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Lecture 16 

(Refer the text book “CONTINUUM MECHANICS” by GEORGE E. MASE, Schaum’s Outlines) 

 

Kinematics of Fluids 

 Last class, we started discussing about the kinematics of fluids.  

 Recall the Lagrangian and Eulerian way of analyzing fluid motion. 

 As the continuum encompasses of several particles, the Lagrangian analysis deals with 

each particles. 

 

 To quickly describe certain quantities, consider a continuum in motion.  

Initially at time t=to, the slope of the continuum is as shown and is referred with the 

orthogonal coordinates OX1X2X3. 

 
Fig. 1: Representation of the statement above 

(Source: Schaum’s outline of theory and problems of continuum mechanics by George Mase) 

 

 

At a mathematical point P0, a particle of the continuum is associated at time t=t0. 

The position vector of this particle is 1 1 2 2 3 3
ˆ ˆ ˆX X I X I X I     

The above position vector is called material coordinate. 

 

 As the continuum is moving, at a later time t=t, the position of the same particle might 

have changed.  

 Even the continuum also deforms shifts its position. 



Let the position at time ‘t’ be given as in the figure 
1 1 2 2 3 3
ˆ ˆ ˆx x e x e x e    

This new position description is spatial coordinates. 

 

 The same particle that was present at P0 at time t0 is now displaced and the displacement 

vector is given as s  . 

 

 You can also see that the coordinates also shifted by a vector b  . 

 From vector algebra: 

s b x X     

 

 If the coordinates OX1X2X3 and ox1x2x3    are merged, you get 0b    

Hence, s x X   

(This means, x  is the position vector of the particle at time ‘t’ , whose initial position 

is X  ). 

In index notation: k k ks x X   

 

 When the continuum is in motion and deformation, the particles position may be 

expressed in the form: 

xi = xi(X1,X2,X3,t) or ( , t)x x X   

You know, xi  present location of the particle that occupied the point (X1, X2, X3) at 

time t=to. 

(This is mapping the initial configuration with the current configuration). Such type of 

motion description is Lagrangian formulation. 

 

 The dependent quantity is xi and independent quantity is Xi.  

 

 If the motion or deformation is represented by the form: 

Xi = Xi(x1,x2,x3,t) or ( , )X X x t   

where independent variable is xi and t. 

This is Eulerian formulation.  

This description provides you the tracing of original position of the particle that now 

occupies the spatial coordinate or location (x1, x2, x3). 

 

 The Lagrangian and Eulerian mappings are therefore inverse functions. For the inverse 

functions to exist, the necessary requirement is that the Jacobian must exist. 

Jacobian:  
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If this Jacobian (determinant) is zero, then unique inverse does not exist. 

 From xi = xi(X1,X2,X3,t),  the Lagrangian form, you can form material deformation 

gradient by partially differentiating it with X   

i.e., 
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  Note: This is not a determinant. It is a tensor 

       

 From Xi = Xi(x1,x2,x3,t)  The Eulerian form, you get spatial deformation gradient 
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 You can also form Material Displacement Gradient. 
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(Recall si=xi-Xi) 

As obvious, the material displacement gradient is also a tensor. 

 

 In similar lines, spatial displacement gradient tensor. can also be formulated as follows: 
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The Deformation Tensors 

To know about deformation, the procedure is to see how much change is there between positions 

of two particles from their initial configuration (at t=t0) and later configuration (at t=t). 

 Consider the figure below where the material coordinates OX1X2X3 and spatial 

coordinates ox1x2x3    are merged.  

 
Fig. 2: The deformation tensor representation 

(Source: Schaum’s outline of theory and problems of continuum mechanics by George Mase) 

 

 There are two neighboring particles that occupy positions P0 and Q0 initially at time t=t0. 

 The differential elemental element length between two particles is dX   as per vector 

algebra. 

 

 After a certain time, at the instant t=t, the continuum has moved as well as deformed. The 

positions of those particles are given in spatial coordinates x  and x dx   

 The square of the differential element length between P0 and Q0 is:  
2( ) .dX dX dX   

 

In index notation, 2( ) .i idX dX dX  

 

From Xi=Xi(x1,x2,x3,t), you have seen: 
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Where Cij  Cauchy’s deformation tensor. 

 

 In the deformed configurations, where the particles are at positions P and Q,  
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Also from Lagrangian expression, xi = xi(X1,X2,X3,t) 
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Where Gij  Green’s deformation tensor. 

 

 The measure of deformation is evaluated based on the difference (dx)2 – (dX)2 for the 

two neighboring particles. 
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Here Lij  Lagrangian or Green’s finite strain tensor 
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 In a similar way, you can form Eulerian strain tensor 

1

2

k k
ij ij

i j

X X
E

x x

  

  
   

 

 

 With this brief background information on: 

1. Material coordinates OX1X2X3 

2. Spatial coordinates ox1x2x3   

3. Material derivative gradient  i
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ij

j j

s x

X X


 
  

 
 

6. Spatial displacement gradient i i
ij

j j

s X

x x


 
  

 
 

7. Cauchy’s deformation tensor i i

j k

X X

x x

 


 
 

8. Green’s deformation tensor k k
i i

i j

x x
dx dx

X X

 
 

 
 

9. Lagrangian’s finite strain tensor  , etc. 

 

 For fluids, we can describe properties in Eulerian or Lagrangian way. 

i.e., For example, the density in the material description will be:  

ρ = ρ(X1,X2,X3,t)  i.e. ρ = ρ(Xi , t)   

This will be the density of the fluid particle at the position (X1,X2,X3). 

 In Eulerian form : ρ= ρ(Xi(x1,x2,x3,t) , t) = ρ(Xi(x,t),t) = ρ*(xi,t) 

 

 

 

 

 

 

 

 

 

 

 


