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LECTURE — 29

Navier — Stokes Equations

We were discussing the momentum equations in expanding form:
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e You have also seen in index notation, the viscous stress is:
T =2uS; + A4S0,

mm™ij

Where, Sjj is strain rate tensor

U, A is the constants to related viscous stress with strain rates.

e |n expanded form:
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For incompressible liquids,

(Vv )=0

SO, Txx — ZHZ_Z

Again, tyy = ZMZ—; & 17 = 2u‘;—vzv



For the same incompressible fluid,
Tyx = Txy = H [Z—Z*'z—;]
Tox = Txze = M [g—‘:"‘g—:]
Tyz = sz:H[g—‘:’fz_Z]

Therefore, in the expanded form, the set of momentum equations (1) will be for an
incompressible fluid:
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(As, from continuity equation, wtatan" 0)
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Similarly,
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The set of momentum partial differential equation given in (2) is called the famous Navier
Stokes Equation.




For flow of incompressible Newtonian Fluids

= The Navier-Stokes equations are second-order non-linear partial differential equations.
» The independent variables are x,y,z, and t.
» The dependent variables are p, u,v and w and they are unknowns in the domain.

» There are three momentum equations and four unknowns (p,u,v,w). Hence you
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have to use the continuity equation for incompressible flow i.e., i +=+22=0
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as the fourth equation to simultaneously solve for p,u,v, and w.
» The many famous CFD softwares that use Navier-Stokes equations to solve the
fluid flow in any given domain.
> As obvious, the set of four partial differential equations, to be solved, you need to
provide appropriate initial and boundary conditions.

Example: (Adopted from FM White’s Fluid Mechanics)

For a fluid , it was observed that the velocity components are :

u = a(x?-y?), v = -2axy , w=0. Find the pressure distribution for the given flow?
Ans. Given: u = a(x*-y?)

vV = -2axy

w=0
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As the velocity variables are not changing with respect to time, it can be considered that the flow
is steady.

» Our objective is to find p(X,y,z,t).
Since the flow is steady, so we will find p(x,y,z).
i.e., in the Navier-Stokes equations:
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In z-direction:
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The vertical pressure gradient is hydrostatic.
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Again, oy
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where, ¢ is a constant.
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p(x,y,z) =—2pa’ [



