differentiate:
pP=(@ +0) X p+t(w +w,) Xp




example 15.2 (Continued) s e s oSS

Noting that @, = 0 at all times and, as distussed in Example 15.1, that
& is fixed in the platform, we can say:

jri=(0+m1><m2)><p+(m1+'m2}xp (c)
At the instant of interest we have, on noting Eq. (b):

P = (5k % 10j) X 100k + (5k + 10j) X 1,000 mm/sec?

p = 10j - 10k m/sec

I

' Although we shall later formally examine the case of the time deriva-
= of vector A as seen from XYZ when A is not fixed in a body or a reference
== we can handle such cases less formally with what we already know. We
dlestrate this in the following example.

Whle 15.3

For the disc in Fig. 15.9, @, = 6 rad/sec and @, = 2 rad/sec?, both rela-
ave to the platform at the instant of interest. At this instant, @, = 2
rad/sec and @, = -3 rad/sec? for the platform relative to the ground Find
[ the angular acceleration vector @ for the disc relative to the ground at the
instant of interest.
The angular velocity of the disc relative to the ground at all times is

. 0=+, (a)
For @, we can then say
D=6 +a, (b)

It is apparent on inspecting Fig. 15.11 that at all times w is vertical, and

SO we can say:
®, df (k) = ok (c)




Example 15.3 (CORtiNUen) o s s o e e e e S e —

However, o, is changing direction and, most importantly, is changing
magnitude. Because of the latter, @, cannot be considered fixed in a refer-
ence or a rigid body for purposes of computing @,. To get around this dif-
ficulty, we fix a unit vector j* onto the platform to be collinear with the
centerline of the shaft AB as shown in Fig. 15.11. We know the angular
velocity of this unit vector; it is w, at all times. We can then express w, in
the following manner, which is valid at all times:

w, = 0, (d)

Ground
reference

Figure 15.11. Unit vector j’ fixed to platform.

We can differentiate the above with respect to time as follows:
6, =0,j +0,)
But j* is fixed to the platform which has angular velocity w, relative to
XYZ at all times. Hence, we have for the above,
6, = @, + 0, (w; X j') (e)
Thus, Eq. (b) then can be given as e %
®=0k+a,j +a,(e Xj)

This expression is valid at all times and could be differentiated again. At
the instant of interest, we can say, noting that j* = j at this instant,

@ = 3k + 2j + 6(2k X J)
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SECTION 15.5 APPLICATIONS OF THE FIXED-VECTOR CONCEPT

Next, let us determine the acceleration vector for the point of contact A
of the cylinder. Thus, we can say for points A and O:

a, =a, +OXp,+0X(wXp,,)

Therefore,

—ROi = a, + 0k x Rj + 0k x (6k x Rj) (15.9)
Carrying out the products:

—R6i = a, — R6i — RO*j
Therefore, cancelling terms, we get
a, = RO%j (15.10)

We see that point A is accelerating upward toward the center of the cylinder.®

This information will be valuable for us in Chapter 16 when we study rigid-
sodv dynamics.

“This conclusion must apply also to a sphere rolling without slipping on a flat surface.
As for acceleration of other points of the cylinder, we do not have a simple formula but
wust insert data for these points into the acceleration formula valid for two points of a rigid body,

= Example 15.4

Wheel D rotates at an angular speed @, of 2 rad/sec counterclockwise in
Fig. 15.15. Find the angular speed @, of gear E relative to the ground at
the instant shown in the diagram.

S |

Figure 15.15. Two-dimensional device.

We have information about two points of one of the rigid bodies,
namely AB, of the device. At B, the velocity must be downward with the




Example 15.4 (Continued) T s O A

value of {“’1)(",0) = 4 ft/sec as shown in Fig. 15.16. Furthermore, since
point A must travel a circular path of radius GA we know that A has veloc-
ity V, with a direction at right angles to GA. Accordingly, since the angle
between GA and the vertical is (90° — 45° — ) = (45° — @) as can
readily be seen on inspecting Fig. 15.16, then the angle between V, and the
horizontal must also be (45° — o) because of the mutual perpendicularity
of the sides of these angles. If we can determine velocity V,, we can get the
desired angular speed of gear A immediately.

P 3 __"[

(90° —45° - @) = (45"/— o)

Figure 15.16. Velocity vectors for two points of a rigid body shown.

Before examining rigid body AB, we have some geometrical steps to
take. Considering triangle GAB in Fig. 15.16, we can first solve for o
using the law of sines as follows:

gA _ G#
sin(XGBA) ~ sina

Therefore, since X GBA = 45°

4 e
sin45° ~ sina

(a)
Solving for o, we get
g =1537° (b)

The angle f is then easily evaluated considering the angles in the triangle
GBA. Thus.
B =180°— o — XGBA
= 180° - 15.37° — 45° = 119.6° (c)




Finally, we can determine AB of the triangle, again using the law of sines.
Thus,

AB _ GA
sinff ~ sin45°
AB 4

sin119.6° ~ 707

Solving for AB, we get
AB = 492 ft (d)

We now can consider bar AB as our ri gid body. For the points A and
B on this body, we can say:

Vi=Vi+w, xp,
Noting that the motion is coplanar and that 45 Must then be normal to the
plane of motion, we have®
V,[cos(45° - @)i - sin(45° — a)j]
= —4j + @,k X 4.92(-cos 45°% — sin 45°f)

Inserting the value & = 15.37°, we then get the following vector equation:
Va(.869)i -V, (494)j = —4j — 348w, .7 + 348w, ,i (e)

The scalar equations are

869V, = 348w, ,
~494V, = —4 - 348w, ()
Solving, t’
ving, we ge V, = —10.66 ft/sec
@,, = —2.66 rad/sec (e)

Thus, point A moves in a direction opposite to that shown in Fig. 15.16.
#= now can readily evaluate @y, which clearly must have a value of

= Y4 _ 1066 _ Eemmsesns

= e counterclockwise direction.

“Our practice will be to consider unknown angular velocities as positive. The sign for
“= caknown angular velocity coming out of the computations will then correspond to the
<l convention sign for the angular velocity.

"By having assumed 1z 8 positive and thus counterclockwise for the reference xy
w==oyed, we conclude from the presence of the minus sign that the assumption is wrong and
= 2. must be clockwise for the reference used. It is significant to note that as a result of
*= =itial positive assumption, the result © ap = —2.66 rad/sec gives at the same time the cor-
*= convention sign for the actual angular velocity for the reference used.



In the device in Fig. 15.17, find the angular velocities and angular acceler-
ations of both bars.

Figure 15.17. Two-dimensional device,

We shall consider points A and B of bar AB. Note first that at the
instant shown:

Vy = =(.300)(@ 4 )j m/sec (a)
V, = (2)(.300)i
= .600i m/sec (b)

Noting that @, , must be oriented in the Z direction because we have plane
motion in the XY plane, we have for Eq. 15.6:

Vp=V,+@,,; xpy,
~3000,.j = 600i + () X (i +.300) (©)
=300wp-j = .600i + @ ,,j — 3000 , i

Note we have assumed @, and @, , as positive and thus counterclockwise.
The scalar equations are:
600 = 300@ ,,
=300, = a,, (d)
We then get

@, = 2 rad/sec
Wy~ = —6.67 rad/sec (e)

Therefore, @, , is counterclockwise while @, must be clockwise.
Let us now turn to the angular acceleration considerations for the
bars. We consider separately now points A and B of bar AB. Thus,

a, = (r@?)j = (.300)22)j = 1.200 m/sec?
g = Ppc@pci + Ppe@pe(~J)

= (.300)(~6.67%)i - .300@ -

= 13.33i — 3000,
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* Again, we have assumed & s Positive and thus counterclockwise. Consid-
ering bar AB, we cam say for Bq. \57:

\ ‘
| Ap =0, TW X Pptw,,; X(w, Xp,,) (f)

Noting that @, , must be in the Z direction, we have for the foregoing
equation:
13.33i — 3000 ,.j
= 1.200j + @4k X (i +.300) + (2k) X [2k X (i +.300)] (g)

The scalar equations are

17.33
~3000) -

~3006,,
)

AB

We get

@,; = —57.8 rad/sec?
= 192.6 rad/sec?

Clearly, for the reference used, @

4p Must be clockwise and @, . must be
counterclockwise.

= Example 15.6 ==

(a) In Example 15.5, find the instantaneous axis of rotation for the
. rod AB.
The intersection of the instantaneous axis of rotation with the xy
plane will be a point £ in a hypothetical rigid-body extension of bar AB
having zero velocity at the instant of interest. We can accordingly say:

Ve =V, % @y X Py
Therefore,
0 = .60i + (2k) X (Axi + Ayp) (a)

where Ax and Ay are the components of the directed line segment from
point A to the center of rotation E. The scalar equations are:

0 = .60 - 2Ay
O=2Ax

Clearly, Ay = .3 and Ax = 0. Thus, the center of rotation is point O.
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We could have easily deduced this result by inspection in this case.
The velocity of each point of bar AB must be at right angles to a line from
the center of rotation to the point. The velocity of point A is in the hori-
zontal direction and the velocity of point B is in the vertical direction.
Clearly, as seen from Fig. 15.18, point O is the only point from which
lines to points A and B are normal to the velocities at these points,

Axis of
rotation v,

1
3
7338°

]_x i

Figure 15.18. Instantaneous axis of rotation of AB.

(b) Now using the instantaneous axis of rotation, find the magni-
tudes of the velocity and acceleration of point D (Fig. 15.18) using data
from the previous example.

In Fig. 15.19, we show the velocity vector normal to line OD. Using -
the law of cosines for triangle AOD, we can find OD which is a key distance
for this example. Thus noting from Fig. 15,18 that o = 73.3°, we have

OD =[72 +.3% — (2)(.1)(3)(cos 7339]" = 6777 m

Figure 15.19. Velocity vector for point D.

We then say from rotational motion about the instantaneous center of rota-
tion O,

Vp = (6777)(@,,) = (6777)(2) = 1.355 mils
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For the acceleration, we have (see Fig. 15.20)
12
iy = [(GD)E = (aD):z]

where (ap,), and (ap,),, respectively, are the centripetal and tangential com-
ponents of acceleration at point D. Noting that r for point D is .6777 m, we
get for the above

112

Wy ][(VTI%T + [(r)(d}AB)]z}

- 1/2
¥ {[1%575?2) 4 [lt_6777)(57‘3)]2} =3926 m/s?> (b)

We now get the vectors V,, and a,,. For this purpose we determine the
angle f of the tinted triangle in Fig. 15.20 by first using the law of sines

for triangle AOD
- - BJTT
sin(90° — B)  sin73.3°
& P=833°
y

' . %
AC (90°-y)=8.373°= B
Figure 15.20. Acceleration components of point D.

Hence, looking at the tinted triangle it is clear that Y= 90°- 8.373°=81.63°
We can now give ¥, (see Fig. 15.19).

Vi, = Vp(cos yi + sinyj) = 1.355(cos 81.63i + sin 81.63))

- lm.,. 13417 m/s
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For the acceleration vector, we refer back to Eq. (b) for components of a,,.
Noting Fig. 15.20, we have
V2
a, = r(@,,)[cosyi + sinyjl+ —fl[—cosﬁi + sin )
= (.6777)(—57.8)[cos 81.63°% + sin 81.63°f]
+ L3552 0583730 + sin8.373°)]

6777

# *EXxample 15.7

A disk E is rotating about a fixed axis HG at a constant angular
speed @, of 5 rad/sec in Fig. 15.21. A bar CD is held by the wheel at D by
a ball-joint connection and is guided along a rod AB cantilevered at A and
B by a collar at C having a second ball-joint connection with CD, as shown
in the diagram. Compute the velocity of C.

Figure 15.21. Three-dimensional device.

We shall need the vector p,, .. Thus,

Ppc =T —Ip
= [(.600 — .530 cos 30°)i + .530sin 30°k] - (1.7 + .300i)
= —.1590i — 1.7j + 265k m




e ———— et

Example 15.7 (Continued) e S

Now employ Eg. 15.6 for rod CD. Thus,
Ve =Vp 0 X Ppe

Therefore, assuming C is going from B to A
V(cos 30°i-—sin 30°k)

= (5)(30)k + (@i + wyj + mzk) X (—.1590i — 1.7j + .265k)
V,.(.866i - 500k) = 1.50k — 170 k - 2650 j + .1590m_\_k
+.265w i —.15%00_j + 1.7@.i)

The scalar equations are:

866V, = 2650, + 170, (a)
0 = -265w, —.15900,_ (b)
~.500V, = 1.50 - 170, +.15%0w, (c)

From these equations, we cannot solve for @, .. and @, because the Spin
¢ CD about its own axis (allowed by the ball joints) can have any value

without affecting the velocity of slider C. However, we can determine V.,
=s we shall now demonstrate.

In Eqg. (b), solve for @, in terms of @..
w, = —6000, (d)
in Eq. (a), solve for o, in terms of @_:

o, = 327V, — 64150, (e)

Substitute for @_and @, in Eq. (¢) using the foregoing results:
~500V,, = 1.50 — (1.7)(~6000, ) + (.1590)3.27V, — 64150,)
Therefore,

-1.020V, = 1.5+ 1.020w, -~ 1.0200,
V.= —1.471 m/sec

Hence,

V. = —1.471(cos 30°% — sin30°k)

1.274i + 7355k misec

“iearly, contrary to our assumption C is going from A to B.




15.6 CGeneral Reilationship Between Time
Derivatives of a Vector for
Different References

In Section-15.4, we considered the time derivatives of a vector A “fixed” in a
reference xyz moving arbitrarily relative to X¥Z. Our conclusions were:

gy
(@), -

@) =wX A
10

We now wish to extend these considerations to include time derivatives of a vec-
tor A which is not necessarily fixed in reference xyz. Primarily, our intention in
this section is to relate time derivatives of such vectors A as seen both from refer-
ence xyz and from XYZ, two references moving arbitrarily relative to each other.

For this purpose, consider Fig. 15.24, where we show a moving particle
£ with a position vector p in reference xyz. Reference xyz moves arbitrarily
relative to reference XYZ with translational velocity R and angular velocity o
in accordance with Chasles’ theorem. We shall now form a relation between
..dp/dt)m and (dpldr)xyz. We shall then extend this result so as to relate the
time derivative of any vector A as seen from any two references.

R
A

P
P

X
Figure 15.24. xyz moves relative to X¥Z,

To reach the desired results effectively, we shall express the vector pin
terms of components parallel to the xyz reference:

P =xi+yj+zk (15.11)
where i, j, and k are unit vectors for reference xyz. Differentiating this equa-
tion with respect to time for the xyz reference, we have:®

(E;E) SRSk (15.12)

ENote that %, y, and ¢ are time derivatives of scalars and accordingly there is no identifica-
tion with any reference as far as the time derivative operation is concerned.



If we next take the derivative of p with respect to time for the X¥Z ref-
erence, we must remember that i, j, and k of Eq. 15.11 generally will each be
a function of time, since these vectors will generally have some rotational
motion relative to the XYZ reference. Thus, if dots are used for the time
derivatives:

(d—" = (ki + yj + 2k) + (xf + yj + zk) (15.13)
-dr XYZ

The unit vector i is a vector fixed in reference xyz, and accordingly i equals
@ X i. The same conclusions apply to j and k. The last expression in paren-
theses can then be stated as

(xt + yj + zk) = x(0 X i) + y(@ X j)+ z(w X k)
GR D @ (I % (k) 54
wX((xityj+zk)=wXp

In Eq. 15.13 we can replace (xi + yj + zk) by (a’p»’d:)n , in accordance
with Eq. 15.12, and (xi + vf+z k) by @ X p, in accordance with Eq.
15.14. Hence,

dp dp :
(E)xyz (a’r} +wXp (15.15)
We can generalize the preceding result for any vector A:
@ = () |
= =|= +m X A (15.16
(dr i dt W -

where, you must remember, w without subscripts will always be the angulas
velocity of the xyz reference relative to the XYZ reference. Note that Eq. 15
is a special case of Eq. 15.16 since for A fixed in xyz, (dAfdr)_‘_‘,z = 0. We
shall have much use for this relationship in succeeding sections,

15.7 Relationship Between Velocities of
a Particle for Different References

We shall now define the velocity of a particle again in the presence &
several references:

The velocity of a particle relative 1o a reference is the derivative as ScJ
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