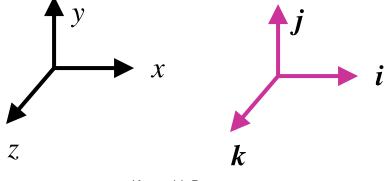
Mechanics: Scalars and Vectors

- Scalar
 - Only magnitude is associated with it
 - *e.g.*, time, volume, density, <u>speed</u>, energy, mass etc.
- Vector
 - Possess direction as well as magnitude
 - Parallelogram law of addition (and the triangle law)
 - e.g., displacement, velocity, acceleration etc.
- Tensor
 - *e.g.*, stress (3×3 components)

Mechanics: Scalars and Vectors

- A Vector **V** can be written as: $\mathbf{V} = V\mathbf{n}$
- V = magnitude of **V**
- n = unit vector whose magnitude is one and whose direction coincides with that of V
- Unit vector can be formed by dividing any vector, such as the geometric position vector, by its length or magnitude
- Vectors represented by Bold and Non-Italic letters (V) Magnitude of vectors represented by Non-Bold, Italic letters (V) $\downarrow y$ i



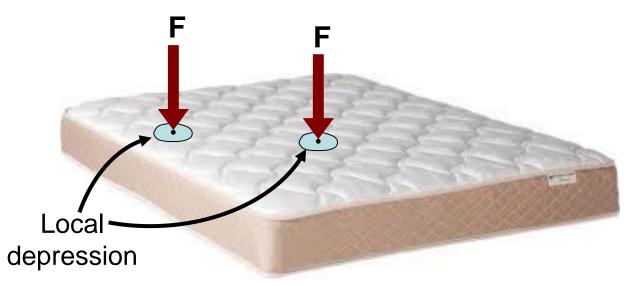
Types of Vectors: Fixed Vector

Fixed Vector

- Constant magnitude and direction

Unique point of application

- *e.g.*, force on a deformable body

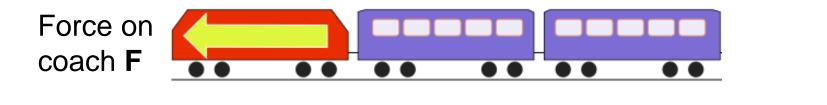


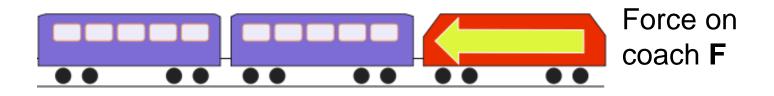
- e.g., force on a given particle

Types of Vectors: Sliding Vector

Sliding Vector

- Constant magnitude and direction
 - Unique line of action
 - "Slide" along the line of action
 - No unique point of application

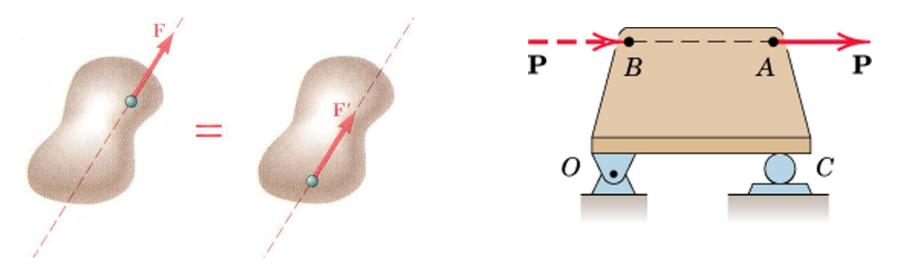




Types of Vectors: Sliding Vector

Sliding Vector

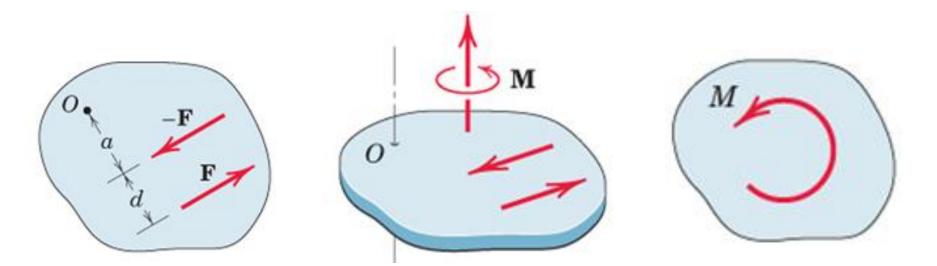
- Principle of Transmissibility
 - Application of force at any point along a particular line of action
 - No change in resultant external effects of the force



Types of Vectors: Free Vector

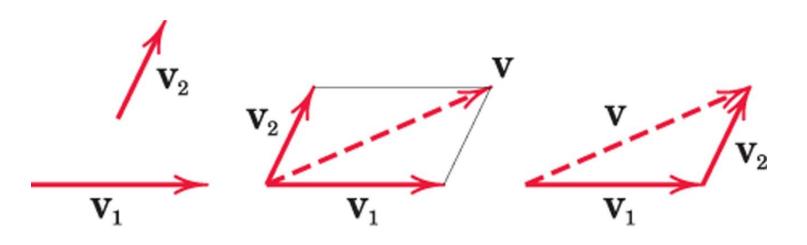
Free Vector

- Freely movable in space
 - No unique line of action
 - No unique point of application
- -e.g., moment of a couple



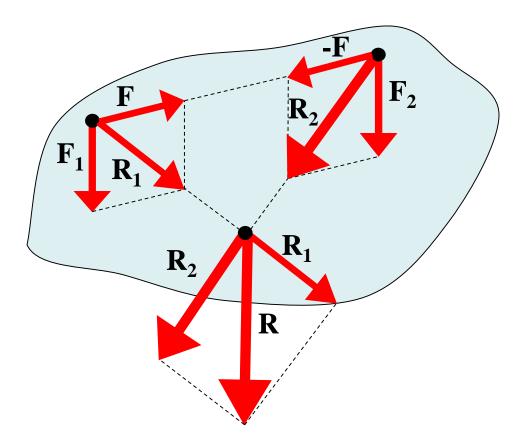
Vectors: Rules of addition

- Parallelogram Law
 - Equivalent vector represented by the diagonal of a parallelogram
 - $\mathbf{V} = \mathbf{V}_1 + \mathbf{V}_2$ (Vector Sum)
 - $V \neq V_1 + V_2$ (Scalar sum)



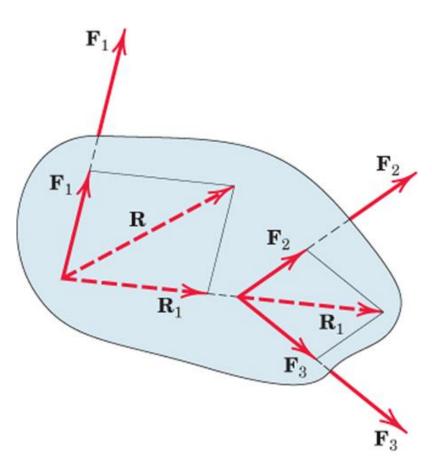
Vectors: Parallelogram law of addition

• Addition of two parallel vectors $- \mathbf{F_1} + \mathbf{F_2} = \mathbf{R}$



Vectors: Parallelogram law of addition

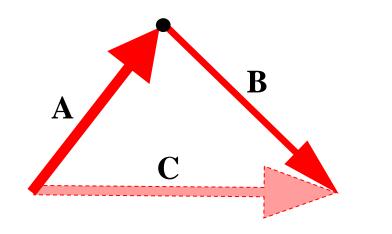
• Addition of 3 vectors $-\mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3} = \mathbf{R}$



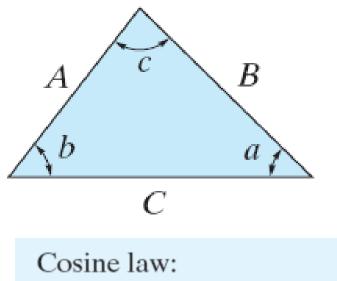
Vectors: Rules of addition

Trigonometric Rule

- Law of Sines
- Law of Cosine

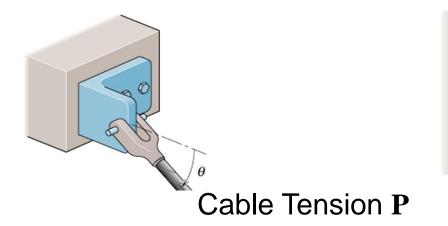


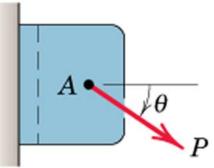
Sine law: $\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$



$$C = \sqrt{A^2 + B^2 - 2AB\cos c}$$

Cable Tension

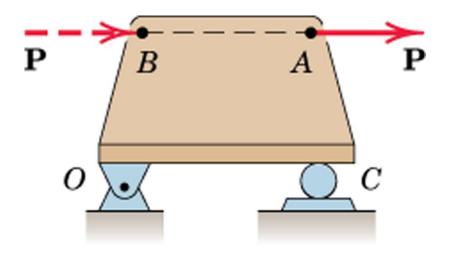




- Force: Represented by vector
 - Magnitude, direction, point of application
 - P: fixed vector (or sliding vector??)
 - External Effect
 - Applied force; Forces exerted by bracket, bolts, Foundation (reactive force)

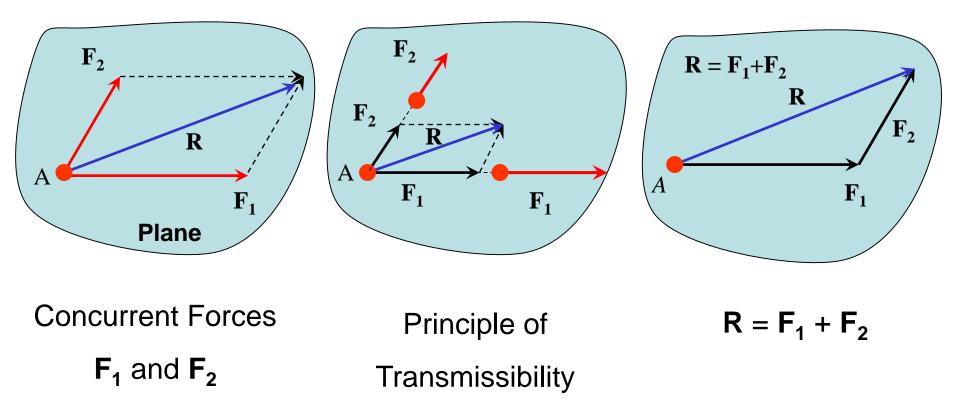
Rigid Bodies

- External effects only
 - Line of action of force is important
 - Not its point of application
 - Force as sliding vector



Concurrent forces

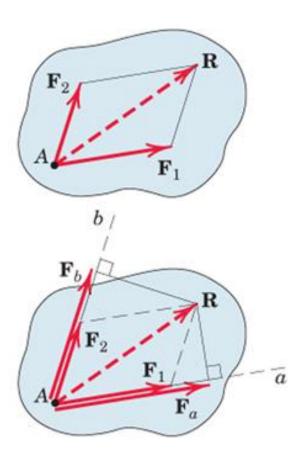
- Lines of action intersect at a point



Components and Projections of a Force

Components and Projections

 Equal when axes are orthogonal

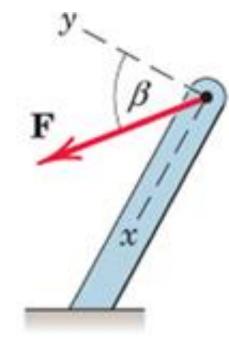


 \mathbf{F}_1 and \mathbf{F}_2 are components of \mathbf{R} $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2$

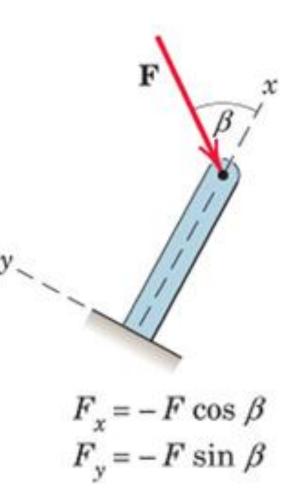
: \mathbf{F}_{a} and \mathbf{F}_{b} are perpendicular projections on axes a and b

: $\mathbf{R} \neq \mathbf{F}_{a} + \mathbf{F}_{b}$ unless a and b are perpendicular to each other

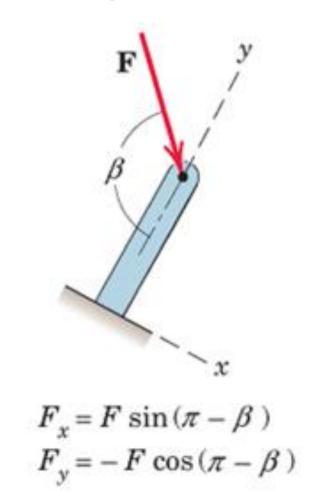
• Examples

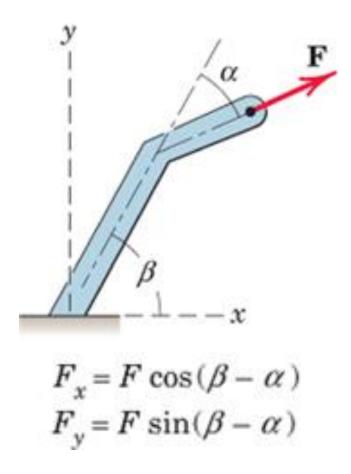


$$F_x = F \sin \beta$$
$$F_y = F \cos \beta$$

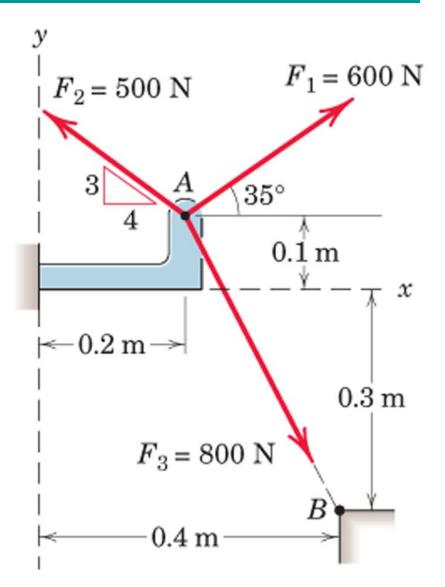


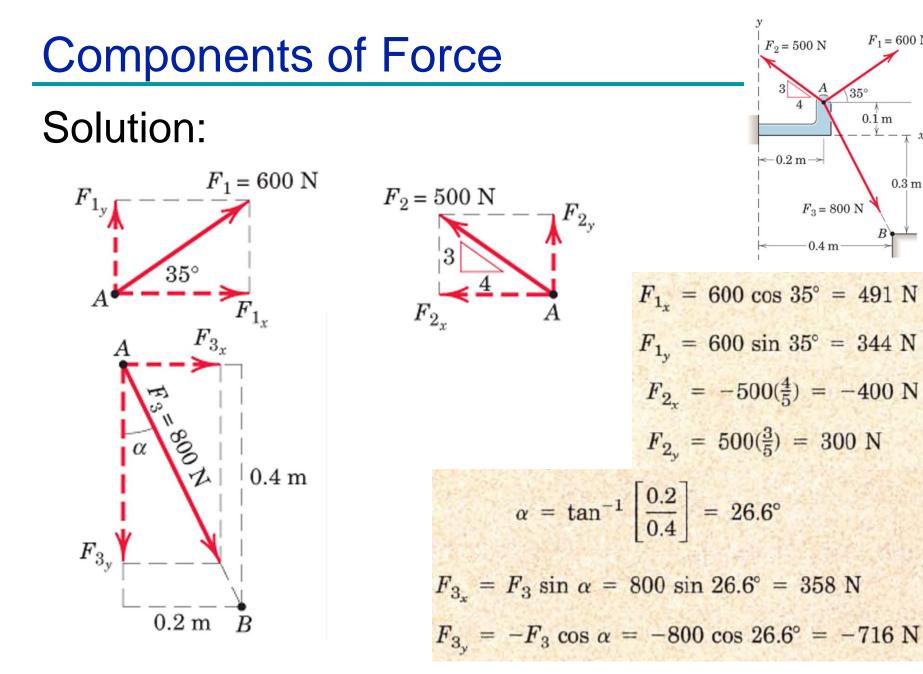
• Examples





Example 1: Determine the x and y scalar components of F_1 , F_2 , and F_3 acting at point A of the bracket





Kaustubh Dasgupta

 $F_1 = 600 \text{ N}$

0.3 m

 35°

 $F_3 = 800 \text{ N}$

0.4 m

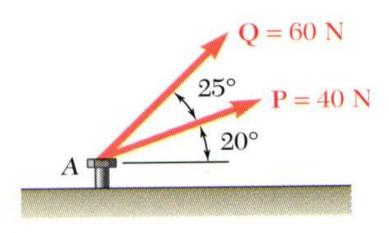
0.1 m

Alternative Solution: Scalar components of \mathbf{F}_3 can be obtained by writing \mathbf{F}_3 as a magnitude times a unit vector \mathbf{n}_{AB} in the direction of the line segment AB.

Unit vector can be formed by dividing any vector, such as the geometric position vector by its length or magnitude.

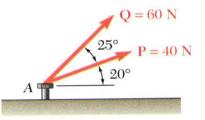
$$\mathbf{F}_{3} = F_{3}\mathbf{n}_{AB} = F_{3}\frac{\overrightarrow{AB}}{\overrightarrow{AB}} = 800\left[\frac{0.2\mathbf{i} - 0.4\mathbf{j}}{\sqrt{(0.2)^{2} + (-0.4)^{2}}}\right]$$
$$= 800[0.447\mathbf{i} - 0.894\mathbf{j}]$$
$$= 358\mathbf{i} - 716\mathbf{j} \text{ N}$$
$$F_{3_{x}} = 358 \text{ N}$$
$$F_{3_{y}} = -716 \text{ N}$$

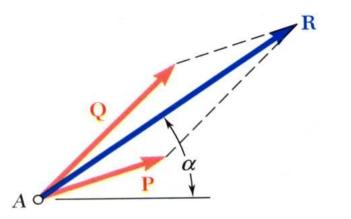
Example 2: The two forces act on a bolt at A. Determine their resultant.



- Graphical solution –
- Construct a parallelogram with sides in the same direction as P and Q and lengths in proportion.
- Graphically evaluate the resultant which is equivalent in direction and proportional in magnitude to the diagonal.
- Trigonometric solution
- Use the law of cosines and law of sines to find the resultant.

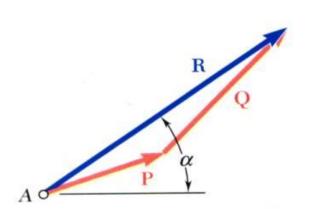
Solution:





 Graphical solution - A parallelogram with sides equal to P and Q is drawn to scale. The magnitude and direction of the resultant or of the diagonal to the parallelogram are measured,

$$\mathbf{R} = 98 \, \mathrm{N} \quad \alpha = 35^{\circ}$$

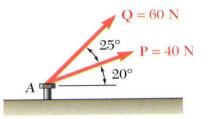


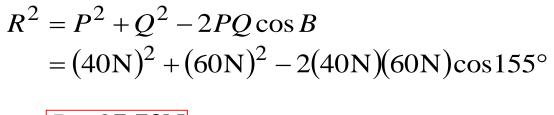
 Graphical solution - A triangle is drawn with P and Q head-to-tail and to scale. The magnitude and direction of the resultant or of the third side of the triangle are measured,

$$\mathbf{R} = 98 \, \mathrm{N} \quad \alpha = 35^{\circ}$$

Trigonometric Solution:

 25°





$$R = 97.73N$$

$$\frac{\sin A}{Q} = \frac{\sin B}{R}$$
$$\sin A = \sin B \frac{Q}{R}$$
$$= \sin 155^{\circ} \frac{60N}{97.73N}$$
$$A = 15.04^{\circ}$$
$$\alpha = 20^{\circ} + A$$
$$\alpha = 35.04^{\circ}$$

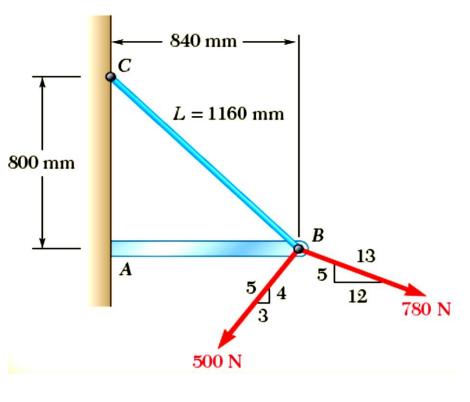
 155°

α

20°

Kaustubh Dasgupta

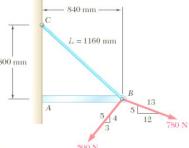
Example 3: Tension in cable *BC* is 725 N; determine the resultant of the three forces exerted at point *B* of beam *AB*.

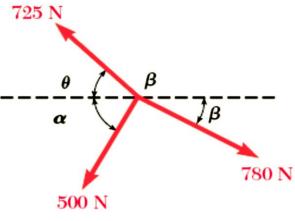


Solution:

- Resolve each force into rectangular components.
- Determine the components of the resultant by adding the corresponding force components.
- Calculate the magnitude and direction of the resultant.

Solution

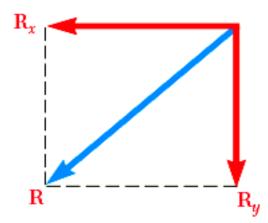




• Resolve each force into rectangular components.

Magnitude, N	x Component, N	y Component, N
725	-525	500
500	-300	- 400
780	720	- 300
	$R_x = -105$	$R_y = -200$

 $\mathbf{R} = R_x \mathbf{i} + R_y \mathbf{j}$ $\mathbf{R} = (-105 \text{ N})\mathbf{i} + (-200 \text{ N})\mathbf{j}$



• Calculate the magnitude and direction.

$$\tan \alpha = \frac{-R_y}{-R_x} = \frac{200 \,\text{N}}{105 \,\text{N}} \quad \alpha = 62.3^\circ$$
$$R = \sqrt{R_{x^2} + R_{y^2}} = 225.9 \,\text{N} \quad \text{(5.3)}$$

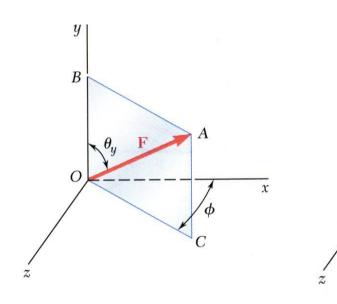
Rectangular Components in Space

y

B

F"

Ο

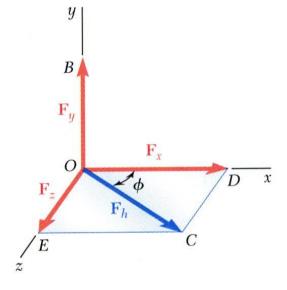


- The vector \vec{F} is contained in the plane *OBAC*.
- Resolve \vec{F} into horizontal and vertical components.

 \mathbf{F}_h

x

$$F_y = F \cos \theta_y$$
$$F_h = F \sin \theta_y$$



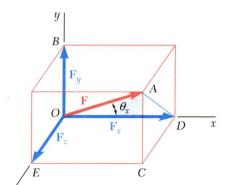
- Resolve F_h into rectangular components
 - $F_x = F_h \cos \phi$ $= F \sin \theta_y \cos \phi$

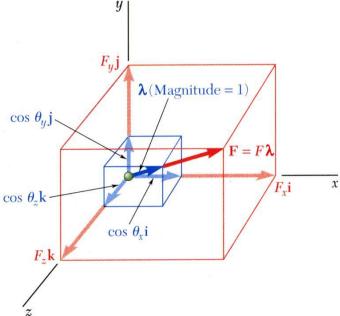
Rectangular Components in Space

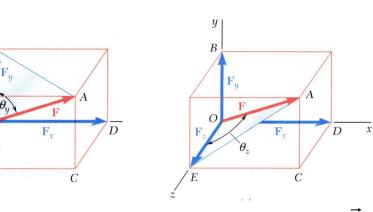
B

0

 θ_y







• With the angles between \vec{F} and the axes, $F_x = F \cos \theta_x$ $F_y = F \cos \theta_y$ $F_z = F \cos \theta_z$ $\vec{F} = F_x \vec{i} + F_y \vec{j} + F_z \vec{k}$ $= F\left(\cos\theta_{x}\vec{i} + \cos\theta_{y}\vec{j} + \cos\theta_{z}\vec{k}\right)$ $=F\vec{\lambda}$

$$\vec{\lambda} = \cos\theta_x \vec{i} + \cos\theta_y \vec{j} + \cos\theta_z \vec{k}$$

• $\vec{\lambda}$ is a unit vector along the line of action of \vec{F} and $\cos\theta_x, \cos\theta_y$, and $\cos\theta_z$ are the direction cosines for \vec{F} Kaustubh Dasgupta 27

Rectangular Components in Space

Direction of the force is defined by the location of two points:

 $M(x_1, y_1, z_1)$ and $N(x_2, y_2, z_2)$

