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Lecture 12

Control Volume Approach & Reynolds Transport Theorem

Recal

>
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I, in the last class we were discussing about a control volume.

We took the duster, and in solid mechanics, we called this duster as a system.

You were able to directly apply the principles of conservation of mass, linear momentum,
etc. directly on the system to interpret the mechanics.

For the duster, as its mass is constant and the particles inside are same, the above
conservation principle were easy to apply.

However, in fluid mechanics, it is difficult to analyze a system (or volume) from fluid by
considering or tracking the same particle.

Therefore, in fluids we assumed a definite volume in space that forms the required
environment and we can apply mechanics principles on the volume. Such volumes are
called control volumes.

To analyze control volume, we need to convert the mechanics principles that were
applicable to a system to the form of control volume.

If you take a control volume of a liquid, where it is flowing, you can visualize that a fluid
system that was initially occupying the control volume will be replaced by another fluid
system at the next instant (i.e., the fluid particles are changing).
To convert the systems analysis conservation concept to a control volume conservation
concept, we need to appropriately relate, conceptually as well as mathematically, both of
them. How??
% The conversion from system analysis to control volume analysis is represented by
Reynolds Transport Theorem.

System Control Volume
e Some fluid property of fluid ¢ Volume occupying a space and have a
described in space. shape.
e Separated from its surroundings ¢ Volume consists of surfaces called
by boundaries. control surfaces.
¢ The particles inside the system o The fluid particles inside will
will be same throughout. continuously change.




How will you do Control Volume Analysis?

Volume and Mass Flow Rate

Considering an arbitrary volume of liquid in space: It is separated from its surroundings by
control surfaces.

Unit normal n

Fig. 1: Elemental area on control surface representation
(Source: Fluid Mechanics by F.M. White)

> Take a small elemental area AA on the control surface of the volume. The outward
normal of the elemental area is i as shown in Fig. 1

%+ Let the velocity vector of fluid passing through the elemental area be v .
A and V. may not be collinear.

¢ The volume of fluid that will sweep through the elemental area AA in an
elemental time At will be :
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AV =V At AA cos

= AV =(V.0 )AA At

(The component of velocity vector in the direction of fi or the component of area
vector in the direction of V)



where, i—‘: = volume flow rate through the elemental area AA. Also, you know, on

integrating AA throughout, you will get the total surface area of the control
volume,

% Therefore, to get the total volume rate of flow Q through S, we will first limit the

elemental area AA
. AV dv
= im —=—
At—0,4A—0 At dt

dv
= Q=|—=|(vV.n)dA
Q=] =]om
where , Q = total volume flow rate.
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¢ If the fuid concerned in the control volume has a density p, then Mass flow
rate

m= [ p(v.A)dA
S

Extensive and Intensive Property

For the control volume of the fluid, let B be any property of the fluid that is related to mass.
(e.g., Mass, Momentum, Energy, etc.).
This B is called the extensive property.

Similarly, we can define another property
B= 3—:1 (i.e., amount of B per unit mass in any element of the fluid).
where B is the intensive property.



To develop Reynolds Transport Theorem
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Fig. 2: Nomenclature to derive the Reynolds Transport Theorem
(Source: Dynamics of Fluids in Porous Media by Jacob Bear)

» Letus assume a control volume of a fluid (shown in solid black colour) at an instant “t”.
» As the control volume was chosen at the instant “t”, the fluid particles inside will be
unique.

» This is as good as a system (e.g. the duster).

> However, as the fluid is moving, at another instant t+At, let the fluid particles that formed
the system at time “t” be shifted to a new position and it occupies another location
(shown in dotted lines).

» Therefore, at t+At, the fluid particles in the control volume is different from that at time
“t”_
» Atinstant “t”, the extensive property:
Bev = _[ BpdU
Ccv

Where p is the density of the fluid.



» The extensive property in the control volume changes due to the following reasons:
1. Time rate of change of B within the control volume

d(By) d
=y [ij BpdU]

2. The outflow of the property B through the surfaces of the control volume

[ Bo(.A)dA,,

where vV.N will be positive.
3. The inflow of the property B through the surfaces of the control volume

[ Bo(.n)dA,
Cs
whereV.A will be negative.

> The inflow and outflow can be marked as net outflow.

» Extensive property in the control volume changes can be summated as:
d A
=] ApdU]+ | fo@.A)dA
dt cv Cs
Note that this representation is Eulerian.

However, as said earlier, the conservation principles can only be directly applied to
the system.
For that, let us take At > 0.

Then the control volume and system volume will be the same.

Bl _dB
dt system dt control volume

dB d .
1 =L ApaVl+ | Bo.R)dA
dt system dt cv Cs

That is, we can relate the time rate of change of property B stored in the system with respect to
that of the control volume. The above equation is Reynolds Transport Theorem.



