Rigid Body Equilibrium

Support Reactions

Prevention of
Translation or
roller
Rotation of a body

Restraints

Rigid Body Equilibrium

(1)

Various Supports 2-D Force Systems

One unknown. The reaction is a tension force which acts away from the member in the direction of the cable.
cable

weightless link
(3)

One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.
(4)

One unknown. The reaction is a force which acts perpendicular to the slot.
roller or pin in confined smooth slot

smooth contacting surface

One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.
(7)

One unknown. The reaction is a force which acts perpendicular to the rod.

Rigid Body Equilibrium

Various Supports 3-D Force Systems

(6)

Five unknowns. The reactions are two force and three couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.
(7)

single thrust bearing

single smooth pin
single smooth pin

(8)

Five unknowns. The reactions are three force and two couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

Five unknowns. The reactions are three force and two couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.
(10)

Six unknowns. The reactions are three force and three couple-moment components.

Rigid Body Equilibrium	CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS		
	Force System	Free-Body Diagram	Independent Equations
Categories in 2-D	1. Collinear		$\Sigma F_{x}=0$
	2. Concurrent at a point		$\begin{aligned} & \Sigma F_{x}=0 \\ & \Sigma F_{y}=0 \end{aligned}$
	3. Parallel		$\Sigma F_{x}=0 \quad \Sigma M_{z}=0$
	4. General		$\begin{aligned} & \Sigma F_{x}=0 \quad \Sigma M_{z}=0 \\ & \Sigma F_{y}=0 \end{aligned}$

Rigid Body Equilibrium

Categories in 3-D

CATEGORIES OF EQUILIBRIUM IN THREE DIMENSIONS		
Force System	Free-Body Diagram	Independent Equations
1. Concurrent at a point		$\begin{aligned} & \Sigma F_{x}=0 \\ & \Sigma F_{y}=0 \\ & \Sigma F_{z}=0 \end{aligned}$
2. Concurrent with a line		$\begin{array}{ll} \Sigma F_{x}=0 & \Sigma M_{y}=0 \\ \Sigma F_{y}=0 & \Sigma M_{z}=0 \\ \Sigma F_{z}=0 & \end{array}$
3. Parallel		$\begin{array}{ll} \Sigma F_{x}=0 & \Sigma M_{y}=0 \\ \Sigma M_{z}=0 \end{array}$
4. General		$\begin{array}{ll} \Sigma F_{x}=0 & \Sigma M_{x}=0 \\ \Sigma F_{y}=0 & \Sigma M_{y}=0 \\ \Sigma F_{z}=0 & \Sigma M_{z}=0 \end{array}$

Equilibrium of a Rigid Body in Two Dimensions

- For all forces and moments acting on a twodimensional structure,

$$
F_{z}=0 \quad M_{x}=M_{y}=0 \quad M_{z}=M_{O}
$$

- Equations of equilibrium become

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M_{A}=0
$$

where A is any point in the plane of the structure.

- The 3 equations can be solved for no more than 3 unknowns.
- The 3 equations can not be augmented with additional equations, but they can be replaced

$$
\sum F_{x}=0 \quad \sum M_{A}=0 \quad \sum M_{B}=0
$$

Statically Indeterminate Reactions

(a)

(b)

- More unknowns than equations: Statically
Indeterminate

(a)

(b)
- Fewer unknowns than equations, partially constrained

(a)

(b)
- Equal number unknowns and equations but improperly constrained

Rigid Body Equilibrium: Example

A man raises a 10 kg joist, of length 4 m , by pulling on a rope.

Find the tension in the rope and the reaction at \mathbf{A}.

Solution:

- Create a free-body diagram of the joist. - The joist is a 3 force body acted upon by the rope, its weight, and the reaction at A .
- The three forces must be concurrent for static equilibrium.
- Reaction \mathbf{R} must pass through the intersection of the lines of action of the weight and rope forces.
- Determine the direction of the reaction force \mathbf{R}.
- Utilize a force triangle to determine the magnitude of the reaction force \mathbf{R}.

Rigid Body Equilibrium: Example

- Create a free-body diagram of the joist
- Determine the direction of the reaction force \mathbf{R}

$$
\begin{aligned}
& A F=A B \cos 45=(4 \mathrm{~m}) \cos 45=2.828 \mathrm{~m} \\
& C D=A E=\frac{1}{2} A F=1.414 \mathrm{~m} \\
& B D=C D \cot (45+20)=(1.414 \mathrm{~m}) \tan 20=0.515 \mathrm{~m} \\
& C E=B F-B D=(2.828-0.515) \mathrm{m}=2.313 \mathrm{~m} \\
& \tan \alpha=\frac{C E}{A E}=\frac{2.313}{1.414}=1.636 \\
& \alpha=58.6^{\circ}
\end{aligned}
$$

Rigid Body Equilibrium: Example

- Determine the magnitude of the reaction force \mathbf{R}.

$$
\begin{aligned}
& \frac{T}{\sin 31.4^{\circ}}=\frac{R}{\sin 110^{\circ}}=\frac{98.1 \mathrm{~N}}{\sin 38.6^{\circ}} \\
& T=81.9 \mathrm{~N} \\
& R=147.8 \mathrm{~N}
\end{aligned}
$$

Engineering Structure

- Any connected system of members to transfer the loads and safely withstand them

Structural Analysis

Structural Analysis

ME101 \rightarrow Trusses/Frames/Machines/Beams/Cables
\rightarrow Statically Determinate Structures
To determine the internal forces in the structure, dismember the structure and analyze separate free body diagrams of individual members or combination of members.

Structural Analysis :: Plane Truss

Structural Analysis :: Plane Truss

Structural Analysis: Plane Truss

Truss: A framework composed of members joined at their ends to form a rigid structure

- Joints (Connections): Welded, Riveted, Bolted, Pinned

Plane Truss: Members lie in a single plane

(b)

Structural Analysis: Plane Truss

Simple Trusses

Basic Element of a Plane Truss is the Triangle

- Three bars joined by pins at their ends \rightarrow Rigid Frame
- Non-collapsible and deformation of members due to induced internal strains is negligible

Structural Analysis: Plane Truss

Basic Assumptions in Truss Analysis

- All members are two-force members
- Weight of the members is small compared with the force it supports (weight may be considered at joints).
- no effect of bending on members even if weight is considered

Two-Force Members

- External forces are applied at the pin connections
- Welded or riveted connections \rightarrow Pin Joint if the member centerlines are concurrent at the joint

Common Practice in Large Trusses

- Roller/Rocker at one end. Why?
- to accommodate deformations due to temperature changes and applied loads.
- otherwise it will be a statically indeterminate truss

Structural Analysis: Plane Truss

Truss Analysis: Method of Joints

- Finding forces in members

Method of Joints: Conditions of equilibrium are satisfied for the forces at each joint

- Equilibrium of concurrent forces at each joint
- only two independent equilibrium equations are involved

Steps of Analysis

1. Draw Free Body Diagram of Truss
2. Determine external reactions by applying equilibrium equations to the whole truss
3. Perform the force analysis of the remainder of the truss by Method of Joints

Structural Analysis: Plane Truss

Method of Joints

- Start with any joint where at least one known load exists and where not more than two unknown forces are present.

FBD of Joint A and members AB and AF: Magnitude of forces denoted as $A B$ \& $A F$

- Tension indicated by an arrow away from the pin
- Compression indicated by an arrow toward the pin

Magnitude of AF from $\Sigma F_{y}=0$
Magnitude of AB from $\Sigma F_{x}=\mathbf{0}$
Analyze joints F, B, C, E, \& D in that order to complete the analysis

Structural Analysis: Plane Truss

Method of Joints

- Negative force if assumed sense is incorrect

Method of Joints: Example

Determine the force in each member of the loaded truss by the method of joints

Method of Joints: Example

Free Body Diagram

$$
\begin{aligned}
& {\left[\Sigma M_{E}=0\right]} \\
& {\left[\Sigma F_{x}=0\right]} \\
& {\left[\Sigma F_{y}=0\right]}
\end{aligned}
$$

$$
\begin{array}{rrr}
5 T-20(5)-30(10)=0 & T=80 \mathrm{kN} \\
80 \cos 30^{\circ}-E_{x}=0 & E_{x}=69.3 \mathrm{kN} \\
30^{\circ}+E_{y}-20-30=0 & E_{y}=10 \mathrm{kN}
\end{array}
$$

Method of Joints: Example

- Joint A

[$\left.\Sigma F_{y}=0\right]$
$0.866 A B-30=0 \quad A B=34.6 \mathrm{kN} T$
[$\left.\Sigma F_{x}=0\right]$

Method of Joints: Example

- Joint B

Joint B

$$
\begin{array}{rrr}
{\left[\Sigma F_{y}=0\right]} & 0.866 B C-0.866(34.6)=0 & B C=34.6 \mathrm{kN} C \\
{\left[\Sigma F_{x}=0\right]} & B D-2(0.5)(34.6)=0 & B D=34.6 \mathrm{kN} \mathrm{~T}
\end{array}
$$

Method of Joints: Example

- Joint C

$$
\left[\Sigma F_{y}=0\right] \quad 0.866 C D-0.866(34.6)-20=0
$$

$C D=57.7 \mathrm{kN} T$
$\left[\Sigma F_{x}=0\right] \quad C E-17.32-0.5(34.6)-0.5(57.7)=0$
$C E=63.5 \mathrm{kN} C$

Method of Joints: Example

- Joint E

Joint E
$\left[\Sigma F_{y}=0\right] \quad 0.866 D E=10 \quad D E=11.55 \mathrm{kN} \mathrm{C}$ and the equation $\Sigma F_{\dot{x}}=0$ checks.

