CE 601: Numerical Methods
Lecture 3

Course Coordinator:
Dr. Suresh A. Kartha,
Associate Professor,
Department of Civil Engineering,
IIT Guwahati.
System of Linear Algebraic Equations

Q. What are the ways to solve the system of linear equations? What are the types of solutions expected from a linear system?

E.g. consider a linear system:

\[
\begin{align*}
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
&=
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\end{align*}
\]
• The above system represents two straight lines. Therefore we can have following types of solutions.

- Unique solution: One point where the lines intersect.
- No solution: Lines are parallel.
- Infinite solutions: Lines are the same line.
- Homogeneous: Solution is zero, trivial case.
• Q. How do you solve such system of linear equations?
• There are two approaches:
 o Direct elimination methods
 o Iterative methods
• **The Direct Elimination:**

• As the name suggests the methods are having procedures of algebraic elimination of the contents in the coefficient matrix that lead to solution.

 o Gauss elimination

 o Gauss-Jordan

 o Matrix inverse

 o LU factorization etc.
• In iterative methods, initially a solution is assumed and through iterations the actual solution is approached asymptotically.
 o Jacobi iteration
 o Gauss-Seidel iteration
 o Successive over relaxation
• **Matrix Properties:**
• We have seen earlier the system of linear equations can be represented by matrix methods.
• Q. What is a matrix?
• It is an array of elements that are arranged in orderly rows and columns.

\[
[A] = \begin{bmatrix}
 a_{ij}
\end{bmatrix}_{n \times m}
= \begin{pmatrix}
 a_{11} & \cdots & a_{1m} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nm}
\end{pmatrix}
\]

• Vectors: Column vector \(x = x_i = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \)

Row vector \(y = [y_j] = y_1 \ y_2 \ \cdots \ y_m \)
• Unit vector -> The vector whose magnitude is 1.

\[\hat{i} = i = \begin{bmatrix} i_1 \\ i_2 \\ \vdots \\ i_n \end{bmatrix} \quad \text{and} \quad \sqrt{i_1^2 + i_2^2 + \ldots + i_n^2} = 1 \]

• You know what is meant by
 o Square matrix
 o Diagonal matrix
 o Identity matrix
 o Triangular matrix: 1) Upper and 2) Lower
• Also recall that: Matrix addition and Matrix multiplication.

• As a reading exercise please find the properties of matrix: 1. Associative, 2. Commutative and 3. Distributive.

• Square matrices -> properties
• You have if \([A]\) is a \(n \times n\) matrix, then \([A][A]^{-1} = I\)
 or, \([A]^{-1}[A] = I\)
 if there are two matrices \([A]\) and \([B]\) such that \([A][B] = I\) then \([A] = [I][B]^{-1}\)
• **Matrix Factorization**
• A matrix can be represented as product of two other matrices \([A] = [B][C]\)
• For a system of linear algebraic equations

\[A \ x = b \]

\[\sum_{j=1}^{n} a_{i,j} x_i = b_i; \quad i = 1, 2, 3, \ldots, n. \]

• We can do three row operations on such a linear system that will not alter the solution
 o Scaling
 o Pivoting
 o Elimination

• These row operations are extensively used in eliminations methods.
• **Direct Elimination Method**

• To perform elimination methods to find the solution of linear algebraic system we need to do row operations.

\[
\begin{pmatrix}
\begin{array}{ccc}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
\end{array}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} =
\begin{pmatrix}
 b_1 \\
 \vdots \\
 b_n
\end{pmatrix}
\]

i.e., \(A \ x = b \)
• Scaling: Any row can be multiplied by a constant. This is not going to change the solution.

• Pivoting: We can interchange the order of rows as per our convenience.

• Elimination: We can replace any row (i.e. a equation) by a weighted linear combination of that row with another row. This may yield some zeroes in that row. This is elimination.

• The row operation are not going to change the solutions.
• Q. So why do we require to do row operations?
• To prevent division by zero.
• To avoid round-off.
• To implement systematic elimination.
• Consider the following linear system example:

\[
\begin{pmatrix}
80 & -20 & -20 \\
-20 & 40 & -20 \\
-20 & -20 & 130
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
20 \\
20 \\
20
\end{pmatrix}
\]
• How do you use to solve such a system:

\[
\begin{bmatrix}
80 & -20 & -20 & 20 \\
-20 & 40 & -20 & 20 \\
-20 & -20 & 130 & 20
\end{bmatrix}
\]

\[
R_2 = R_1 + 4Q_{21}
\]

\[
R_3 = R_1 + 4Q_{31}
\]

\[
\begin{bmatrix}
80 & -20 & -20 & 20 \\
0 & 140 & -100 & 100 \\
0 & -100 & 500 & 100
\end{bmatrix}
\rightarrow
\begin{bmatrix}
80 & -20 & -20 & 20 \\
0 & 140 & -100 & 100 \\
0 & 0 & 3000 & 1200
\end{bmatrix}
\]

Now \[3000 \times 3 = 1200\]

\[\therefore x_2 = 0.40\]
• Back substituting,

 \[140x_2 - 100x_3 = 100\]

 \[\Rightarrow x_2 = 1.0\]

 \[80x_1 - 20 \times 1.0 - 20 \times 0.40 = 20\]

 \[\Rightarrow x_1 = 0.60\]

 \[\Rightarrow \text{this is a simple elimination method.}\]

 \[\Rightarrow \text{In this process you were actually performing some row operations. You were not knowing them in school days.}\]
• Q. Why do you require scaling?
• As seen in example, we were able to multiply some rows with scalar values. This helped in subsequent elimination
• Q. Why do you require pivoting?
• In such linear systems the elements in major diagonal of the matrix is given a_{ii} where $i = 1, 2, 3, ..., n$.
• If any $a_{ii} = 0$, then you will face difficulty in the above simple elimination method.
• To avoid that we can do
 o Interchanging of rows (equations)
 o Interchanging of columns (variables)

• This is called pivoting.

• If both rows and columns interchanged, it’s full pivoting else partial pivoting.

• Advantage:
 o We can avoid zero point elements
 o Reduce round-off errors
• Consider the system

\[
\begin{pmatrix}
0 & 2 & 1 \\
4 & 1 & -1 \\
-2 & 3 & -3
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} =
\begin{pmatrix}
5 \\
-3 \\
5
\end{pmatrix}
\]

• We can \(a_{11} = 0 \), the largest element in first column is in row 2. Interchange row 1 and row 2

\[
\begin{pmatrix}
4 & 1 & -1: -3 \\
0 & 2 & 1 : 5 \\
-2 & 3 & -3 : 5
\end{pmatrix}
\]

\(R_3 = R_1 + 2R_3 \)

\[
\Rightarrow
\begin{pmatrix}
4 & 1 & -1: -3 \\
0 & 2 & 1 : 5 \\
0 & 7 & -7 : 7
\end{pmatrix}
\]

• By scaling we can reduce round-off errors.
Gauss Elimination Method

• To solve a linear system \([A]{x}={b}\), we have to do row operations:

 o Scaling
 o Pivoting
 o Elimination

• While discussing about scaling we saw the example problem.

\[
\begin{pmatrix}
3 & 2 & 105 \\
2 & -3 & 103 \\
1 & 1 & 3
\end{pmatrix}
\begin{pmatrix}
{x_1} \\
{x_2} \\
{x_3}
\end{pmatrix} =
\begin{pmatrix}
104 \\
98 \\
3
\end{pmatrix}
\]
• If the computer program has restriction of three significant digits, then we saw that if we do direct elimination, we are getting erroneous results $x_1 = -0.844$, $x_2 = 0.924$, and $x_3 = 0.997$.

• The errors can be reduced by first doing scaling on the equation and determine its position in the system (i.e. pivoting).

• In direct elimination, we wanted the elements below pivot element as zero
 ✓ If we scale the numbers, we can pivot the appropriate equation.
✓ e.g. for $a_{11} = 3$, we want $a_{21} = a_{31} = 0$.
✓ Check the relative values.
 First column values $3 \ 2 \ 1^T$
 w.r.t. the largest values in their equation.

$$\begin{align*}
&\begin{bmatrix}
3/105 \\
2/103 \\
1/3
\end{bmatrix} = \\
&\begin{bmatrix}
0.0288 \\
0.0194 \\
0.333
\end{bmatrix}
\end{align*}$$

✓ This shows that the last row is having the largest scaled values. Therefore it will be appropriate if we pivot this element.
• Therefore pivoting is done by interchanging Row 1 and Row 3.

i.e.,

\[
\begin{pmatrix}
1 & 1 & 3 : 3 \\
2 & -3 & 103 : 98 \\
3 & 2 & 105 : 104
\end{pmatrix}
\]

• Now do row operations – elimination

\[
R_2 = R_2 - \left(\frac{a_{21}}{a_{11}}\right)R_1 = R_2 - 2R_1
\]
\[
R_3 = R_3 - \left(\frac{a_{31}}{a_{11}}\right)R_1 = R_3 - 3R_1
\]

\[
\begin{pmatrix}
1 & 1 & 3 : 3 \\
0 & -5 & 97 : 92 \\
0 & -1 & 96 : 95
\end{pmatrix}
\]
• Before doing second elimination, i.e., making $a_{32} = 0$, another round of scaling is done to determine pivoting.

\[
\begin{pmatrix} 1 & 1 & 3 \div 3 \\ 0 & -5 & 97 \div 92 \\ 0 & -1 & 96 \div 95 \end{pmatrix} \rightarrow R_3 = R_3 - (a_{32} / a_{22})R_2 = R_3 - 0.2R_2
\]

\[
\begin{pmatrix} 1 & 1 & 3 \div 3 \\ 0 & -5 & 97 \div 92 \\ 0 & 0 & 76.6 \div 76.6 \end{pmatrix}
\]

\[
\Rightarrow x_3 = 1.0, \ x_2 = -1.0, \ x_3 = 1.0
\]
• Gauss Elimination Method in a Nutshell

• You know that the method is used to solve a linear system

\[A \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} b \end{bmatrix} \]

\(\begin{bmatrix} n \times n & n \times 1 & n \times 1 \end{bmatrix} \)

• Using systematic elimination the above system is converted to

\[U \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} y \end{bmatrix} \]

\(\begin{bmatrix} n \times n & n \times 1 & n \times 1 \end{bmatrix} \)

• \([U]\) -> upper triangular matrix

\(-> \) using backsubstitution the solutions \(x_1, x_2, x_3 \) are found.
• **The Algorithm**

\[
\begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
\vdots \\
b_n
\end{pmatrix}
\]

• **Step 1**

 o reduce the elements of first column to zero, except the pivot element
 o The pivot element is \(a_{11} \). If \(a_{11} = 0 \),

 do pivoting \(a_{r1} = \max_{2 \leq i \leq n} |a_{i1}| \)
 o Identify multiplication factor for each row.
• The multiplying factors are

\[l_{21} = \frac{a_{21}}{a_{11}}, l_{31} = \frac{a_{31}}{a_{11}}, \ldots, l_{i1} = \frac{a_{i1}}{a_{11}}, \ldots l_{n1} = \frac{a_{n1}}{a_{11}} \]

• The first column of matrix \(A \) is except \(a_{11} \), all other quantities have to be zero.

• Now we need to multiply the first row by the multiplying factor \((l_{i1}) \) and deduct it from the corresponding row \((i) \).

 o Due to this changes occur in vector\(\{b\} \) also.
For our convenience the step number is given or bracketed superscript and we can decide this calculation as:

\[a_{ij}^{(1)} = a_{ij} - l_{i1}a_{1j} \]

\[b_i^{(1)} = b_i - l_{i1}b_1 \quad ;i = 2, 3, 4, \ldots, n \text{ and } j = 1, 2, 3, 4, \ldots, n \]

After the first steps you have:

\[
\begin{pmatrix}
11 & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\
0 & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\
0 & a_{32} & \cdots & a_{3j} & \cdots & a_{3n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_n
\end{pmatrix} =
\begin{pmatrix}
b_1 \\
b_2^{(1)} \\
b_3^{(1)} \\
\vdots \\
b_n^{(1)}
\end{pmatrix}
\]
• Step 2
 o Adjust similar procedure as in step 1.
 o However now the pivot element is $a_{22}^{(1)}$.
 o We need to eliminate elements in the second column below $a_{22}^{(1)}$.
 o If $a_{22}^{(1)} = 0$, then do pivoting $a_{r2} = \max_{3 \leq i \leq n} |a_{i2}^{(1)}|$
 o Compute multiplying factors for each row below row 2.
 i.e., $l_{32} = a_{32}^{(1)}/a_{22}^{(1)}$, $l_{42} = a_{42}^{(1)}/a_{22}^{(1)}$, ... $l_{n2} = a_{n2}^{(1)}/a_{22}^{(1)}$
 i.e., in general $l_{i2} = a_{i2}^{(1)}/a_{22}^{(1)}$; $i = 3, 4, 5, ..., n$
○ Eliminate all elements below $a_{22}^{(1)}$ as zeroes.

For that do

\[
\begin{align*}
ad^{(2)}_{ij} &= a^{(1)}_{ij} - l_{i2}a_{2j}^{(1)} \\
bd^{(2)} &= b^{(1)}_i - l_{i2}b_{2j}^{(1)}
\end{align*}
\]

\(i = 3, 4, 5, \ldots, n\) and \(j = 2, 3, 4, 5, \ldots, n\)