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Lecture 12  

 

Control Volume Approach & Reynolds Transport Theorem 

Recall, in the last class we were discussing about a control volume. 

 We took the duster, and in solid mechanics, we called this duster as a system. 

 You were able to directly apply the principles of conservation of mass, linear momentum, 

etc. directly on the system to interpret the mechanics. 

 For the duster, as its mass is constant and the particles inside are same, the above 

conservation principle were easy to apply. 

 

 However, in fluid mechanics, it is difficult to analyze a system (or volume) from fluid by 

considering or tracking the same particle.  

 Therefore, in fluids we assumed a definite volume in space that forms the required 

environment and we can apply mechanics principles on the volume. Such volumes are 

called control volumes.  

 

 To analyze control volume, we need to convert the mechanics principles that were 

applicable to a system to the form of control volume. 

 

 If you take a control volume of a liquid, where it is flowing, you can visualize that a fluid 

system that was initially occupying the control volume will be replaced by another fluid 

system at the next instant (i.e., the fluid particles are changing). 

 To convert the systems analysis conservation concept to a control volume conservation 

concept, we need to appropriately relate, conceptually as well as mathematically, both of 

them.  How?? 

 

 The conversion from system analysis to control volume analysis is represented by 

Reynolds Transport Theorem.  

System Control Volume 

 Some fluid property of fluid 

described in space.  

 Volume occupying a space and have a 

shape.  

 Separated from its surroundings 

by boundaries.  

 Volume consists of surfaces called 

control surfaces. 

 The particles inside the system 

will be same throughout.  

 The fluid particles inside will 

continuously change.  

 



How will you do Control Volume Analysis?  

 

Volume and Mass Flow Rate 

Considering an arbitrary volume of liquid in space:  It is separated from its surroundings by 

control surfaces.  

 
Fig. 1: Elemental area on control surface representation  

(Source: Fluid Mechanics by F.M. White) 

 

 Take a small elemental area ΔA on the control surface of the volume. The outward 

normal of the elemental area is n̂   as shown in Fig. 1 

 

 Let the velocity vector of fluid passing through the elemental area be v . 

 n̂  and v   may not be collinear.  

 The volume of fluid that will sweep through the elemental area ΔA in an 

elemental time Δt will be : 

 

ΔV = v  Δt ΔA cosθ 

 

 ΔV = ( v . n̂  ) ΔA Δt 

(The component of velocity vector in the direction of n̂  or the component of area 

vector in the direction of v ) 

 



 
𝛥𝑉

Δt
  = ( v . n̂ ) ΔA 

where, 
𝛥𝑉

Δt
  = volume flow rate through the elemental area ΔA. Also, you know, on 

integrating ΔA throughout, you will get the total surface area of the control 

volume. 

 

 Therefore, to get the total volume rate of flow Q through S, we will first limit the 

elemental area ΔA 

 lim
𝛥𝑡→0,𝛥𝐴→0

𝛥𝑉

Δt
 = 

𝑑𝑉

𝑑𝑡
 

 ˆ( . )
S S

dV
Q v n dA

dt
     

where , Q = total volume flow rate. 

 

 If the fuid concerned in the control volume has a density ρ, then Mass flow 

rate 

ˆ( . )
S

m v n dA   

 

Extensive and Intensive Property 

 For the control volume of the fluid, let B be any property of the fluid that is related to mass.  

(e.g., Mass, Momentum, Energy, etc.).  

This B is called the extensive property.  

 

Similarly, we can define another property  

β = 
dB

dm
 (i.e., amount of B per unit mass in any element of the fluid). 

where β is the intensive property. 

 

  

 

 

 

 

 

 

 



To develop Reynolds Transport Theorem 

 

 
Fig. 2: Nomenclature to derive the Reynolds Transport Theorem  

(Source: Dynamics of Fluids in Porous Media by Jacob Bear) 

 

 Let us assume a control volume of a fluid (shown in solid black colour) at an instant “t”. 

 As the control volume was chosen at the instant “t”, the fluid particles inside will be 

unique. 

 

 This is as good as a system (e.g. the duster). 

 

 However, as the fluid is moving, at another instant t+Δt, let the fluid particles that formed 

the system at time “t” be shifted to a new position and it occupies another location 

(shown in dotted lines).  

 

 Therefore, at t+Δt, the fluid particles in the control volume is different from that at time 

“t”. 

 At instant “t”, the extensive property: 

CV

CV

B dU    

           Where ρ is the density of the fluid.  

 

 



 The extensive property in the control volume changes due to the following reasons:  

1. Time rate of change of B within the control volume 

( )
[ ]CV

CV

d B d
dU

dt dt
    

2. The outflow of the property B through the surfaces of the control volume 

ˆ( . ) out

CS

v n dA   

where ˆ.v n  will be positive. 

3. The inflow of the property B through the surfaces of the control volume 

ˆ( . ) in

CS

v n dA  

where ˆ.v n  will be negative.  

 

 The inflow and outflow can be marked as net outflow.  

 

 Extensive property in the control volume changes can be summated as: 

 ˆ[ ] (v.n)dA
CV CS

d
dU

dt
      

Note that this representation is Eulerian.  

 

However, as said earlier, the conservation principles can only be directly applied to 

the system.  

For that, let us take Δt  0. 

 

Then the control volume and system volume will be the same. 

 
system control volume

dB dB

dt dt
   

system

ˆ[ ] (v.n)dA
CV CS

dB d
dU

dt dt
     

 

That is, we can relate the time rate of change of property B stored in the system with respect to 

that of the control volume. The above equation is Reynolds Transport Theorem. 

         

 


