NRCS METHOD TO DETERMINE SURFACE RUNOFF:

In the last class, we introduced to you the NRCS method.
Recalling the terms,
$\mathrm{P}=$ the depth of rainfall.
$P_{e}=$ Depth of excess rainfall
$F_{a}=$ Depth of water retained in watershed.
$I_{a}=$ Depth of water for initial obstruction
$S=$ potential maximum retention for the watershed,
Then $\mathrm{P}-I_{a}=$ potential runoff possible
The SCS method suggest that the ratio of two actuals (i.e. F_{a} and P_{e}) to the two potentials (i.e. S and $\mathrm{P}-I_{a}$) are equal

$$
\begin{aligned}
& \therefore \frac{F_{a}}{P_{e}}=\frac{S}{P-I_{a}} \\
& \text { or } \frac{F_{a}}{S}=\frac{P_{e}}{P-I_{a}} \\
& P=P_{e}+I_{a}+F_{a}
\end{aligned}
$$

Rearranging and solving, we get

$$
P_{e}=\frac{\left(P-I_{a}\right)^{2}}{P-I_{a}+s}
$$

This is the basic equation for computing the depth of excess rainfall or direct runoff from a storm using NRCS method

- It is seen that through many observations, empirically

$$
I_{a}=0.2 S
$$

$$
\therefore P_{e}=\frac{(P-0.2 S)^{2}}{P+0.8 S}
$$

Further empirical studies suggest that the potential maximum retention S in inches is

$$
S=\frac{1000}{C N}-10
$$

Where CN is runoff curve number, which is a function of land use, antecedent soil moisture etc.

- Curve number, CN is dimensionless $0 \leq C N \leq 100$
- For impervious surface and/ or water surface, $C N=100$
- For natural surface $C N<100$

ANTECEDENT MOISTURE CONDITION

The curve number obtained through various experiment are plotted for P_{e} (in inches) verses cumulative rainfall P (in inches)

Figure: Solution of NRCS Runoff equation (provided by SCS)
(The snapshot image copied from the course text book Chow et al. (1988))

- This curve number is for antecedent moisture condition II (AMC II)
- For dry condition, you can use AMC I and for wet conditions you can use AMC III

$$
\begin{aligned}
& C N(I)=\frac{4.2 C N(I I)}{10-0.058 C N(I I)} \\
& C N(I I I)=\frac{23 C N(I I)}{10+0.13 C N(I I)}
\end{aligned}
$$

- So in graphs and tables you are actually provided with curve number for AMC II.
- Empirically, it is observed that the initial abstraction $I_{a}=0.2 S$ for many small watersheds in USA.

Table: Runoff curve numbers for selected agricultural, suburban, and urban land uses (Antecedent Moisture Condition II and $I_{a}=0.2 S$)

Land Use Description	Hydrologic Soll Groep			
	A	B	c	D
Cultivered land1: without conservation treatment wih coeservatioe treatment	$\begin{aligned} & 72 \\ & 62 \end{aligned}$	$\begin{aligned} & 81 \\ & 71 \end{aligned}$	$\begin{aligned} & 88 \\ & 78 \end{aligned}$	91 81
Pisture or range land: poor coedition good condition	$\begin{aligned} & 68 \\ & 39 \end{aligned}$	$\begin{aligned} & 79 \\ & 61 \end{aligned}$	$\begin{aligned} & 86 \\ & 74 \end{aligned}$	89 80
Meadow: grod condition	30	58	71	78
Wood or forest land: thin stand, poor cover, so mulch good cover ${ }^{2}$	$\begin{aligned} & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & 66 \\ & 55 \end{aligned}$	$\begin{aligned} & 77 \\ & 70 \end{aligned}$	83 77
Oper Spaces, lawss, parks, golf courses, cemeteries, etc. good coodition: grass cover on 75% or moee of the area fair condition: grass cover on 50% to 75% of the asea	$\begin{aligned} & 39 \\ & 49 \end{aligned}$	$\begin{aligned} & 61 \\ & 69 \end{aligned}$	$\begin{aligned} & 74 \\ & 79 \end{aligned}$	80 84
Comeserial ad business areas (85% impervious)	89	92	94	95
Industrial districts (72% impervious)	81	88	91	93
Residential3; Average lof lixe Average \% impervious ${ }^{4}$ $1 / 8$ acre or less 65 $1 / 4$ acre 38 $1 / 3$ acre 30 $1 / 2$ acre 25 1 acne 20	77 61 57 54 51	85 75 72 70 68	90 83 81 80 79	92 87 86 85 84
Paved parking lots, roofi, driveways, ete, 5	98	98	98	98
Stroets and roads: paved with cuets and storm sewers5 gravel dirt	98 76 72	$\begin{aligned} & 98 \\ & 85 \\ & 82 \end{aligned}$	58 89 87	98 91 89

(The table is taken as snapshot from the course text book Chow et al. (1988))

For a watershed if the areas are divided based on curve numbers, a weighted curve number can be evaluated.

Weighted curve number,

$$
C N=\frac{1}{100}\left[L_{1} * C N_{1}+L_{2} * C N_{2}+\cdots\right]
$$

$L_{1}, L_{2}, L_{3}, \ldots$ percentage of land use

- The soils are classified by SCS as:
- Group A that may consist of Deep sand, Deep loess, aggregated silts, etc.
- Group B that consist of Shallow loess, sandy loam, etc.
- Group C that consist of clay loams, shallow sandy loam, soils low in organic content, etc.
- Group D consist of soils that swell significantly, heavy plastic clays, etc.

EXAMPLE:

Determine weighted curve number for a watershed with 40% residential, 25% open space(good condition), 20% commercial and business(i.e. 85% impervious) 15% industrial (i.e. 72% impervious) the soil group are C,D,C and D.

From the runoff curve number table provided in the text book:
For residential area with soil group C and $1 / 4$ is $\mathrm{CN}=83$
For open space, for soil D, the $\mathrm{CN}=80$
For commercial place soil C, the $\mathrm{CN}=94$
For industrial location in soil D , the $\mathrm{CN}=93$
Therefore weighted curve number,

$$
\begin{aligned}
\mathrm{CN} & =0.40 \times 83+0.25 \times 80+0.20 \times 94+0.15 \times 93 \\
& =86
\end{aligned}
$$

To get runoff volume for a 6 inch rainfall:

$$
\begin{aligned}
P_{e} & =\frac{(P-0.2 S)^{2}}{P+0.8 S} \\
S & =\frac{1000}{86}-10 \\
& =1.63 \text { inches } \\
P_{e}= & \frac{(6-0.2 * 1.63)^{2}}{6+0.8 * 1.63} \\
& =4.41 \text { inch }
\end{aligned}
$$

To evaluate Abstractions using Infiltration equations

- Recall, we had studied Green-Ampt equation; Horton's equation; etc. to find the rate of infiltration.
- Using these equations also, we can determine the abstractions (assuming that other abstractions like retention storage; trapping; etc are negligible)
- If we use, Green-Ampt equation, then we need to determine the time required for ponding.
- You have to estimate, what will be the time required for ponding $\left(t_{p}\right)$?
- As you are aware, till ponding occurs, the infiltration rate and rainfall intensity will be same.
- Substitute these facts in non-linear cumulative infiltration equation of GreenAmpt and subsequently determine the ponding time.
- Once, the infiltration quantity is identified, the surface runoff can be estimated by deducting the abstractions from the total rainfall.

