CE 601 NUMERICAL METHODS

TUTORIAL - 6

Marks - 60
Date: 13-September-2012

The due date of responses to the tutorial questions is atleast by 9:00 am on 24-September-2012 (Monday). You can use computational programs like Matlab, Mathematica, Fortran, C, C++, etc. or any other convenient programming language (maybe even MS-Excel) to evaluate operations like additions, multiplications, matrix operations, etc.

1. For the polynomial $P_{3}(x)=x^{3}-9 x^{2}+26 x+24$, a) calculate $P_{3}(2.2)$ using nested multiplication, b) obtain deflated polynomial $Q_{2}(x)$ using synthetic division by factoring out $(x-2.5)$ from $P_{3}(x)$.
[10 marks]
2. Use the method of direct-fit polynomial for the following data set to approximate the function between time t and distance x.

Time, $t(\mathrm{~s})$	1.0	2.0	3.0	4.0
Distance, $x(\mathrm{~m})$	4.5	23.0	80.5	213.0

3. Use Lagrange's third degree polynomial approximation for the given data set and interpolate the function value at $x=1.115$ using four decimal digit precision.

x	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
$f(x)$	5.1600	3.6933	3.1400	3.0000	3.1067	3.3886	3.8100	4.3511

4. The following table gives the viscosity (in milli-Pascal-seconds) of sulphuric acid as a function of concentration (in grams per grams). Form the divided difference table and develop a quadratic polynomial approximation for the data. Interpolate the function to evaluate the viscosity at 0.52 concentration of sulphuric acid.

Concentration	0.0	0.20	0.40	0.60	0.80	1.00
Viscosity	0.89	1.40	2.51	5.37	17.4	24.2

[10 marks]
5. Use Newton's forward difference method to obtain a third degree polynomial approximation to the given data set and interpolate the temperature at 6.3 MPa pressure:

Pressure (MPa)	4.0	5.0	6.0	7.0	8.0	9.0
Temperature (${ }^{0} \mathrm{C}$)	250.40	263.99	275.64	285.88	295.06	303.40

6. The experimental data on partial pressure of water vapor p_{A} (in atm) with respect to the distance $y(\mathrm{~mm})$ from the surface of a pan of water is given below. Estimate a) the partial pressure at $y=1.5 \mathrm{~mm}$ and b) the distance y, when the partial pressure $p_{A}=$ 0.026 .

$y(\mathrm{~mm})$	0.0	1.0	2.0	3.0	4.0	5.0
$p_{A}(\mathrm{~atm})$	0.100	0.065	0.042	0.029	0.022	0.020

[10 marks]

