CE 601 NUMERICAL METHODS

TUTORIAL – 6

Date: 13-September-2012

The due date of responses to the tutorial questions is atleast by 9:00 am on 24-September-2012 (Monday). You can use computational programs like Matlab, Mathematica, Fortran, C, C++, etc. or any other convenient programming language (maybe even MS-Excel) to evaluate operations like additions, multiplications, matrix operations, etc.

- 1. For the polynomial $P_3(x) = x^3 9x^2 + 26x + 24$, a) calculate $P_3(2.2)$ using nested multiplication, b) obtain deflated polynomial $Q_2(x)$ using synthetic division by factoring out (x-2.5) from $P_3(x)$. [10 marks]
- 2. Use the method of direct-fit polynomial for the following data set to approximate the function between time t and distance x.

Time, $t(s)$	1.0	2.0	3.0	4.0	[10 marks]
Distance, x (m)	4.5	23.0	80.5	213.0	

3. Use Lagrange's third degree polynomial approximation for the given data set and interpolate the function value at x = 1.115 using four decimal digit precision.

x	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	[10 marks]
f(x)	5.1600	3.6933	3.1400	3.0000	3.1067	3.3886	3.8100	4.3511	

4. The following table gives the viscosity (in milli-Pascal-seconds) of sulphuric acid as a function of concentration (in grams per grams). Form the divided difference table and develop a quadratic polynomial approximation for the data. Interpolate the function to evaluate the viscosity at 0.52 concentration of sulphuric acid.

Concentration	0.0	0.20	0.40	0.60	0.80	1.00	[10 marks]
Viscosity	0.89	1.40	2.51	5.37	17.4	24.2	

5. Use Newton's forward difference method to obtain a third degree polynomial approximation to the given data set and interpolate the temperature at 6.3 MPa pressure:

Pressure (MPa)	4.0	5.0	6.0	7.0	8.0	9.0	[10 marks]
<i>Temperature</i> (⁰ C)	250.40	263.99	275.64	285.88	295.06	303.40	

6. The experimental data on partial pressure of water vapor p_A (in atm) with respect to the distance y (mm) from the surface of a pan of water is given below. Estimate a) the partial pressure at y = 1.5 mm and b) the distance y, when the partial pressure $p_A = 0.026$.

<i>y</i> (mm)	0.0	1.0	2.0	3.0	4.0	5.0	[10 marks]
p_A (atm)	0.100	0.065	0.042	0.029	0.022	0.020	

Marks – 60