Adaptive Packet Throttling Technique for
Congestion Management in Mesh NoCs

Aswathy N.S', Reshma Raj R.S!, Abhijit Das?, John Jose?, and Josna V.R!

! Goverment Engineering College Bartonhill, Trivandrum, Kerala, India
nsaswathy19930@gmail.com, reshmaraj26@gmail.com, josna.chandu@gmail.com
2 Indian Institute of Technology Guwahati, Assam, India
abhijit.das@iitg.ernet.in, johnjose@iitg.ermet.in

Abstract. Network on Chip is an emerging communication framework
for multi-core systems. Due to increasing number of cores and complex
workloads, congestion management techniques in NoC are gaining more
research focus. Packet throttling is one of a cost effective technique for
congestion management. It delays the packet injection into the network,
thereby regulating traffic in network and hence provide ease of pack-
ets generated by other critical applications. Finding point of throttling
and rate of throttling are two major design issues that can impact the
performance and stability of any throttling algorithm in a multi-core
framework. Existing state of the art throttling techniques use local throt-
tling decision coordinated by a single central controller. We overcome the
issues related with this by partitioning the network into number of sub-
networks, each with a zonal controller. Our experiment results in 8x8 2D
mesh with real traffic workloads consisting of SPEC 2006 CPU bench-
marks shows an average packet latency reduction of 6.2% than the state
of the art packet throttling techniques.

Keywords: network congestion, packet throttling

1 Introduction

Design and scalability issues associated with increasing core counts on Chip
Multi-Processors (CMPs) is a prominent research domain in computer architec-
ture over the last decade. Communication among cores in these CMPs housing
processors, caches and memory controllers is an important task that requires
deeper exploration for better performance and throughput. Thus designing a
scalable interconnect is critical for future energy efficient CMP designs.

Interconnects like bus and crossbars are no longer scalable with these ever
growing trend in CMPs. Hence, researchers have moved towards Network-on-
Chip (NoC), a scalable, packet switched and distributed interconnect framework
that offer much lower latency and higher bandwidth than their traditional bus
based counter parts. Most modern CMPs are arranged in 2D mesh topology due
to its simple layout and short wires.

A 9-core tiled CMP implemented in 2D 3 x 3 mesh topology is depicted in
Figure 1. Each processing core encloses a superscalar processor, a private L1



2 Aswathy N.S et al.

! ||Processing|
Element || L1

Fig. 1. Core-router interaction in a 2D Mesh Topology

cache and slice of shared L2 cache distributed all over the CMP as shown in the
zoomed view. Each of these processing core is connected to a switching device
called a router. Inter core communication is needed in the event of an L1 cache
miss because the L2 look up happen at a core different from the source core due
to the SNuCA based L2 cache block mapping. The mode of communication in
such systems is packet based, where the packet contains control information like
source address, destination address, L2 bank address etc. Generally, a source core
creates a packet when an L1 miss occurs and it is injected into the local router.
Input buffers and handshaking signals between routers facilitate flow control for
packet movement between source and destination routers. Wormhole switching
[1] is used in NoCs, where each of these packets are divided into smaller flow
control units called flits. Based on the employed routing algorithm, the required
packet traverse through the network to the destination core. Similarly reply
packets also traverse through the NoC back to the source core.

Along with typical networking related challenges, NoC designers also en-
counter hardware constraints which include constraints in router area, power
consumption and implementation complexities. As more and more packets com-
pete for shared resources like routers and links, the overall system throughput
degrades drastically. This network congestion, if not dealt properly can eventu-
ally bring the entire system down. Source throttling [1]-[3],[4]-[6],[8]-[12] is an
efficient congestion-control approach for improving system performance. Cores
injecting large traffic and crowding the network are throttled or temporarily
prevented from packet injection.

Modern CMPs run heterogeneous applications that generates unpredictable
network traffic patterns across various cores. Unpredictable massive traffics from
cores running heteregenous applications lead to network congestion thus requir-
ing the network intensive applications to be throttled or controlled. We have
contributed to this paper in the following ways:

— We dynamically analyze and keep track of all packet injections across the
network from all processing cores without hampering the usual network flow.



Packet throttling 3

— We implement a zonal controller logic (to be explained later) each in different
network zones that cordinate throttling of network intensive cores so as to
maintain maximum network utilization.

— We classify all the cores into either network intensive or network non-intensive
based on their packet injection behaviour at regular intervals.

— Finally, we perform evaluation and comparison studies with existing tech-
niques to understand the performance improvement obtained.

2 Related Work

Source throttling in multi-processor and wormhole networks are studied even be-
fore NoC became a popular alternative to traditional bus and crossbar intercon-
nects[1][2]. Global-knowledge-based and self tuned source throttling technique in
multiprocessor networks [2] gracefully adapts to the dynamic congestion pattern.
This technique upgrades system performance during heavy loads. A mechanism
to avoid network saturation in wormhole networks by local traffic estimation
using free virtual output channel count is also studied [1].

Manifestation of network congestion in bufferless NoCs is very different than
their buffered couterpart. Application-level awareness in NoCs are studied and
throttling decisions are taken that boosts overall system performance to a great
extent [3]. Fairness via source throttling (FST) [4], proposes to measure the un-
fairness in shared memory system. Then based on a threshold, traffic from cores
that cause unfairness in the system are throttled down. FST is also capable of en-
forcing system software level fairness objectives including fairness-performance
tradeoffs.

ACT (Adaptive Cluster Throttling) [5], explore the possibility of making
application clusters based on traffic traits and then throttling these clusters
alternatively. Nychis et al [6] find the key issues of scalability and congestion in
NoCs and then proposes a low complexity and high performance source throttling
technique with application-level awareness for reducing network congestion.

Heterogeneous Adaptive Throttling (HAT) [7] which is both application
aware and network load aware allows network-sensitive applications to make fast
progress by throttling network-intensive applications. This is the first throttling
technique combining both application-aware and network-load-aware metrics to
tackle congestion in NoC. Yan et al. analyzes deflection ratio of routing mes-
sages to understand the level of network congestion caused by deflection routing
[8][9]. They propose Cbufferless, a distributed source throttling mechanism for
bufferless NoCs to detect and control congestion brings extra hardware and
bandwidth overhead. SCEPTER bufferless NoC [10] uses source throttling to
traverse non-minimal paths without latency penalty. They programmed a dis-
tributed self-learning throttling technique for controlling new packet injection
into the network, where each core independently learns and tunes its throttle
rate with respect to global starvation indicators.



4 Aswathy N.S et al.

3 Motivation

Source throttling is introduced in NoC for tackling with heavy traffics from
data intensive applications. The effort is to mitigate congestion by identifying
network intensive cores and then selectively throttling packet injections from
those cores to reduce congestion in the system. As the congestion goes down, the
system performance goes up. Once the system reaches a stable state, throttling
is disabled.

Since heterogenous applications inject diverse traffic into the network, a
source throttling technique must be application aware for deciding on whom to
throttle. Blindly throttling applications only based on their traffic pattern might
lead to under or over utilization of network resources, hampering performance.
Thus a source throttling technique must also be network aware for knowing the
throttling rate. Moreover the hardware that implements throttling should be
simple. Available techniques in literature are either application oblivious [1][2],
network load unaware [3][6][8][9] or sub-optimal [4][5][7][10].

In this paper we identify the limitations of HAT [7], the best application
aware source throttling technique proposed so far and suggest few modifications
so as to improve its performance. HAT uses local throttling decisions taken by the
respective core. In HAT each application is classified by a central controller either
network intensive or network non-intensive applications based on the number of
packets it is inject into the network at regular time period. Cores which inject
packets greater than a threshold are classified as network intensive and others fall
under the group of network non-intensive. All the network intensive applications
are throttled in the subsequent time period. The problem with this method is
that it may lead to either over throttling or under throttling. Over throttling
happens when every core injects packets which is higher than a threshold value
set by the central controller leading to throttling of all the cores. Under throttling
occurs when most of the cores inject very less packets while few injects packets
just higher than the threshold. Even though there is no much congestion in the
network, the cores which generate misses above threshold are throttled. Both
over throttling and under throttling happen because each core is unaware about
what is the injection pattern in other cores. We identify around 7 number of
over throttling cases and 8 number of under throttling cases on an average upon
implementing HAT using the five SPEC 2006 CPU benchmark mix (Refer Table
2 for workloads)

Another problem with HAT is the single central controller. After receiving
packet count updates from each core, the central controller finds out the rate
of throttling. But for large networks, having a single central controller is a big
bottleneck as it is not a scalable proposal. The single central controller can cause
high round trip delay. Let ¢ be the transmission time for the request to the central
controller and d be the processing delay at the central controller. The core need
to wait 2t + d time to receive the response (round trip time). Since there is a
single central controller situated at the center of the mesh, both d and t also can
be high. Because of the slow response from the central controller, the system
stabilization time also increases. Our experimental implemetation of HAT shows



Packet throttling 5

Partition 3 Partition 4

Partition 1 Partition 2

Counter value from each node to
. Controller Node of a Partition the controller

Fig.2. Network with 4 zonal con- Fig. 3. Sending counter values from all
trollers nodes to the zonal controllers

that in an 8 x 8 mesh, the round trip delay of control packets that carry crucial
throttling parameters from a core to the central controller can be around 40-45
cycles. We also find that the central controller can become a hotspot at regular
intervals due to flooding of control packets from various other cores.

Exploring further on the above mentioned limitations of HAT, we propose
an improved application and network load aware, adaptive source throttling
technique with a distributed zonal controller logic that implements differential
throttling. Evaluation and comparison studies of our approach with the existing
proposals are found in our favour with improved system performance.

4 Proposed Method

In our approach, a 2D mesh with an 8x8 organization is considered. The whole
network is logically partitioned into four 4x4 subnetworks. Instead of using a
single central controller like in HAT [7], we use four zonal controllers, one for
each of the four partitions as shown in Figure 2. The four zonal controllers
(shown in dark colours) eliminate the single central controller bottleneck. The
zonal controllers are selected in such a way that it should have at least two-
hop neighbour in each of the four directions. This is to ensure that the zonal
controller is approximately in the center of the respective partition, so that, the
controller can legitimately control all the cores within that partition. We use a
5-bit counter per core to record the cache misses generated by the core.

The whole time period is sequentially divided into a series of three phases:
(a) measurement phase-M, (b) processing phase-P and (c¢) throttling phase-T.
During the measurement phase, the counter is incremented for each of the miss
generated by the respective core. At the beginning of the processing phase, the
miss statistics from each of the cores in the partition is send to the zonal con-
troller as shown in Figure 3. The zonal controller receives information from each
of the core in its partition. For example, all nodes in partition 1 send control



6 Aswathy N.S et al.

) Nodes having counter > Threshold

@ @ oces having counter >Threshold
BOx(m Throttling 2 among the 3 Packets
S generated

——»  Warning message from the central controller

Fig. 4. Zonal controller sending warn- Fig. 5. Throttle cores whose counter
ing messages greater than threshold

packets at the end of measurement phase to node 18. Node 18 will process these
information received and determines the throttling parameters.

A threshold is set by the zonal controller and warning messages are send
back to the respective cores which hold a counter value greater than the thresh-
old as shown in Figure 4. For example in partition 3 (top left partition) the
zonal controller 42 identifies 35 and 56 as the nodes whose cache miss count
value during the measurement phase is greater than the threshold. So warning
messages are send to 35 and 56 during the processing phase to initiate throttling.
Unlike in HAT, here the zonal controller determines which core to be throttled
instead of the local core. Hence this approach avoids the problems associated
with local throttling decision. The cores which receives the warning message
learns that they have to be throttled in the next throttling phase. During the
throttling phase, packets generated from the cores having counter value greater
than threshold will be throttled at a pre-determined rate as shown in Figure 5.
For example if throttling rate is 2/3, two packets will be throttled out of the
three packets generated. Likewise, if throttling rate is 1/3, one packet will be
throttled out of the three packets generated by the core.

The counter is updated for each measurement phase based on the number
of misses generated by the core during the time window. This ensures that the
same core is not throttled every time. The throttling of the core depends on the
number of misses generated by the core during previous measurement phase.
Here we use a time window of 128 cycles for the measurement phase, ie, for
every 128 cycles the counter is updated.

Since the time window is very less more precise will be the measurement.
Moreover, from the design perspective the size of counter can be reduced. For
the processing phase we use 32 cycles, ie, with in this 32 cycles the counter



Packet throttling 7

M1' M2 & M3 : Measurement Phase P,P & P3 : Processing Phase
T1, T2 & T3 : Throttling Phase

128 cc ) 32 cc _, 128 cc

Time of Execution

Fig. 6. Various phases in the application execution

statistics is send to the respective zonal controllers from the cores and the zonal
controllers will send the warning message to the cores having counter statistics
greater than the threshold of 15. After that for a 128 cycle, the cores which
receive the warning message are throttled as per throttling rate mentioned.

Throttling is not blocking packets, it is temporarily delaying packets injected
into the network. The throttled packets tries to inject into the network during
subsequent cycles. Here we provide 2 cycle delay for each of the throttled packets
ie, after the packet is throttled the core will try to inject the throttled packet
after 2 cycles. If a new packet is generated in the core during the same cycle
it will be queued in the core just after the throttled packets. Preference will
be given to already throttled packets than newly generated packets waiting for
injection into the router. This makes sure that none of the throttled packets will
be delayed for a longer time duration.

Figure 6 illustrates how the proposed system behaves in the different phases of
execution. Let M7, My, M3, ... be the different measurement phases, Py, Ps, Ps, ...
be the different processing phases and T3,75,73, ... be the different throttling
phases of the entire time frame in the application’s execution. Consider M;, P;
and T;. During M; the counter value for each of the core is incremented for every
cache miss request from that core. These statistics is send to the respective zonal
controllers at the beginning of P;. The zonal controllers will send the warning
message to the cores with number of packets greater than the threshold during
P;. The cores which receive warning messages are throttled during T;. After the
completion of the first measurement phase M7, the next phase of measurement
M, starts the execution in parallel with the processing phase P;. Similarly, a
third measurement phase M3 is initiated at the beginning of processing phase
P,. This series continues throughout the execution of program in a pipelined
manner.



8 Aswathy N.S et al.
5 Experimental Analysis

5.1 Simulation Setup

We use Booksim2.0 [11], the cycle accurate NoC simulator for modelling 8 x 8
CMP with 2D topology. Booksim supports various kinds of routing algorithms,
traffic patterns and network topologies. It can generate NoC traffic from real
traffic traces in addition to the synthetic traffic patterns. We use the network
traces generated by a 64 core CMP (modelled via GEM5 architectural simulator)
upon running 64 instances of different SPEC 2006 CPU benchmark applications.

In GEMS5 [12], we run one instance of a SPEC 2006 CPU benchmark appli-
cation on each of the core. Based on the misses per kilo instructions (MPKI)
each SPEC application is grouped into Low MPKI (less than 5), Medium MPKI
(between 5 and 25) and High MPKI(greater than 25). Details are given in Table
1. We construct 5 workload mixes based on the proportion of network injection
intensity of these applications as given in Table 2. To understand the distribu-
tion of benchmarks in workloads, consider workload 3 (WL3), in which we use
64 application instances for the simulation. Out of these 64 cores, 16 cores run
bwaves benchmark, 16 cores run bzip2 benchmark, 16 cores run gamess bench-
mark and the remaining 16 cores run gcc benchmark. Similarly other workloads
can also be described.

The network trace generated by the above multicore workload is given to
Booksim for modelling the NoC events and statistics are collected. Each of the
NoC router port is associated with 8 VCs. We use the dimension order routing
algorithm. All cache miss requests are single flit packets and cache miss replies
are 4-flit packets.

Table 1. Classification of applications based on MPKI

Percentage miss rate Benchmarks

Low MPKI (less than 5) calculix, gobmk,gromacs,h264ref
Medium MPKI (between 5 and 25) bwaves, bzip2, gamess, gcc

High MPKI (greater than 25) hmmer.nph3,lbm, mcf,leslie3d

5.2 Results & Discussions

If a core is identified as to be throttled for a single throttling phase, then it
is called one instance of throttling. Similarly if a core is identified as to be
throttled for 3 consecutive throttling phases and another core is to be throttled
for 2 consecutive throttling phases then altogether it is considered as 5 instances
of throttling.



Packet throttling 9

Table 2. Workload Constitution

Workload# SPEC 2006 Benchmarks

WL1 calculix(16) gobmk(16) gromacs(16) h264ref(16)
WL2 calculix(16) gobmk(16) gamess(16) gee(16)
WL3 bwaves(16) bzip2(16) gamess(16) gee(16)
WL4 bwaves(16) bzip2(16) hmmer.nph3(16) 1lbm(16)
WL5 hmmer.nph3(16) Ibm(16)  mcf(16) leslie3d(16)

Here, different workload mixes results in different number of throttling in-
stances. From the result analysis, we have identified that a higher MPKI work-
load leads into a larger number of throttled instances while a lower MPKI work-
load results in a smaller number of throttled instances. For low MPKI work-
load(WL1) we have identified 22 throttling instances and for workload WL2 113
instances are identified. The medium MPKI workload WL3 results 495 throttling
instances and for the workload WL4 998 throttling instances are identified. The
largest number of instances are identified for higher MPKI wokload WL5 which
is around 1271.

Conventional method mmmmm
Proposed method e

T T
Conventional method mmmmm 38
Proposed method s

Average packet latency (Cycles)
Average packet latency (Cycles)

WLL wL2 wL3 w4 WLS  Average
SPEC 2006 CPU Benchmark workloads

WLl wL2 wL3 wLa WLS
SPEC 2006 CPU benchmark workloads

Fig. 7. Overall packet latenc
& P Y Fig. 8. Throttled packet latency

Figure 7 shows the overall packet latency obtained from both conventional
method and proposed technique. We can see from the figure that using the pro-
posed method the overall latency of the system is reduced considerably. The
control overhead induced by throttling is not affecting the overall packet latency
of the network. Figure 8 plots the packet latency of the throttled packets. By
packet throttling we are delaying the packet injection. Hence the overall packet
latency of throttled packets will be high. Delaying the packets from the con-
gestion causing cores helps the unthrottling cores to inject packets into a least
congested network and hence can reach the destination with minimal latency.
Thus the average packet latency of the entire network can be reduced.



10 Aswathy N.S et al.

6 Conclusion

Congestion in NoC is a challenging issue to be solved with cost effective tech-
niques. Packet throttling is one kind of such technique, which suppress packet
injection into the network from the core causing congestion. We proposed a cost
effective packet throttling technique which properly manages the point of throt-
tling and the rate of throttling. Multiple zonal controllers in our technique help
to overcome over-throttling and under-throttling issues of the existing throttling
techniques. Unthrottled packets get more benefit by throttling of heavy injection
cores. Results showed that the number of throttling instances increases with the
increase in number of misses. Also, the overall packet latency of the system is
decreased by throttling the congestion causing cores.

References

1. Baydal et al., “A congestion control mechanism for wormhole networks,” in Ninth
FEuromicro Workshop on Parallel and Distributed Processing. 1EEE, pp. 19-26,
2001.

2. Thottethodi et al., “Self-tuned congestion control for multiprocessor networks,” in
The Seventh International Symposium on High-Performance Computer Architec-
ture, HPCA. IEEE, pp. 107-118, 2001.

3. Nychis et al., “Next generation on-chip networks: What kind of congestion control
do we need?” in The 9th ACM SIGCOMM Workshop on Hot Topics in Networks.
ACM, pp. 12, 2010.

4. Ebrahimi et al., “Fairness via source throttling: a configurable and high-
performance fairness substrate for multi-core memory systems,” in ACM SIGPLAN
Notices, vol. 45, no. 3.  ACM, pp. 335-346, 2010.

5. Ausavarungnirun et al., “Adaptive cluster throttling: improving high-load per-
formance in bufferless on-chip networks,” Computer Architecture Lab (CALCM)
Carnegie Mellon University, SAFARI Technical Report TR-2011-006, 2011.

6. Nychis et al., “On-chip networks from a networking perspective: Congestion and
scalability in many-core interconnects,” ACM SIGCOMM computer communica-
tion review, vol. 42, no. 4, pp. 407418, 2012.

7. Chang et al., “HAT: Heterogeneous adaptive throttling for on-chip networks,” in
IEEE 2jth International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD). 1EEE, pp. 9-18, 2012.

8. J. Yan et al., “Cbufferless: a novel congestion control for bufferless networks on-
chip,” in 2nd international conference on Advances in Computer Science and En-
gineering, pp. 153-156, 2013.

9. Yan et al., “A novel distributed congestion control for bufferless network-on-chip,”
The Journal of Supercomputing, vol. 68, no. 2, pp. 849-866, 2014.

10. Daya et al., “Quest for high-performance bufferless nocs with single-cycle express
paths and self-learning throttling,” in in 53rd Annual Design Automation Confer-
ence. ACM, pp. 36, 2016.

11. Jiang et al., “A detailed and flexible cycle-accurate network-on-chip simulator,”
in Performance Analysis of Systems and Software (ISPASS), 2018 IEEE Interna-
tional Symposium on. IEEE, pp. 86—96, 2013.

12. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer Architecture
News, vol. 39, no. 2, pp. 1-7, 2011.



