
Kinematics of Particles

Space Curvilinear Motion
Three-dimensional motion of a particle along a space curve.
Three commonly used coordinate systems to describe this motion:

1. Rectangular Coordinate System  (x-y-z)

2. Cylindrical Coordinate System  (r-θ-z)

3. Spherical Coordinate System  (R-θ-Φ)
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Kinematics of particles :: motion in space

• Example 2
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Kinematics of particles :: motion in space

• Example 3
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Kinematics of particles :: motion in space
n- and t-coordinates for plane curvilinear motion can also be used for 

space curvilinear motion of a particle 

:: Considering a plane containing the curve and the n- and t-axes at a 

particular location (instance)

•This plane will continuously shift its location and orientation in case of 

space curvilinear motion  difficult to use.
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Kinematics of particles :: motion in space
Rectangular Coordinates (x-y-z)

•Simply extend the previously derived 

equations to include third dimension.

Plane Curvilinear 

Motion (2-D) 

Space Curvilinear 

Motion (3-D) 

In three dimensions, R is used in place of r for the 

position vector
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Kinematics of Particles
Cylindrical Coordinates (r-θ-z)
•Extension of the Polar coordinate system.

•Addition of z-coordinate and its two time derivatives

Position vector R to the particle for cylindrical coordinates: 

R = r er + zk

Velocity: Acceleration:

Polar Cylindrical Polar Cylindrical

Unit vector k remains fixed in direction  has a zero time derivative
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Kinematics of Particles
Spherical Coordinates (R-θ-Φ)

•Utilized when a radial distance and two angles are utilized to 

specify the position of a particle.

•The unit vector eR is in the direction in which the particle P

would move if R increases keeping θ and Φ constant.

•The unit vector eθ is in the direction in which the particle P

would move if θ increases keeping R and Φ constant.

•The unit vector eΦ is in the direction in which the particle P

would move if Φ increases keeping R and θ constant.

Resulting expressions for v and a:
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Example (1) on cylindrical/spherical coordinate
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Example (1) on cylindrical/spherical coordinate
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Example (1) on cylindrical/spherical coordinate
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Example (1) on cylindrical/spherical coordinate
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Kinematics of Particles

Relative Motion (Translating Axes)
• Till now particle motion described using fixed reference axes

 Absolute Displacements, Velocities, and Accelerations

• Relative motion analysis is extremely important for some cases

 measurements made wrt a moving reference system

Relative Motion Analysis 

is critical even if aircrafts 

are not rotating

Motion of a moving coordinate system is specified wrt a 

fixed coordinate system (whose absolute motion is 

negligible for the problem at hand).

Current Discussion: 

• Moving reference systems that translate but do not 

rotate

• Relative motion analysis for plane motion

12ME101 - Division III Kaustubh Dasgupta



Kinematics of Particles

Relative Motion (Translating Axes)
Vector Representation
Two particles A and B have separate curvilinear motions 

in a given plane or in parallel planes.

• Attaching the origin of translating (non-rotating) axes 

x-y to B.

• Observing the motion of A from moving position on B.

• Position vector of A measured relative to the frame x-y

is rA/B = xi + yj. Here x and y are the coordinates of A

measured in the x-y frame. (A/B  A relative to B)

• Absolute position of B is defined by vector rB

measured from the origin of the fixed axes X-Y.

• Absolute position of A  rA = rB + rA/B

• Differentiating wrt time 

Unit vector i and j have constant direction  zero derivatives

Velocity of A wrt B:

Acceleration of A wrt B:
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Kinematics of Particles

Relative Motion (Translating Axes)
Vector Representation



• The relative motion terms can be expressed in any convenient 

coordinate system (rectangular, normal-tangential, or polar)

• Already derived formulations can be used.

 The appropriate fixed systems of the previous discussions  

becomes the moving system in this case.

Velocity of A wrt B:

Acceleration of A wrt B:

Absolute Velocity or 

Acceleration of A

Absolute Velocity 

or Acceleration of B

Velocity or 

Acceleration of 

A relative to B.

+=
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Kinematics of Particles

Relative Motion (Translating Axes)
Selection of Translating Axes

Instead of B, if A is used for the attachment of the 

moving system: 

rB = rA + rB/A 

vB = vA + vB/A

aB = aA + aB/A

 rB/A = - rA/B ; vB/A = - vA/B ; aB/A = - aA/B 

Relative Motion Analysis:

• Acceleration of a particle in translating axes (x-y) will be the same as that 

observed in a fixed system (X-Y) if the moving system has a constant velocity

 A set of axes which have a constant absolute velocity may be used in  place 

of a fixed system for the determination of accelerations

 Interesting applications of Newton’s Second law of motion in Kinetics

A translating reference system that has no acceleration  Inertial System
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Kinematics of Particles

Relative Motion (Translating Axes)
Inertial Reference Frame Or Newtonian Reference Frame

• When applying the eqn of motion (Newton’s Second Law of Motion), it is 

important that the acceleration of the particle be measured wrt a reference 

frame that is either fixed or translates with a constant velocity.

• The reference frame should not rotate and should not accelerate.

• In this way, the observer will not accelerate and measurements of particle’s 

acceleration will be the same from any reference of this type.

 Inertial or Newtonian Reference Frame

Study of motion of rockets and satellites: 

inertial reference frame may be considered to be 

fixed to the stars.

Motion of bodies near the surface of the earth:

inertial reference frame may be considered to be 

fixed to the earth. Though the earth rotates @ its 

own axis and revolves around the sun, the 

accelerations created by these motions of the 

earth are relatively small and can be neglected.

16ME101 - Division III Kaustubh Dasgupta



Example on relative motion
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Example on relative motion
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Kinematics of Particles

Constrained Motion of Connected Particles
• Inter-related motion of particles

One Degree of Freedom System
Establishing the position coordinates x and y

measured from a convenient fixed datum.

 We know that horz motion of A is twice the vertical motion of B.

Total length of the cable:

L, r2, r1 and b are constant. First and second time derivatives:

 Signs of velocity and acceleration of A and B must be opposite

 vA is positive to the left. vB is positive to the down

 Equations do not depend on lengths or pulley radii

Alternatively, the velocity and acceleration magnitudes can be determined by inspection of lower pulley.

SDOF: since only one variable (x or y) is needed to specify the positions of all parts of the system

Lower Pulley
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Kinematics of Particles

Constrained Motion of Connected Particles
One Degree of Freedom System

Applying an infinitesimal motion of A’ in lower pulley.

• A’ and A will have same motion magnitudes

• B’ and B will have same motion magnitudes

• From the triangle shown in lower figure, it is clear that               

B’ moves half as far as A’ because point C has no motion 

momentarily since it is on the fixed portion on the cable.

• Using these observations, we can obtain the velocity and 

acceleration magnitude relationships by inspection.

• The pulley is actually a wheel which rolls on the fixed cable.

Lower Pulley
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Kinematics of Particles

Constrained Motion of Connected Particles

Two Degrees of Freedom System
Two separate coordinates are required to specify 

the position of lower cylinder and pulley C  yA and yB.

Lengths of the cables attached to cylinders A and B:

Their time derivatives:

Eliminating the terms in 

 It is impossible for the signs of all three terms to be positive simultaneously.

 If A and B have downward (+ve) velocity, C will have an upward (-ve) velocity.
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Kinematics of Particles

Constrained Motion of Connected Particles

Two Degrees of Freedom System
Same results can be obtained by observing the motions

of  the two pulleys at C and D.

• Apply increment dyA (keeping yB fixed) 

 D moves up an amount dyA/2

 this causes an upward movement dyA/4 of C

• Similarly, for an increment dyB (keeping yA fixed) 

 C moves up an amount dyB/2

• A combination of the two movements 

gives an upward movement:

 -vc = vA/4 + vB/2  as obtained earlier.
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Kinematics of Particles

Constrained Motion of Connected Particles
Example

Determine the velocity of B if the cylinder A has a 

downward velocity of 0.3 m/s.

Use two different methods.

Solution
Method I: Centers of pulleys at A and B are located by the 

coordinates yA and yB measured from fixed positions.

Total constant length of the cable in the system:

L = 3 yB + 2 yA + constants

Differentiating wrt time:

Substituting

 vB = - 0.2 m/s
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Kinematics of Particles
Constrained Motion of Connected Particles

Example

Solution
Method II: Graphical method:

Enlarged views of the pulleys at 

A, B, and C are shown.

• Apply a differential movement dsA at center of pulley A

 no motion at left end of its horz diameter since it is attached to the fixed part  

of the cable  right end will move by 2dsA

 this movement will be transmitted to the left end of horz diameter of pulley B

but in the upward direction.

• Pulley C has a fixed center  disp on each side are equal and opposite (dsB)

 Right end of pulley B will also have a downward displacement equal to the   

upward displacement of the center of the pulley B (both dsB)

 2dsA = 3 dsB  dsB = 2/3 dsA

Dividing by dt  │vB│ = 2/3 vA = 0.2 m/s (upwards)

C

B

A
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Kinematics of Particles

Summary
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Kinetics of Particles

Kinetics: 
Study of the relations between unbalanced forces and the resulting 

changes in motion.

Newton’s Second Law of Motion : The acceleration of a particle is proportional 

to the resultant force acting on it and is in the direction of this force.

 A particle will accelerate when it is subjected to unbalanced forces

Three approaches to solution of Kinetics problems:

1. Force-Mass-Acceleration method (direct application of Newton’s Second Law)

2. Use of Work and Energy principles

3. Impulse and Momentum methods

Limitations of this chapter:
• Motion of bodies that can be treated as particles (motion of the mass centre of 

the body)

• Forces are concurrent through the mass center (action of non-concurrent 

forces on the motion of bodies will be discussed in chapter on Kinetics of rigid 

bodies).
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Kinetics of Particles
Force-Mass-Acceleration method

Newton’s Second Law of Motion

Subject a mass particle to a force F1 and measure accln of the particle a1. 

Similarly, F2 and a2…  The ratio of magnitudes of force and resulting 

acceleration will remain constant.

Mass m is used as a quantitative measure of Inertia.

C = km  where k is a constant introduced to account for the units used.

 F = kma

Accln is always in the direction of the applied force  Vector Relation: F = kma

In Kinetic System of units, k is taken as unity  F = ma

 units of force, mass and acceleration are not independent 

 Absolute System since the force units depend on the absolute value of mass.

Values of g at Sea level and 450 latitude:
For measurements relative to rotating earth: Relative g  9.80665 ~ 9.81 m/s2

For measurements relative to non-rotating earth: Absolute g  9.8236 m/s2

Constant C is a measure of some invariable property of the 

particle  Inertia of the particle

Inertia = Resistance to rate of change of velocity

F = magnitude of the resultant force acting on the particle of mass m

a = magnitude of the resulting acceleration of the particle.
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Kinetics of Particles
Force-Mass-Acceleration method
Equation of Motion

Particle of mass m subjected to the action of concurrent forces F1, F2,… whose 

vector sum is ∑F:

 Equation of motion:  ∑F = ma

 Force-Mass-Acceleration equation

Equation of Motion gives the instantaneous value of the acceleration 

corresponding to the instantaneous value of the forces.

• The equation of motion can be used in scalar component form in any 

coordinate system.

• For a 3 DOF problem, all three scalar components of equation of motion will be 

required to be integrated to obtain the space coordinates as a function of time.

• All forces, both applied or reactive, which act on the particle must be accounted 

for while using the equation of motion.

Free Body Diagrams:

In Statics: Resultant of all forces acting on the body = 0

In Dynamics: Resultant of all forces acting on the body = ma  Motion of body
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Kinetics of Particles: Force-Mass-Acceleration method

Rectilinear Motion
Motion of a particle along a straight line

For motion along x-direction, accelerations along y- and z-direction will be zero

 ∑Fx = max

∑Fy = 0

∑Fz = 0

For a general case:

 ∑Fx = max

∑Fy = may

∑Fz = maz

The acceleration and resultant force are given by:
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Kinetics of Particles: Force-Mass-Acceleration method

Rectilinear Motion
Example

A 75 kg man stands on a spring scale in an elevator. During the first 3 seconds of 

motion from rest, the tension T in the hoisting cable is 8300 N. Find the reading R

of the scale in Newton during this interval and the upward velocity v of the elevator 

at the end of the 3 seconds. Total mass of elevator, man, and scale is 750 kg.

Solution

Draw the FBD of the elevator and the man alone motion
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Kinetics of Particles: Force-Mass-Acceleration method

Rectilinear Motion
Example

Solution

During first 3 seconds, the forces acting on the elevator 

are constant. Therefore, the acceleration ay will also 

remain constant during this time.

Force registered by the scale and the velocity of the 

elevator depend on the acceleration ay

From FBD of the elevator, scale, and man taken together:

∑Fy = may  8300-7360 = 750ay  ay = 1.257 m/s2

From FBD of the man alone:

∑Fy = may  R-736 = 75ay   R = 830 N

Velocity reached at the end of the 3 sec:

Δv = ∫a dt 

v = 3.77 m/s
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