Center of Mass and Centroids

Center of Mass

A body of mass m in equilibrium under the action of tension in the cord, and resultant W of the gravitational forces acting on all particles of the body.
-The resultant is collinear with the cord
Suspend the body at different points

-Dotted lines show lines of action of the resultant force in each case.
-These lines of action will be concurrent at a single point G
As long as dimensions of the body are smaller compared with those of the earth.

- we assume uniform and parallel force field due to the gravitational attraction of the earth.

The unique Point G is called the Center of Gravity of the body (CG)

Center of Mass and Centroids

Determination of CG

- Apply Principle of Moments

Moment of resultant gravitational force W about any axis equals sum of the moments about the same axis of the gravitational forces dW acting on all particles treated as infinitesimal elements. Weight of the body $W=\int d W$ Moment of weight of an element ($d W$) @ x-axis = ydW Sum of moments for all elements of body $=\int y d W$ From Principle of Moments: $\int y d W=\bar{y} W$

$$
\bar{x}=\frac{\int x d W}{W} \quad \bar{y}=\frac{\int y d W}{W} \quad \bar{z}=\frac{\int z d W}{W}
$$

Moment of dW @ z axis???

$$
=0 \text { or, } \neq 0
$$

\rightarrow Numerator of these expressions represents the sum of the moments; Product of W and corresponding coordinate of G represents the moment of the sum \rightarrow Moment Principle.

Center of Mass and Centroids

Determination of CG $\bar{x}=\frac{\int_{x a W}^{W}}{W} \quad \bar{y}=\frac{\int_{y a W}^{w}}{w}=\frac{\int \mathrm{JzaW}}{W}$
Substituting $W=m g$ and $d W=g d m$
$\rightarrow \quad \bar{x}=\frac{\int x d m}{m} \quad \bar{y}=\frac{\int y d m}{m} \quad \bar{z}=\frac{\int z d m}{m}$
In vector notations:
Position vector for elemental mass: $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$
Position vector for mass center G: $\overline{\mathbf{r}}=\bar{x} \mathbf{i}+\bar{y} \mathbf{j}+\bar{z} \mathbf{k}$

$$
\overline{\mathbf{r}}=\frac{\int \mathbf{r} d m}{m}
$$

Density ρ of a body = mass per unit volume
\rightarrow Mass of a differential element of volume $d V \rightarrow d m=\rho d V$
$\rightarrow \rho$ may not be constant throughout the body

$$
\bar{x}=\frac{\int x \rho d V}{\int \rho d V} \quad \bar{y}=\frac{\int y \rho d V}{\int \rho d V} \quad \bar{z}=\frac{\int z \rho d V}{\int \rho d V}
$$

Center of Mass and Centroids

Center of Mass: Following equations independent of g

$$
\bar{x}=\frac{\int x d m}{m} \quad \bar{y}=\frac{\int y d m}{m} \quad \bar{z}=\frac{\int z d m}{m}
$$

$$
\overline{\mathbf{r}}=\frac{\int \mathbf{r} d m}{m} \quad \text { (Vector representation) }
$$

$$
\bar{x}=\frac{\int x \rho d V}{\int \rho d V} \quad \bar{y}=\frac{\int y \rho d V}{\int \rho d V} \quad \bar{z}=\frac{\int z \rho d V}{\int \rho d V}
$$

\rightarrow Unique point [=f($)$] :: Centre of Mass (CM)
\rightarrow CM coincides with CG as long as gravity field is treated as uniform and parallel
\rightarrow CG or CM may lie outside the body

Center of Mass and Centroids

- Symmetry

- CM always lie on a line or a plane of symmetry in a homogeneous body

Right Circular Cone
CM on central CM on vertical plane axis

Half Right Circular Cone of symmetry

Half Ring
CM on intersection of two planes of symmetry (line AB)

Center of Mass and Centroids

Centroid

- Geometrical property of a body
- Body of uniform density :: Centroid and CM coincide

$$
\bar{x}=\frac{\int x d m}{m} \quad \bar{y}=\frac{\int y d m}{m} \quad \bar{z}=\frac{\int z d m}{m}
$$

Lines: Slender rod, Wire
Cross-sectional area $=A$
ρ and A are constant over L
$d m=\rho A d L$
Centroid and CM are the same points
$\bar{x}=\frac{\int x d L}{L} \quad \bar{y}=\frac{\int y d L}{L} \quad \bar{z}=\frac{\int z d L}{L}$

Center of Mass and Centroids

- Centroid

$$
\bar{x}=\frac{\int x d m}{m} \quad \bar{y}=\frac{\int y d m}{m} \quad \bar{z}=\frac{\int z d m}{m}
$$

Areas: Body with small but constant thickness t
Cross-sectional area $=A$ ρ and A are constant over A $d m=\rho t d A$
Centroid and CM are the same points

$$
\bar{x}=\frac{\int x d A}{A} \quad \bar{y}=\frac{\int y d A}{A} \quad \bar{z}=\frac{\int z d A}{A}
$$

Numerator $=$ First moments of Area

Center of Mass and Centroids

- Centroid

Volumes: Body with volume V
ρ constant over V
$d m=\rho d V$
Centroid and CM are the same point

$$
\begin{aligned}
& \bar{x}=\frac{\int x d m}{m} \quad \bar{y}=\frac{\int y d m}{m} \quad \bar{z}=\frac{\int z d m}{m} \\
& \bar{x}=\frac{\int x d V}{V} \quad \bar{y}=\frac{\int y d V}{V} \quad \bar{z}=\frac{\int z d V}{V}
\end{aligned}
$$

Numerator $=$ First moments of Volume

Center of Mass and Centroid :: Guidelines

(a) Element Selection for Integration

- Order of Element
- First order differential element preferred over higher order element
- only one integration should cover the entire figure

$A=\int d A=\int l d y$

$A=\iint d x d y$

$V=\iiint d x d y d z$

Center of Mass and Centroids :: Guidelines

(b) Element Selection for Integration

- Continuity
- Integration of a single element over the entire area
- Continuous function over the entire area

Continuity in the expression for the width of the strip

Discontinuity in the expression for the height of the strip at $x=x_{1}$

Center of Mass and Centroids :: Guidelines

(c) Element Selection for Integration

- Discarding higher order terms
- No error in limits

:: Vertical strip of area under the curve $\rightarrow d A=y d x$
:: Ignore $2^{\text {nd }}$ order triangular area $0.5 d x d y$

Center of Mass and Centroids :: Guidelines

(d) Element Selection for Integration

- Coordinate system
- Convenient to match it with the

Curvilinear boundary (Rectangular Coordinates)

Circular boundary
(Polar coordinates)

Center of Mass and Centroids :: Guidelines

(e) Element Selection for Integration

- Centroidal coordinate ($x_{v}, y_{c} z_{c}$) of element
- x_{c}, y_{c}, z_{c} to be considered for lever arm
:: not the coordinates of the area boundary

$$
\bar{x}=\frac{\int x_{c} d V}{V} \quad \bar{y}=\frac{\int y_{c} d V}{V} \quad \bar{z}=\frac{\int z_{c} d V}{V}
$$

Modified $\begin{aligned} & \text { Modified } \\ & \text { Equations }\end{aligned} \quad \bar{x}=\frac{\int x_{c} d A}{A} \quad \bar{y}=\frac{\int y_{c} d A}{A} \quad \bar{z}=\frac{\int z_{c} d A}{A}$

Center of Mass and Centroids :: Guidelines

Centroids of Lines, Areas, and Volumes

1.Order of Element Selected for Integration
2.Continuity
3.Discarding Higher Order Terms
4.Choice of Coordinates
5.Centroidal Coordinate of Differential Elements

$$
\begin{array}{lll}
\bar{x}=\frac{\int x d L}{L} & \bar{y}=\frac{\int y d L}{L} & \bar{z}=\frac{\int z d L}{L} \\
\bar{x}=\frac{\int x_{c} d A}{A} & \bar{y}=\frac{\int y_{c} d A}{A} & \bar{z}=\frac{\int z_{c} d A}{A} \\
\bar{x}=\frac{\int x_{c} d V}{V} & \bar{y}=\frac{\int y_{c} d V}{V} \quad \bar{z}=\frac{\int z_{c} d V}{V}
\end{array}
$$

Example on Centroid :: Circular Arc

Locate the centroid of the circular arc

Solution: Polar coordinate system is better Since the figure is symmetric: centroid lies on the x axis
Differential element of arc has length $d L=r d \theta$
Total length of arc: $L=2 a r$

x-coordinate of the centroid of differential element: $x=r \cos \Theta$

$$
\bar{x}=\frac{\int x d L}{L} \quad \bar{y}=\frac{\int y d L}{L} \quad \bar{z}=\frac{\int z d L}{L}
$$

$$
\left[L \bar{x}=\int x d L\right]
$$

$$
(2 \alpha r) \bar{x}=\int_{-\alpha}^{\alpha}(r \cos \theta) r d \theta
$$

$$
2 \alpha r \bar{x}=2 r^{2} \sin \alpha
$$

$$
\bar{x}=\frac{r \sin \alpha}{\alpha}
$$

For a semi-circular arc: $2 \alpha=\pi \rightarrow$ centroid lies at $2 r / \pi$

Example on Centroid :: Triangle

Locate the centroid of the triangle along h from the base

Solution:

$$
d A=x d y ; x /(h-y)=b / h
$$

Total Area, $\mathrm{A}=1 / 2(b h)$
$\bar{x}=\frac{\int x_{c} d A}{A} \quad \bar{y}=\frac{\int y_{c} d A}{A} \quad \bar{z}=\frac{\int z_{c} d A}{A}$
$y_{c}=y$

$\left[A \bar{y}=\int y_{c} d A\right]$

$$
\begin{aligned}
\frac{b h}{2} \bar{y} & =\int_{0}^{h} y \frac{b(h-y)}{h} d y=\frac{b h^{2}}{6} \\
\bar{y} & =\frac{h}{3}
\end{aligned}
$$

Center of Mass and Centroids

Composite Bodies and Figures

Divide bodies or figures into several parts such that their mass centers can be conveniently determined
\rightarrow Use Principle of Moment for all finite elements of the body

$$
\left(m_{1}+m_{2}+m_{3}\right) \bar{X}=m_{1} \bar{x}_{1}+m_{2} \bar{x}_{2}+m_{3} \bar{x}_{3}
$$

Mass Center Coordinates can be written as:

$$
\bar{X}=\frac{\sum m \bar{x}}{\sum m} \quad \bar{Y}=\frac{\sum m \bar{y}}{\sum m} \quad \bar{Z}=\frac{\sum m \bar{z}}{\sum m}
$$

m's can be replaced by L's, A 's, and V s for lines, areas, and volumes
x-coordinate of the center of mass of the whole

Centroid of Composite Body/Figure

Irregular area :: Integration vs Approximate Summation

- Area/volume boundary cannot be expressed analytically
- Approximate summation instead of integration

Divide the area into several strips
Area of each strip $=h \Delta x$
Moment of this area about x - and y-axis
$=(h \Delta x) y_{c}$ and $(h \Delta x) \mathrm{x}_{c}$
\rightarrow Sum of moments for all strips divided by the total area will give corresponding coordinate of the centroid

$$
\bar{x}=\frac{\sum A x_{c}}{\sum A} \quad \bar{y}=\frac{\sum A y_{c}}{\sum A}
$$

Accuracy may be improved by reducing the thickness of the strip

Centroid of Composite Body/Figure

Irregular volume :: Integration vs Approximate Summation

- Reduce the problem to one of locating the centroid of area
- Approximate summation instead of integration

Divide the area into several strips
Volume of each strip $=A \Delta x$
Plot all such A against x .
\rightarrow Area under the plotted curve represents volume of whole body and the x-coordinate of the centroid of the area under the curve is given by:

$$
\bar{x}=\frac{\sum(A \Delta x) x_{c}}{\sum A \Delta x} \Rightarrow \bar{x}=\frac{\sum V x_{c}}{\sum V}
$$

Accuracy may be improved by reducing the width of the strip

Example on Centroid of Composite Figure

Locate the centroid of the shaded area

Solution: Divide the area into four elementary shapes: Total Area $=A_{1}+A_{2}-A_{3}-A_{4}$

	A m^{2}	\bar{x} PART	\bar{y} mm	$\bar{x} A$ $\mathrm{~mm}^{3}$	$\bar{y} A$ $\mathrm{~mm}^{3}$
1	12000	60	50	720000	600000
2	3000	140	$100 / 3$	420000	100000
3	-1414	60	12.73	-84800	-18000
4	-800	120	40	-96000	-32000
TOTALS	12790			959000	650000

Center of Mass and Centroids

Theorem of Pappus: Area of Revolution

- method for calculating surface area generated by revolving a plane curve about a non-intersecting axis in the plane of the curve

Surface Area

Area of the ring element: circumference times $d L$ $d A=2 \pi y d L$
Total area, $A=2 \pi \int y d L$ If area is revolved through an angle $\theta<2 \pi$ θ in radians
$\because \bar{y} L=\int y d L \rightarrow A=2 \pi \bar{y} L \quad$ or $\quad A=\theta \bar{y} L$
\bar{y} is the y-coordinate of the centroid C for the line of length L
Generated area is the same as the lateral area of a right circular cylinder of length L and radius \bar{y}
Theorem of Pappus can also be used to determine centroid of plane curves if area created by revolving these figures @ a non-intersecting axis is known

