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Abstract

Network-on-Chip (NoC) has emerged as the preferred communication framework for multi-core systems. Packet throttling is a
cost effective technique which simply delays packet injection into the network. However, deciding on when to throttle and how
much to throttle are key design challenges of any throttling technique. Existing techniques use local throttling decisions by a
central controller. This paper overcome the issues related with the existing works by partitioning the network into number of sub-
networks, each with a zonal controller. The experimental results with real traffic workloads show substantial reduction in average
packet latency when compared with state of the art packet throttling techniques.
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1. Introduction

Design and scalability issues associated with increasing core counts on Chip Multi-Processors (CMPs) is a top re-
search focus area in computer architecture over the last decade. Communication among cores in these CMPs housing
processors, caches and memory controllers is an important task that requires focused attention for better performance
and throughput. Thus designing an efficient and scalable interconnect is critical for future energy efficient CMP de-
signs.

Interconnects like bus and crossbars are no longer scalable with these ever growing trend in CMPs. Hence, re-
searchers have moved towards Network-on-Chip (NoC), a scalable, packet switched and distributed interconnect
framework that offer much lower latency and higher bandwidth. Most modern CMPs are arranged in 2D mesh topol-
ogy due to its simple layout and short wires.

A 9-core tiled CMP implemented in 2D 3×3 mesh topology is depicted in Fig. 1. Each processing core encloses
a superscalar processor, a private L1 cache and a slice of shared L2 cache as shown in the zoomed view. Each of
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Fig. 1. Core-router interaction in a 2D Mesh Topology

this processing core is connected to a router. Inter-core communication is needed in the event of an L1 cache miss
because the L2 look up happen at a core different from the source core due to the SNUCA [1] based L2 cache block
mapping. The mode of communication in such systems is packet based, where the packet contains control information
like source address, destination address, L2 bank address etc. Generally, a source core creates a packet when an L1
miss occurs and it is injected into the local router. Input buffers and handshaking signals between routers facilitate
flow control for packet movement between source and destination routers. Wormhole switching [2] is used in most
of the NoCs, where each of these packets are divided into smaller flow control units called flits. Division of packets
to flits helps in reduction of input buffer size. Packets and flits have been used interchangeably throughout the paper,
thus should not be confused with. Based on the employed routing algorithm, the packets traverse through the network
to the destination core. Similarly reply packets also traverse through the NoC back to the source core.

Along with typical networking related challenges, NoC designers also encounter hardware constraints which in-
clude constraints in router area, power consumption and implementation complexities. With these constraints and
resource crunch in modern CMPs, it is neither feasible nor practical to propose new NoC designs with sufficiently
large storage buffers and wider inter-router links. As more and more packets compete for shared resources like routers
and links, the overall system throughput degrades drastically. This network congestion, if not dealt properly can even-
tually bring the entire system down. Congestion in interconnects is now a popular problem with few works done in
the recent past.

Source throttling [2]-[3] is an efficient congestion-control approach for improving system performance. It is orthog-
onal to hybrid designs and scalable to arbitrary workloads. Here, cores injecting large traffic and crowding the network
are throttled or temporarily prevented from packet injection. Convincing source throttling proposals are available in
literature.

Modern CMPs host heterogeneous applications across various cores with unpredictable network traffic patterns.
This paper implements an adaptive heterogeneous optimal application aware and network load aware source throttling
technique to counter network congestion. Our contribution in this paper can be summarized as follows:

• A novel cost effective throttling of network intensive cores so as to maintain maximum network utilization and
throughput.
• A zonal controller is implemented (to be explained later) to coordinate throttling rate and point of throttling.

2. Related works

Source throttling in multi-processor and wormhole networks are studied even before NoC became a popular alter-
native to traditional bus and crossbar interconnects [2] [4]. Global knowledge-based and self tuned source throttling
technique in multiprocessor networks [4] gracefully adapts to the dynamic congestion pattern. This technique up-
grades system performance during heavy loads without downgrading it during light loads. A mechanism to avoid
network saturation in wormhole networks by local traffic estimation using free virtual output channel count is also
studied [2]. Here based on a decided threshold, next packet injection will be allowed or forbidden.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.09.149&domain=pdf
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Design and scalability issues associated with increasing core counts on Chip Multi-Processors (CMPs) is a top re-
search focus area in computer architecture over the last decade. Communication among cores in these CMPs housing
processors, caches and memory controllers is an important task that requires focused attention for better performance
and throughput. Thus designing an efficient and scalable interconnect is critical for future energy efficient CMP de-
signs.

Interconnects like bus and crossbars are no longer scalable with these ever growing trend in CMPs. Hence, re-
searchers have moved towards Network-on-Chip (NoC), a scalable, packet switched and distributed interconnect
framework that offer much lower latency and higher bandwidth. Most modern CMPs are arranged in 2D mesh topol-
ogy due to its simple layout and short wires.

A 9-core tiled CMP implemented in 2D 3×3 mesh topology is depicted in Fig. 1. Each processing core encloses
a superscalar processor, a private L1 cache and a slice of shared L2 cache as shown in the zoomed view. Each of
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this processing core is connected to a router. Inter-core communication is needed in the event of an L1 cache miss
because the L2 look up happen at a core different from the source core due to the SNUCA [1] based L2 cache block
mapping. The mode of communication in such systems is packet based, where the packet contains control information
like source address, destination address, L2 bank address etc. Generally, a source core creates a packet when an L1
miss occurs and it is injected into the local router. Input buffers and handshaking signals between routers facilitate
flow control for packet movement between source and destination routers. Wormhole switching [2] is used in most
of the NoCs, where each of these packets are divided into smaller flow control units called flits. Division of packets
to flits helps in reduction of input buffer size. Packets and flits have been used interchangeably throughout the paper,
thus should not be confused with. Based on the employed routing algorithm, the packets traverse through the network
to the destination core. Similarly reply packets also traverse through the NoC back to the source core.

Along with typical networking related challenges, NoC designers also encounter hardware constraints which in-
clude constraints in router area, power consumption and implementation complexities. With these constraints and
resource crunch in modern CMPs, it is neither feasible nor practical to propose new NoC designs with sufficiently
large storage buffers and wider inter-router links. As more and more packets compete for shared resources like routers
and links, the overall system throughput degrades drastically. This network congestion, if not dealt properly can even-
tually bring the entire system down. Congestion in interconnects is now a popular problem with few works done in
the recent past.

Source throttling [2]-[3] is an efficient congestion-control approach for improving system performance. It is orthog-
onal to hybrid designs and scalable to arbitrary workloads. Here, cores injecting large traffic and crowding the network
are throttled or temporarily prevented from packet injection. Convincing source throttling proposals are available in
literature.

Modern CMPs host heterogeneous applications across various cores with unpredictable network traffic patterns.
This paper implements an adaptive heterogeneous optimal application aware and network load aware source throttling
technique to counter network congestion. Our contribution in this paper can be summarized as follows:

• A novel cost effective throttling of network intensive cores so as to maintain maximum network utilization and
throughput.
• A zonal controller is implemented (to be explained later) to coordinate throttling rate and point of throttling.

2. Related works

Source throttling in multi-processor and wormhole networks are studied even before NoC became a popular alter-
native to traditional bus and crossbar interconnects [2] [4]. Global knowledge-based and self tuned source throttling
technique in multiprocessor networks [4] gracefully adapts to the dynamic congestion pattern. This technique up-
grades system performance during heavy loads without downgrading it during light loads. A mechanism to avoid
network saturation in wormhole networks by local traffic estimation using free virtual output channel count is also
studied [2]. Here based on a decided threshold, next packet injection will be allowed or forbidden.
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By the beginning of this decade NoC has established itself to be the numero uno scalable interconnect for ever
growing CMPs. Unpredictable massive traffics from cores running heterogeneous applications lead to network con-
gestion thus requiring the network intensive applications to be throttled or controlled. Manifestation of network con-
gestion in bufferless NoCs is very different than in a traditional network [5]. Application-level awareness in NoCs
are studied and throttling decisions are taken that boosts overall system performance to a great extent. Fairness via
source throttling (FST) [6], proposes to measure the unfairness in shared memory system. FST is also capable of
enforcing system software level fairness objectives including fairness-performance tradeoffs. ACT (Adaptive Cluster
Throttling) [7], a source throttling mechanism explore the possibility of making application clusters based on traffic
traits and then throttling these clusters alternatively. Nychis et. al. [8] discuss key differences between bufferless NoCs
with traditional networks. They identify few key issues of scalability and congestion in NoCs and then propose a low
complexity and high performance source throttling technique with application-level awareness for reducing network
congestion.

Heterogeneous Adaptive Throttling (HAT) [9] which is both application aware and network load aware allows
network-sensitive applications to make fast progress by throttling network-intensive applications, with maximum
network utilization. This is the first throttling technique combining both application-aware and network-load-aware
metrics to tackle congestion in NoC. Yan et. al. propose Cbufferless, a distributed source throttling mechanism for
bufferless NoCs to detect congestion and control them [10] [11]. SCEPTER bufferless NoC [3] uses source throttling
among other mechanisms to traverse non-minimal paths without latency penalty. They programmed a distributed self-
learning throttling technique where each core independently learns and tunes its throttle rate with respect to global
starvation indicators.

3. Motivation

Source throttling is always considered a congestion control technique in traditional packet switched networks. It
is introduced in NoC for tackling with heavy traffics from data intensive cores. The effort is to mitigate congestion
by identifying network intensive cores and then selectively throttling packet injections from those cores to reduce
network load. Once the system reaches a stable state, throttling is disabled.

Since heterogeneous applications inject diverse traffic into the network, a source throttling technique must be appli-
cation aware for deciding on whom to throttle. Blindly throttling applications only based on their traffic pattern might
lead to under or over utilization of network resources, hampering performance in both the cases. Thus a source throt-
tling technique must also be network aware for knowing on how much to throttle. And most importantly, the hardware
that implements throttling should be simple. Available techniques in literature are either application oblivious [2] [4],
network load unaware [5] [8] [10] [11] or sub-optimal [6] [7] [9] [3].

In this work we are exploring the possibility of improving the performance of one of the sub-optimal implementa-
tion in HAT [9] as it is considered best in the available literature. HAT works on local throttling decisions taken by the
core itself. In HAT each core is classified by a central controller either as network intensive or network non-intensive
core based on the number of packets it inject into the network for a given time period. Cores which inject packets
greater than a threshold are classified as network intensive and others fall under the group of network non-intensive.
All the network intensive cores are throttled in the subsequent time period. The problem with this method is that it
may lead to either over-throttling or under-throttling. Over-throttling happens when every core injects packets which
is higher than a threshold value set by the central controller leading to throttling of all the cores. Under-throttling
occurs when most of the cores inject very less packets while few inject packets just higher than the threshold. Even
though there is not much congestion in the network, the cores which generate misses above threshold are throttled.
Both over-throttling and under-throttling is because each core is unaware about what is the injection pattern in other
cores. We observed 7 over-throttling cases and 8 under-throttling cases on an average upon implementing HAT using
five SPEC CPU 2006 benchmark mixes (refer Table 2 for workloads) on an 8×8 2D mesh NoC.

Another problem with HAT is the single central controller. After receiving packet count updates from each core,
the central controller finds out the rate of throttling. But for large networks, having a single central controller is a big
bottleneck. The single central controller can cause high round trip delay. Let t be the transmission time for the request
to the central controller and d be the delay at the central controller. The core need to wait 2t + d time to receive the
response (round trip time). Since there is a single central controller, d value is high. As the controller is situated at the
center, t also can be reasonably high. Because of the slow response from the central controller, the system stabilization
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time increases. The experimental implementation of HAT shows that in an 8×8 mesh, the round trip delay of control
packets that carry crucial throttling parameters from a core to the central controller can be around 40 - 45 cycles even
at low network traffic. Moreover we find that the central controller can become a hotspot at regular intervals due to
flooding of control packets from various other cores.

We are therefore motivated to propose an improved application and network load aware, adaptive source throttling
technique with optimal implementation and minimum hardware overhead. Evaluation and comparison studies of the
proposed approach with the existing proposals are found in the expected manner with improved system performance.

4. Proposed Method

In this approach, a 2D mesh with 8×8 organization is considered. The whole network is logically partitioned into
four 4×4 sub-networks as shown in Fig. 2. Instead of using a single central controller like in HAT [9], we use four
zonal controllers, one for each of the four partitions. The zonal controllers (shown in dark colours) are chosen in such
a way that they should be at least two hops away from the edge nodes in all four directions. This is to ensure that the
zonal controller is approximately in the center of the respective partition, so that the controller can respond to various
control packets from respective cores within a reasonable time gap. We use a 5-bit miss-counter per core to record the
cache misses generated by that core.

The whole time period is sequentially divided into a series of three phases: (1) Measurement Phase (M), (2) Pro-
cessing Phase (P) and (3) Throttling Phase (T). During the measurement phase, miss-counter is incremented for each
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time increases. The experimental implementation of HAT shows that in an 8×8 mesh, the round trip delay of control
packets that carry crucial throttling parameters from a core to the central controller can be around 40 - 45 cycles even
at low network traffic. Moreover we find that the central controller can become a hotspot at regular intervals due to
flooding of control packets from various other cores.

We are therefore motivated to propose an improved application and network load aware, adaptive source throttling
technique with optimal implementation and minimum hardware overhead. Evaluation and comparison studies of the
proposed approach with the existing proposals are found in the expected manner with improved system performance.

4. Proposed Method

In this approach, a 2D mesh with 8×8 organization is considered. The whole network is logically partitioned into
four 4×4 sub-networks as shown in Fig. 2. Instead of using a single central controller like in HAT [9], we use four
zonal controllers, one for each of the four partitions. The zonal controllers (shown in dark colours) are chosen in such
a way that they should be at least two hops away from the edge nodes in all four directions. This is to ensure that the
zonal controller is approximately in the center of the respective partition, so that the controller can respond to various
control packets from respective cores within a reasonable time gap. We use a 5-bit miss-counter per core to record the
cache misses generated by that core.

The whole time period is sequentially divided into a series of three phases: (1) Measurement Phase (M), (2) Pro-
cessing Phase (P) and (3) Throttling Phase (T). During the measurement phase, miss-counter is incremented for each
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of the miss generated by the respective core. At the beginning of processing phase, the miss statistics from each of the
cores in the partition is send to the zonal controller as shown in Fig. 3. The zonal controller receives information from
each of the core in its partition. For example, all cores in partition 1 send control message containing the miss statistics
(value of miss-counter) during the processing phase to core 18. Core 18 will process these information received and
determine the throttling parameters.

A threshold is set by the zonal controller and warning messages are sent back to the respective cores which has a
miss-counter value greater than the threshold as shown in Fig. 4. For example in partition 3 (top left partition), the
zonal controller 42 identifies 35 and 56 as the cores whose cache miss-counter value after the measurement phase
is greater than the threshold. So warning messages are send to 35 and 56 during the processing phase to initiate
throttling. Unlike in HAT, here the zonal controller determines which core to be throttled instead of taking local
throttling decisions. The cores which receives the warning message learn that they have to be throttled in the next
throttling phase. The zonal controller classifies cores in its partition to max throttled cores, min throttled cores and
nil throttled cores. The throttling rates are different for max and min throttled cores; we call this differential throttling.
No warning messages are generated to nil throttled cores. During the throttling phase, packets generated from the
max throttled and min throttled cores will be throttled at a pre-determined rate as shown in Fig. 5. For a max throttled
core, two packets will be throttled out of every three packets generated. Likewise, for a min throttled core, one packet
will be throttled out of every three packets generated by the core. The miss-counter is reset and then updated for each
measurement phase (Mi) with the number of misses generated by the core during the time window. This ensures that
the same core is not throttled every time.

In the proposed design, we use a time window of 128 cycles for the measurement phase, i.e. for every 128 cycles
the miss-counter value is sent to the zonal controller. Since the time window is very less more precise will be the
measurement. Moreover, the miss-counter size can be varied at design time based on the performance objectives.
Processing phase uses 32 cycles, i.e. within this 32 cycles, the miss-counter values from all the cores are sent to
respective zonal controllers and cores receive warning messages from zonal controllers if they are either max throttled
or min throttled cores. We use the threshold as 10 for min throttled cores and 15 for max throttled cores. For the next
128 cycles (throttling phase), the max and min throttled cores receiving the warning messages are throttled as per the
throttling rate mentioned before.

Fig. 6 illustrates how the proposed system behaves in different phases of execution. Let M1, M2, M3, .... be different
measurement phases, P1, P2, P3, .... be the corresponding processing phases and T1, T2, T3, .... be the corresponding
throttling phases in the entire time frame of the application’s execution. Now consider an i with phases Mi, Pi and
Ti. During Mi, the miss-counter value for each of the core is incremented for every cache miss occurred in that
core. These statistics are sent to the respective zonal controllers at the beginning of Pi. The zonal controllers will
then send warning messages to the max and min throttled cores during Pi. The max and min throttled cores are then
throttled during Ti. After the completion of the first measurement phase M1, the next phase of measurement M2
starts its execution in parallel with the processing phase P1. Similarly, a third measurement phase M3 is initiated at
the beginning of processing phase P2. This series continues throughout the execution of applications in a pipelined
manner.

Throttling is not blocking packets, but temporarily delaying packet injections into the network. Throttled packets
try to get injected into the network in subsequent cycles. When a packet is throttled the core will try to inject the
throttled packet after a delay of 2 cycles. If a new packet is generated in the core during that same cycle it will be
queued in the core just after the throttled packets. Preference will be given to already throttled packets than newly
generated packets for injection into the router. This makes sure that none of the throttled packets will be delayed for a
longer time duration.

5. Experimental Analysis

5.1. Simulation Setup

We use BookSim 2.0 [12], a cycle accurate NoC simulator for modelling 8×8 CMP with 2D mesh topology.
BookSim supports various kinds of routing algorithms, traffic patterns and network topologies. It can generate NoC
traffic from real traffic traces in addition to the synthetic traffic patterns. We use the network traces generated by a 64
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core CMP (modelled via gem5 architectural simulator [13]) upon running 64 instances of various SPEC CPU 2006
benchmark applications. We run one SPEC CPU 2006 benchmark application per core.

Based on the Misses Per Kilo Instructions (MPKI), each SPEC CPU 2006 application is grouped into Low MPKI
(less than 5), Medium MPKI (between 5 and 25) and High MPKI (greater than 25). Details are given in Table 1. Low
MPKI group comprises of calculix, gobmk, gromacs, and h264ref, Medium MPKI consists of bwaves, bzip2, gamess,
and gcc and High MPKI includes hmmer, lbm, mcf, and leslie3d benchmark applications. We construct 5 workload
mixes each with 64 application instances based on the proportion of network injection intensity of these applications
as given in Table 2. To understand the distribution of benchmarks in workloads, consider workload 3 (WL3). Out of
the 64 cores in the CMP configuration in gem5, 16 cores run bwaves benchmark, 16 cores run bzip2 benchmark, 16
cores run gamess benchmark and the remaining 16 cores run gcc benchmark. Similarly applications that were used to
create other workloads can also be trivially understood.

The network trace generated by the above multicore workload is given to BookSim for modelling the NoC events
and statistics are collected. Each NoC router port is associated with 8 VCs with 3 flit buffers/VC. We use the Dimension
Order Routing (DOR) algorithm. All cache miss requests are single flit packets and cache miss replies are 4-flit
packets.

5.2. Impact of Packet Throttling

If a core is identified as to be throttled for a single throttling phase, then it is called one instance of throttling.
Similarly if a core is identified as to be throttled for 2 consecutive throttling phases and another core is to be throttled
for 3 consecutive throttling phases then altogether it is considered as 5 instances of throttling.

Table 3 shows the number of instances of throttling we have encountered upon using this approach on different
workload mixes. We can deduce from the table that higher MPKI workloads (WL4 and WL5) have large number of
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of the miss generated by the respective core. At the beginning of processing phase, the miss statistics from each of the
cores in the partition is send to the zonal controller as shown in Fig. 3. The zonal controller receives information from
each of the core in its partition. For example, all cores in partition 1 send control message containing the miss statistics
(value of miss-counter) during the processing phase to core 18. Core 18 will process these information received and
determine the throttling parameters.

A threshold is set by the zonal controller and warning messages are sent back to the respective cores which has a
miss-counter value greater than the threshold as shown in Fig. 4. For example in partition 3 (top left partition), the
zonal controller 42 identifies 35 and 56 as the cores whose cache miss-counter value after the measurement phase
is greater than the threshold. So warning messages are send to 35 and 56 during the processing phase to initiate
throttling. Unlike in HAT, here the zonal controller determines which core to be throttled instead of taking local
throttling decisions. The cores which receives the warning message learn that they have to be throttled in the next
throttling phase. The zonal controller classifies cores in its partition to max throttled cores, min throttled cores and
nil throttled cores. The throttling rates are different for max and min throttled cores; we call this differential throttling.
No warning messages are generated to nil throttled cores. During the throttling phase, packets generated from the
max throttled and min throttled cores will be throttled at a pre-determined rate as shown in Fig. 5. For a max throttled
core, two packets will be throttled out of every three packets generated. Likewise, for a min throttled core, one packet
will be throttled out of every three packets generated by the core. The miss-counter is reset and then updated for each
measurement phase (Mi) with the number of misses generated by the core during the time window. This ensures that
the same core is not throttled every time.

In the proposed design, we use a time window of 128 cycles for the measurement phase, i.e. for every 128 cycles
the miss-counter value is sent to the zonal controller. Since the time window is very less more precise will be the
measurement. Moreover, the miss-counter size can be varied at design time based on the performance objectives.
Processing phase uses 32 cycles, i.e. within this 32 cycles, the miss-counter values from all the cores are sent to
respective zonal controllers and cores receive warning messages from zonal controllers if they are either max throttled
or min throttled cores. We use the threshold as 10 for min throttled cores and 15 for max throttled cores. For the next
128 cycles (throttling phase), the max and min throttled cores receiving the warning messages are throttled as per the
throttling rate mentioned before.

Fig. 6 illustrates how the proposed system behaves in different phases of execution. Let M1, M2, M3, .... be different
measurement phases, P1, P2, P3, .... be the corresponding processing phases and T1, T2, T3, .... be the corresponding
throttling phases in the entire time frame of the application’s execution. Now consider an i with phases Mi, Pi and
Ti. During Mi, the miss-counter value for each of the core is incremented for every cache miss occurred in that
core. These statistics are sent to the respective zonal controllers at the beginning of Pi. The zonal controllers will
then send warning messages to the max and min throttled cores during Pi. The max and min throttled cores are then
throttled during Ti. After the completion of the first measurement phase M1, the next phase of measurement M2
starts its execution in parallel with the processing phase P1. Similarly, a third measurement phase M3 is initiated at
the beginning of processing phase P2. This series continues throughout the execution of applications in a pipelined
manner.

Throttling is not blocking packets, but temporarily delaying packet injections into the network. Throttled packets
try to get injected into the network in subsequent cycles. When a packet is throttled the core will try to inject the
throttled packet after a delay of 2 cycles. If a new packet is generated in the core during that same cycle it will be
queued in the core just after the throttled packets. Preference will be given to already throttled packets than newly
generated packets for injection into the router. This makes sure that none of the throttled packets will be delayed for a
longer time duration.

5. Experimental Analysis

5.1. Simulation Setup

We use BookSim 2.0 [12], a cycle accurate NoC simulator for modelling 8×8 CMP with 2D mesh topology.
BookSim supports various kinds of routing algorithms, traffic patterns and network topologies. It can generate NoC
traffic from real traffic traces in addition to the synthetic traffic patterns. We use the network traces generated by a 64
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core CMP (modelled via gem5 architectural simulator [13]) upon running 64 instances of various SPEC CPU 2006
benchmark applications. We run one SPEC CPU 2006 benchmark application per core.

Based on the Misses Per Kilo Instructions (MPKI), each SPEC CPU 2006 application is grouped into Low MPKI
(less than 5), Medium MPKI (between 5 and 25) and High MPKI (greater than 25). Details are given in Table 1. Low
MPKI group comprises of calculix, gobmk, gromacs, and h264ref, Medium MPKI consists of bwaves, bzip2, gamess,
and gcc and High MPKI includes hmmer, lbm, mcf, and leslie3d benchmark applications. We construct 5 workload
mixes each with 64 application instances based on the proportion of network injection intensity of these applications
as given in Table 2. To understand the distribution of benchmarks in workloads, consider workload 3 (WL3). Out of
the 64 cores in the CMP configuration in gem5, 16 cores run bwaves benchmark, 16 cores run bzip2 benchmark, 16
cores run gamess benchmark and the remaining 16 cores run gcc benchmark. Similarly applications that were used to
create other workloads can also be trivially understood.

The network trace generated by the above multicore workload is given to BookSim for modelling the NoC events
and statistics are collected. Each NoC router port is associated with 8 VCs with 3 flit buffers/VC. We use the Dimension
Order Routing (DOR) algorithm. All cache miss requests are single flit packets and cache miss replies are 4-flit
packets.

5.2. Impact of Packet Throttling

If a core is identified as to be throttled for a single throttling phase, then it is called one instance of throttling.
Similarly if a core is identified as to be throttled for 2 consecutive throttling phases and another core is to be throttled
for 3 consecutive throttling phases then altogether it is considered as 5 instances of throttling.

Table 3 shows the number of instances of throttling we have encountered upon using this approach on different
workload mixes. We can deduce from the table that higher MPKI workloads (WL4 and WL5) have large number of
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Table 1. Classification of applications based on cache MPKIs

Percentage miss rate Benchmarks (t)

Low MPKI (less than 5) calculix, gobmk,gromacs,h264ref
Medium MPKI (between 5 and 25) bwaves, bzip2, gamess, gcc
High MPKI (greater than 25) hmmer.nph3,lbm, mcf,leslie3d

Table 2. Workload Constitution

Workload# SPEC 2006 Benchmarks (t)

WL1 calculix(16) gobmk(16) gromacs(16) h264ref(16)
WL2 calculix(16) gobmk(16) gamess(16) gcc(16)
WL3 bwaves(16) bzip2(16) gamess(16) gcc(16)
WL4 bwaves(16) bzip2(16) hmmer.nph3(16) lbm(16)
WL5 hmmer.nph3(16) lbm(16) mcf(16) leslie3d(16)

Table 3. Number of throttled instances

Workload# Min throttled cores Max throttled cores Total throttling instances

WL1 22 0 22
WL2 89 24 113
WL3 423 72 495
WL4 700 298 998
WL5 782 489 1271

throttled instances while low MPKI workloads generate relatively smaller number of throttled instances and also the
number of max throttled instances is very less compared to min throttled instances for low MPKI workloads.

5.3. Effect on Overall Packet Latency

Fig. 7 shows the overall packet latency obtained from both conventional (HAT [9]) and proposed method. We can
see from the figure that using the proposed method, overall latency of the system is reduced considerably across all
workloads. The relative latency reduction are more predominant with WL4 (5.89%) and WL5 (10.45%). This also
shows that the control overhead induced by throttling is not affecting the overall packet latency of the network.

5.4. Effect on Throttled Packet Latency

Fig. 8 plots the packet latency of the throttled packets. Since by packet throttling we are delaying the packet
injection, the overall packet latency of throttled packets should be high. This is confirmed by our observation of an
increase in average throttled packet latency on all workloads (8). Because of this throttling from congestion-causing
cores it helps the packets injected by nil throttled cores to reach the destination with minimal latency. Thus the average
packet latency of the entire network can be reduced (7) in spite of increase in throttled packet latency (8).

5.5. Sensitivity Analysis on M, P, T and Threshold

For all the results discussed so far we considered time frames for measurement, processing and throttling phases as
128, 32 and 128 clock cycles respectively. In this section we have conducted a sensitivity analysis, with an objective
to identify optimal time frames for all the phases. We have varied the time frames for M, P and T with preset and
dynamic thresholds and recorded the percentage reductions in average packet latency.

Table 4 presents the effect on average packet latency with varying time frames for different phases of execution (M,
P and T). For the first six cases (Case 1 - 6), the applied threshold is static and set as 10 for min throttled cores and
15 for max throttled cores.

Here we can see that Case 4 (M = 128, P = 32 and T = 128) yields the highest reduction of 6.12% in average
packet latency than conventional HAT [9] approach. Now keeping these values of M, P and T fixed, we are
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Fig. 9. Overall packet latency - Case 1
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Fig. 10. Overall packet latency - Case 2
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Fig. 11. Overall packet latency -
Case 3
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Fig. 12. Overall packet latency - Case 4
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Fig. 13. Overall packet latency - Case 5
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Fig. 14. Overall packet latency -
Case 6

 24

 26

 28

 30

 32

 34

 36

 38

 40

WL1 WL2 WL3 WL4 WL5 Average

A
v
e

ra
g

e
 P

a
c
k
e

t 
L

a
te

n
c
y
 (

C
y
c
le

s
)

SPEC CPU 2006 Benchmark Workloads

Conventional
Proposed

Fig. 15. Overall packet latency - Case 7
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Fig. 16. Overall packet latency - Case 8

Table 4. Sensitivity analysis on M, P, T and Threshold

Case # M P T Avg. Packet Latency Reduction

Case 1 256 100 128 1.97%
Case 2 256 50 128 3.69%
Case 3 128 50 128 5.65%
Case 4 128 32 128 6.12%
Case 5 256 100 256 1.08%
Case 6 256 50 256 0.89%
Case 7 128 32 128 4.31%
Case 8 128 32 128 4.99%

dynamically changing the value of threshold in Cases 7 and 8. In both cases, the threshold is set as the average num-
ber of injected packets in the partition in a given time frame (Mi). But the calculation in finding the average is different.
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Table 1. Classification of applications based on cache MPKIs

Percentage miss rate Benchmarks (t)

Low MPKI (less than 5) calculix, gobmk,gromacs,h264ref
Medium MPKI (between 5 and 25) bwaves, bzip2, gamess, gcc
High MPKI (greater than 25) hmmer.nph3,lbm, mcf,leslie3d

Table 2. Workload Constitution

Workload# SPEC 2006 Benchmarks (t)

WL1 calculix(16) gobmk(16) gromacs(16) h264ref(16)
WL2 calculix(16) gobmk(16) gamess(16) gcc(16)
WL3 bwaves(16) bzip2(16) gamess(16) gcc(16)
WL4 bwaves(16) bzip2(16) hmmer.nph3(16) lbm(16)
WL5 hmmer.nph3(16) lbm(16) mcf(16) leslie3d(16)

Table 3. Number of throttled instances

Workload# Min throttled cores Max throttled cores Total throttling instances

WL1 22 0 22
WL2 89 24 113
WL3 423 72 495
WL4 700 298 998
WL5 782 489 1271

throttled instances while low MPKI workloads generate relatively smaller number of throttled instances and also the
number of max throttled instances is very less compared to min throttled instances for low MPKI workloads.

5.3. Effect on Overall Packet Latency

Fig. 7 shows the overall packet latency obtained from both conventional (HAT [9]) and proposed method. We can
see from the figure that using the proposed method, overall latency of the system is reduced considerably across all
workloads. The relative latency reduction are more predominant with WL4 (5.89%) and WL5 (10.45%). This also
shows that the control overhead induced by throttling is not affecting the overall packet latency of the network.

5.4. Effect on Throttled Packet Latency

Fig. 8 plots the packet latency of the throttled packets. Since by packet throttling we are delaying the packet
injection, the overall packet latency of throttled packets should be high. This is confirmed by our observation of an
increase in average throttled packet latency on all workloads (8). Because of this throttling from congestion-causing
cores it helps the packets injected by nil throttled cores to reach the destination with minimal latency. Thus the average
packet latency of the entire network can be reduced (7) in spite of increase in throttled packet latency (8).

5.5. Sensitivity Analysis on M, P, T and Threshold

For all the results discussed so far we considered time frames for measurement, processing and throttling phases as
128, 32 and 128 clock cycles respectively. In this section we have conducted a sensitivity analysis, with an objective
to identify optimal time frames for all the phases. We have varied the time frames for M, P and T with preset and
dynamic thresholds and recorded the percentage reductions in average packet latency.

Table 4 presents the effect on average packet latency with varying time frames for different phases of execution (M,
P and T). For the first six cases (Case 1 - 6), the applied threshold is static and set as 10 for min throttled cores and
15 for max throttled cores.

Here we can see that Case 4 (M = 128, P = 32 and T = 128) yields the highest reduction of 6.12% in average
packet latency than conventional HAT [9] approach. Now keeping these values of M, P and T fixed, we are
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Fig. 9. Overall packet latency - Case 1
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Fig. 10. Overall packet latency - Case 2
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Fig. 11. Overall packet latency -
Case 3
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Fig. 12. Overall packet latency - Case 4
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Fig. 13. Overall packet latency - Case 5
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Fig. 14. Overall packet latency -
Case 6
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Fig. 15. Overall packet latency - Case 7
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Fig. 16. Overall packet latency - Case 8

Table 4. Sensitivity analysis on M, P, T and Threshold

Case # M P T Avg. Packet Latency Reduction

Case 1 256 100 128 1.97%
Case 2 256 50 128 3.69%
Case 3 128 50 128 5.65%
Case 4 128 32 128 6.12%
Case 5 256 100 256 1.08%
Case 6 256 50 256 0.89%
Case 7 128 32 128 4.31%
Case 8 128 32 128 4.99%

dynamically changing the value of threshold in Cases 7 and 8. In both cases, the threshold is set as the average num-
ber of injected packets in the partition in a given time frame (Mi). But the calculation in finding the average is different.
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In Case 7, for a given time frame the threshold is
Total number of packets injected in a partition

Cores with minimum 3 packets injected in the partition

Whereas in Case 8, the threshold is calculated as
Total number of packets injected in a partition

Cores with minimum 1 packet injected in the partition

The reduction in average packet latency for Cases 7 and 8 with dynamic threshold and preset M, P and T values
are 4.31% and 4.99% respectively. These obtained reductions are at par with static threshold.

Thus, we can conclude that the ideal time frames for M, P and T with both static as well as dynamic threshold
should be 128, 32 and 128 clock cycles respectively. Depending on flexibility in cost / area overhead of miss-counter
size and phase management circuits, other combinations of M, P, T and threshold listed in Table 4 can also be adopted.

6. Conclusion

Congestion in NoC is a challenging issue to be solved with cost effective techniques. Packet throttling is one kind
of such technique, which suppress packet injection into the network from the core causing congestion. We proposed
a cost effective packet throttling technique which properly manages the point of throttling and the rate of throttling.
Multiple zonal controllers in this technique help to overcome over-throttling and under-throttling issues of the existing
throttling techniques. Unthrottled packets get more benefit by throttling of heavy injection cores. Results showed that
the number of throttling instances increases with the increase in number of misses. Also, the overall packet latency of
the system is decreased by throttling the congestion causing cores.
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