Control Volume Approach & Reynolds Transport Theorem

Recall, in the last class we were discussing about a control volume.

- We took the duster, and in solid mechanics, we called this duster as a system.
- You were able to directly apply the principles of conservation of mass, linear momentum, etc. directly on the system to interpret the mechanics.
- For the duster, as its mass is constant and the particles inside are same, the above conservation principle were easy to apply.

- However, in fluid mechanics, it is difficult to analyze a system (or volume) from fluid by considering or tracking the same particle.
- Therefore, in fluids we assumed a definite volume in space that forms the required environment and we can apply mechanics principles on the volume. Such volumes are called control volumes.

- To analyze control volume, we need to convert the mechanics principles that were applicable to a system to the form of control volume.

- If you take a control volume of a liquid, where it is flowing, you can visualize that a fluid system that was initially occupying the control volume will be replaced by another fluid system at the next instant (i.e., the fluid particles are changing).
- To convert the systems analysis conservation concept to a control volume conservation concept, we need to appropriately relate, conceptually as well as mathematically, both of them. **How??**

- The conversion from system analysis to control volume analysis is represented by Reynolds Transport Theorem.

<table>
<thead>
<tr>
<th>System</th>
<th>Control Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Some fluid property of fluid described in space.</td>
<td>• Volume occupying a space and have a shape.</td>
</tr>
<tr>
<td>• Separated from its surroundings by boundaries.</td>
<td>• Volume consists of surfaces called control surfaces.</td>
</tr>
<tr>
<td>• The particles inside the system will be same throughout.</td>
<td>• The fluid particles inside will continuously change.</td>
</tr>
</tbody>
</table>
How will you do Control Volume Analysis?

Volume and Mass Flow Rate

Considering an arbitrary volume of liquid in space: It is separated from its surroundings by control surfaces.

- Take a small elemental area ΔA on the control surface of the volume. The outward normal of the elemental area is \hat{n} as shown in Fig. 1

- Let the velocity vector of fluid passing through the elemental area be \vec{v}.
- \hat{n} and \vec{v} may not be collinear.
- The volume of fluid that will sweep through the elemental area ΔA in an elemental time Δt will be:

$$\Delta V = \vec{v} \cdot \Delta t \cdot \Delta A \cos \theta$$

$$\Rightarrow \Delta V = (\vec{v} \cdot \hat{n}) \Delta A \Delta t$$

(The component of velocity vector in the direction of \hat{n} or the component of area vector in the direction of \vec{v})
\[\frac{\Delta V}{\Delta t} = (\vec{v} \cdot \hat{n}) \Delta A \]

where, \(\frac{\Delta V}{\Delta t} \) = volume flow rate through the elemental area \(\Delta A \). Also, you know, on integrating \(\Delta A \) throughout, you will get the total surface area of the control volume.

Therefore, to get the total volume rate of flow \(Q \) through \(S \), we will first limit the elemental area \(\Delta A \)

\[\lim_{\Delta t \to 0, \Delta A \to 0} \frac{\Delta V}{\Delta t} = \frac{dV}{dt} \]

\[Q = \int_S \frac{dV}{dt} = \int_S (\vec{v} \cdot \hat{n}) dA \]

where , \(Q \) = total volume flow rate.

If the fluid concerned in the control volume has a density \(\rho \), then Mass flow rate

\[m = \int_S \rho (\vec{v} \cdot \hat{n}) dA \]

Extensive and Intensive Property

For the control volume of the fluid, let \(B \) be any property of the fluid that is related to mass. (e.g., Mass, Momentum, Energy, etc.).

This \(B \) is called the extensive property.

Similarly, we can define another property

\[\beta = \frac{dB}{dm} \] (i.e., amount of \(B \) per unit mass in any element of the fluid). where \(\beta \) is the intensive property.
To develop Reynolds Transport Theorem

Fig. 2: Nomenclature to derive the Reynolds Transport Theorem
(Source: Dynamics of Fluids in Porous Media by Jacob Bear)

- Let us assume a control volume of a fluid (shown in solid black colour) at an instant “t”.
- As the control volume was chosen at the instant “t”, the fluid particles inside will be unique.
- This is as good as a system (e.g. the duster).
- However, as the fluid is moving, at another instant t+Δt, let the fluid particles that formed the system at time “t” be shifted to a new position and it occupies another location (shown in dotted lines).
- Therefore, at t+Δt, the fluid particles in the control volume is different from that at time “t”.
- At instant “t”, the extensive property:
 \[B_{CV} = \int_{CV} \beta \rho dU \]
 Where \(\rho \) is the density of the fluid.
The extensive property in the control volume changes due to the following reasons:

1. Time rate of change of B within the control volume

\[
\frac{d(B_{CV})}{dt} = \frac{d}{dt} \int_{CV} \beta \rho dU
\]

2. The outflow of the property B through the surfaces of the control volume

\[
\int_{CS} \beta \rho (\mathbf{\tilde{v}} \cdot \mathbf{n}) dA_{out}
\]

where \(\mathbf{\tilde{v}} \cdot \mathbf{n} \) will be positive.

3. The inflow of the property B through the surfaces of the control volume

\[
\int_{CS} \beta \rho (\mathbf{\tilde{v}} \cdot \mathbf{n}) dA_{in}
\]

where \(\mathbf{\tilde{v}} \cdot \mathbf{n} \) will be negative.

- The inflow and outflow can be marked as net outflow.

- Extensive property in the control volume changes can be summed as:

\[
= \frac{d}{dt} \left[\int_{CV} \beta \rho dU \right] + \int_{CS} \beta \rho (\mathbf{\tilde{v}} \cdot \mathbf{n}) dA
\]

Note that this representation is Eulerian.

However, as said earlier, the conservation principles can only be directly applied to the system.

For that, let us take \(\Delta t \to 0 \).

Then the control volume and system volume will be the same.

\[
\frac{dB}{dt}_{\text{system}} = \left. \frac{dB}{dt} \right|_{\text{control volume}}
\]

\[
= \frac{d}{dt} \left[\int_{CV} \beta \rho dU \right] + \int_{CS} \beta \rho (\mathbf{\tilde{v}} \cdot \mathbf{n}) dA
\]

That is, we can relate the time rate of change of property B stored in the system with respect to that of the control volume. The above equation is Reynolds Transport Theorem.