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Abstract

This work is concerned with higher-order compact (HOC) schemes for convect-
ion-diffusion equations in general and incompressible viscous flows in particu-
lar. A fully compact and fully higher-order accurate scheme is developed for
the standard buoyancy driven square cavity problem through O(h*) compact
approximation of the derivative source term and zero-gradient temperature
boundary conditions of identical accuracy at the adiabatic walls. The scheme
produces highly accurate results even for very high laminar Rayleigh numbers
for which no other HOC results are seen. The HOC treatment of the deriva-
tive source term also opens up new possibilities. A parametrized class of im-
plicit HOC schemes is then developed for the unsteady two-dimensional (2D)
convection-diffusion equations. They efficiently capture both transient and
steady solutions of linear and nonlinear convection-diffusion equations with
Dirichlet as well as Neumann boundary conditions. The results obtained for
flows of varying complexities governed by the 2D incompressible Navier-Stokes
equations are in excellent agreement with analytical and established numer-
ical results. One of the schemes is then applied to compute double-diffusive
natural convection in a vertical porous annulus between two concentric cylin-
ders. This is perhaps the first instance of application of an HOC scheme to
flows involving both heat and mass transfer. A transformation-free HOC fi-
nite difference scheme is then proposed for the steady 2D convection-diffusion
equation on nonuniform Cartesian grids. Apart from avoiding usual compu-
tational complexities associated with conventional transformation techniques,
the method, for a certain class of problems, computes highly accurate solution
with smaller number of grid points with resultant saving of memory and CPU
time. In particular it is seen to be very effective in the computation of wall-
bounded viscous flows as not only does it compute high-Re lid-driven cavity
flows very accurately, but also is seen to capture some new flow features. For
the backward-facing step flow problem, the method produces solutions which
are in much better agreement with experiment compared with other numerical

results.
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Chapter 1

INTRODUCTION

1.1 Background

Many physical systems, especially those involving fluid flow, are described in
terms of mathematical models that include convective and diffusive transport
of some variables. These models consist of the governing equations in the
form of ordinary or partial differential equations (ODEs or PDEs). As a great
number of such model equations like the Navier-Stokes (N-S) equations do not
possess analytical solutions, one has to resort to numerical methods. Amongst
the popular methods that have been used quite frequently in computational
fluid dynamics (CFD) is the finite difference method. Here, the basic method-
ology involves discretizing the problem domain by setting up a grid (preferably
structured) and then approximating the derivatives appearing in the govern-
ing equations by difference quotients at each grid point. Such approximation
yields a system of algebraic equations which can then be solved with some

matrix solution algorithm.

The most common finite difference representation of the derivatives are based
on Taylor series expansion of the variables at the grid points. The leading
term in the truncation error (TE) of this expansion determines the order of

accuracy of the scheme. For example, if this TE is asymptotically proportional



2 INTRODUCTION

to h™, where h is the distance between two successive grid points, the differ-
ence scheme is said to be accurate of order m or shortly O(h™). The O(h?)
central difference schemes, because of their easy and straight-forwardness in
application, have for quite some time been a popular choice for constructing
discrete approximations to linear PDEs. Such methods are known to yield
quite good results on reasonable meshes if the solution is well behaved. But
for certain problems, such as the convection dominated flows, the solution may
exhibit oscillatory behaviour if the mesh is not sufficiently refined. However,
mesh refinement invariably brings in additional points into the system result-
ing in an increased system size and consequently more memory and CPU time
are required to solve such problems on a computer. Again discretization on
a non-compact stencil (generally associated with higher-order accurate meth-
ods) increases the band-width of the coefficient matrix. Both mesh refinement
and increased matrix band-width ultimately result in increased arithmetic op-
erations. Thus neither a lower-order accurate method on a fine mesh nor a
higher-order accurate one on a non-compact stencil could be computationally
cost-effective. Therefore, there is a need for the development of schemes which

are higher-order accurate and also compact at the same time.

A compact finite difference scheme is one which utilizes grid points located
only directly adjacent to the node about which the differences are taken. In
addition, if the scheme has an order of accuracy greater than two, it is termed a
higher-order compact (HOC) method. The higher-order accuracy of the HOC
methods combined with the compactness of the difference stencils yields highly
accurate numerical solutions on relatively coarser grids with greater computa-
tional efficiency. There exists several mechanisms through which finite differ-
ence schemes can achieve higher-order compactness. For example, Gupta et
al. [26] apply series expansion to the differential equations whereas Dennis and
Hudson [20] employ a transformation that involves expanding the exponential
of a definite integral of the convective coefficient of the PDE concerned. Some
other HOC works that can be cited are the discrete weighted mean approxi-
mation approach of Gartland [22], Noye and Tan’s [45,46] weighted modified
PDE method, the 4th order compact scheme of Tang and Fornberg [40], and
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high order upwind schemes of Wilkes [76], Yanwen [78] and Sesterhenn [59].

Another way of obtaining higher-order compactness is by using the original dif-
ferential equation to substitute for the leading TE terms of the standard cen-
tral difference approximation. This is the mechanism that has been adopted
throughout the present work. This idea was first implemented by Lax and
Wendroff [5,6,30] on the time dependent hyperbolic PDEs. They used the
original PDE to approximate the second-order time derivative in a Taylor se-
ries expansion, thus raising the time accuracy from O(At) to O[(At)’] . The
spatial implementation of this temporal Lax-Wendroff idea was first proposed
by Mackinnon and Carey [41]. Similar research was carried out further by
Mackinnon and Johnson [42] in order to develop schemes for two-dimensional
(2D) steady-state convection-diffusion problems. These schemes maintain high
order of accuracy besides exhibiting the property of smoothing artificial oscil-
lations [42]. At about the same time Abarbanel and Kumar [1] independently
developed a spatially 4th and temporally 2nd order accurate scheme for the Eu-
ler equations. These schemes are similar to those developed by Dukowicz [21]
and Wong [77] though they were achieved in a different manner. Recently
Spotz and Carey [66,67] have extended the idea of Mackinnon and Johnson [42]
to the stream-function vorticity (¢-w) formulation of the 2D N-S equations.
Some other HOC works are the recent studies in 3D convection-diffusion and
Poisson equations by Ananthakrishnaih [4], Spotz and Carey [68], Gupta and
Kouatchou [25] and Zhang [79].

1.2 Motivation

A careful study of the works discussed so far reveals a plethora of issues con-
cerning HOC schemes and their applicability to convection-diffusion problems
in general and incompressible viscous flows in particular. The merits of HOC
schemes discussed earlier do not come for free as existence of higher deriva-
tives is a prerequisite [67]. In this context, it seems important to develop HOC

schemes and to examine how the schemes behave when applied to flows involv-
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ing difficult physics like multiplicity of scales, separated viscous flows at high
Reynolds numbers (Re’s) etc. Also involved are some interesting numerical lin-
ear algebraic issues. For example, the benefits that can be derived from the use
of advanced iterative algorithms like Conjugate Gradient (CG), Biconjugate
Gradient (BiCG) and hybrid BiCG etc. [37,62] to solve the algebraic equations
resulting from HOC discretization is an issue needing attention. Many flows in
nature and technology are of convection-diffusion type, many a time involving
heat and mass transfer. These flows offer tough challenges to any computa-
tional algorithm especially at high Reynolds and Rayleigh numbers, and not
much HOC computation for such flows is seen. Thus, work in the development
and application of HOC algorithms for these problems is a challenging one and
is replete with many interesting possibilities. These are the major motivating
factors behind this work.

1.3 Objectives

The main aim of the present work is to develop some HOC finite difference
algorithms for the 2D linear and nonlinear convection-diffusion equations with
special emphasis to incompressible viscous flows. Also intended to examine
is whether some already existing HOC algorithms can be modified and then
applied to flow problems to which they were not applied earlier. Another
objective is to examine the possibility of broadening the scope of applicability
of HOC algorithms to hitherto unexplored problems and situations of heat
transfer, fluid flow and mass transfer.

1.4 The Work

First an HOC scheme for the ¢-w form of the N-S equations [67], in modified
form, is applied to the standard steady-state natural convection in a square cav-
ity problem [34]. Apart from developing a 4th order compact Neumann bound-

ary condition for temperature at the adiabatic walls, the derivative source term



1.4 The Work 5

in the vorticity equation is also approximated compactly up to identical or-
der of accuracy. These new developments, besides getting assimilated easily
into the solution procedure also have the potential of being employed to other
unexplored situations. The present computation can be called fully compact
and higher-order accurate as the scheme, boundary conditions and the source
term treatment are all fourth order accurate and compact. This is in contrast
to perhaps the only example [20] of HOC computation of this problem which
uses non-compact boundary condition and lower-order approximation to the
derivative source term for the vorticity-equation. The present method is not
only robust as evidenced from computations at difficult Rayleigh numbers, but

also accurate as is seen from comparisons with reliable existing results.

A class of HOC schemes is then developed for the 2D unsteady convection-
diffusion equations with variable convection coefficients [35]. Unlike the earlier
HOC schemes [42,67], the present class of schemes is free from the restrictive
condition that the grid aspect ratio has to be unity. These schemes are first or
second order accurate in time depending on the choice of a weighted average
parameter and 4th order accurate in space. For a certain range of the param-
eter, the schemes are unconditionally stable. They efficiently compute both
transient and steady-state linear and nonlinear convection-diffusion. To bring
out different aspects of the schemes, they are used to compute the transient so-
lutions of three 2D linear and nonlinear convection-diffusion problems and the
time marching steady solution of the 2D lid-driven cavity flow problem. The
results obtained in all four cases are in excellent agreement with the analytical
as well as established numerical results. Again one of these schemes, namely,
(9,9) is employed to study the double-diffusive natural convection in a vertical
porous annulus. This is perhaps the first instance in which an HOC algorithm
has been applied to a heat-mass transfer problem. The results compare very

well with numerical results wherever available.

The most significant contribution of this work, however, is the development of
an HOC finite difference scheme for the 2D steady-state convection-diffusion
on nonuniform grids without transformation [36]. Conventional finite differ-

ence methods on nonuniform grids involve transformation between physical
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and computational space. In a significant departure from this convention, the
present method completely eliminates transformation, bringing in remarkable
simplicity and efficiency to the solution procedure. Dispensing with transfor-
mation brings the additional benefit of decrease in computational effort as the
method deals with smaller number of terms at each grid point. Because of
clustering, the method is seen to produce accurate solution of complex wall-
bounded flows with significantly small number of grid points with resultant
economy. For instance, a 31 x 31 grid is found to be good enough to capture
the flow details including the tertiary vortices for the lid-driven cavity prob-
lem up to Re = 1000. For the same problem, the method accurately computes
flows at much higher Re’s and reveals some hitherto unreported flow features.
Computations are carried out also for the much-examined backward-facing
step flow and significantly, the results are much closer to the experimental
compared with any other numerical results in literature. Formulations for the
scheme are also developed for orthogonal curvilinear co-ordinate systems (see
Appendix C).

An important task in CFD is to efficiently solve the sparse linear systems
arising from the discretized PDEs. The coefficient matrix resulting from the
HOC discretization of the PDEs is not generally diagonally dominant. In
situations like this, conventional iterative methods such as Gauss-Seidel cannot
be applied to solve the algebraic systems. This problem is circumvented by
employing various advanced iterative solvers like Conjugate Gradient (CQG)
algorithm for the pure diffusion in the uniform formulation and, Biconjugate
Gradient (BiCG), Biconjugate Gradient Stabilized (BiCGStab) and hybrid
BiCGStab algorithms at other situations. Moreover, for the cases studied, the
present HOC discretizations provide matrices that are fairly well-conditioned
and hence the complexity of constructing an efficient pre-conditioner is avoided

throughout the work.
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1.5 Organization of the Thesis

The present dissertation has been arranged in seven chapters. Chapter 2 briefly
discusses the theoretical aspects of the HOC methodology for 2D steady-state
convection-diffusion in the present context. Chapter 3 describes the fully HOC
method and its application to the thermally-driven cavity flow problem. Chap-
ter 4 describes the class of transient HOC schemes developed in details with
an analysis of the diffusive and anti-diffusive natures of the schemes, stability
analysis and numerous applications. Chapter 5 includes the details of appli-
cation of the (9,9) scheme developed in Chapter 4 to a heat-mass transfer
problem, namely, the double-diffusive natural convection in a vertical porous
annulus. Development and application of the HOC finite difference scheme
on nonuniform grid without transformation for steady-state 2D convection-
diffusion is discussed in Chapter 6. Chapter 7 summarizes and comments on

the whole work and discusses scope for future work.
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Chapter 2

THEORETICAL ASPECTS OF
HOC SCHEMES

This chapter briefly describes the development of HOC schemes [42,66] for 2D
steady-state convection-diffusion on uniform grids. The technique employed
is the use of the original PDE, as mentioned earlier, to replace some of the

derivatives.

2.1 2D Steady-State Convection-Diffusion

The 2D steady-state convection-diffusion equation for a transport variable ¢

on some domain may be written as

0¢

o9
—aV? u(z,y)=— +v(z,y)=— = s(z,y), 2.1
¢ +u(z,y) 5+ y)ay (z,y) (2.1)
where a(> 0) is a constant diffusion coefficient, V? is the Laplacian operator
0? 0?
given by V? = 92 + 8—@/2’ u and v respectively are the convection velocities

in - and y-directions and s is the source term such as the body force. This
equation is representative of almost all the fluid dynamics problems involving

the convection and diffusion of many flow variables such as mass, heat, energy,
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vorticity etc. With proper choice of a, u, v and s, it can also be used to

represent the complete steady-state 2D N-S equation.

Non-dimensionalization of the governing equations many a time simplifies the
task of flow simulation. This can be accomplished for equation (2.1) by choos-
ing a characteristic length L, a characteristic velocity U, and a characteristic

value @ of ¢ (say, for example on the boundary) and letting

*

and y* = (2.2)

SIS

On omitting the asterisks for the sake of convenience, the non-dimensional

convection-diffusion equation can be written as

0 19)
V7t el ) 90 + (s, y)a—j = f(a,y), (2.3)

where the diffusion coefficient is now set to unity so that the magnitudes of

UyL U,
c(z,y) = ~=u(z,y) and d(z,y) = ——v(z,y) determine the ratio of convec-
a a
L2
tion to diffusion and f(z,y) = —(I)s(x, y) may be called the forcing function.
a

The term Ul is known differently for different fluid flow situations. In most
of the viscoﬁs fluid dynamics problems it is called the Reynolds number Re
and in the field of heat transfer, the Péclect number Pe. This Re or Pe
plays a crucial role on the solution procedure as well as the physics of the
problems. Throughout the present study, it is assumed that c, d, f and ¢
are sufficiently smooth which paves the way for HOC formulation of the 2D

convection-diffusion equation.

2.2 HOC Formulation

In order to construct an HOC formulation for equation (2.3), the solution
domain is chosen in such a way that it can be divided into some rectangular
sub-regions. Each sub-region is then further divided into uniform meshes of

square cells of which each vertex serves as a node and the distance between
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two successive nodes is h, a constant. If 2o < z < z,, Yo < y < y, is
the rectangular domain and ¢;; = ¢(z;,y,;) = ¢(zo + ih,yo + jh), the central

difference approximation to (2.3) yields
—850ij — 0305 + COuthij + dOydij — Tij = fij, (2.4)

where the truncation error is given by

B[ (e, P\ (o 0% 4
Tij—ElQ <63x3+day3> - (ax4+ay4)]“+0(h) (2.5)

To obtain a fourth order compact formulation for (2.3), each of the derivatives
of the leading term of (2.5) are compactly approximated to O(h?). In order to
accomplish this, the original PDE (2.3) is treated as an auxiliary relation that
can be differentiated to yield expressions for higher derivatives. For example
differentiation of (2.3) yields

o P 2*¢  Oc 0o d82¢ 0dogp Of

+ (2.6)

(9x3__8x8y2 08x2+%£+ 8x8y+%8_y_%
Do _ 0 B i eds |
ozt 0x202%y “or3 Ox 0%z  0z2 0x 0220y

2 2 2
0 0% 005 _of o
Ox 0x0y 0x%20y  Ox?

3 3 2 2
8¢):_8d) —|—Ca¢ %%+d@+@%—g (28)
3y’ O0x?0y  Oxdy Oyodr 0% Oydy Oy

o _ o o0 e Feds
oyt 0x20% 68x82y Oy 0xdy  0y? Ox oy?
0d 0? 0?d o 0?
LT, o

dydy 2oy Oy?

Substitution of equations (2.6)-(2.9) into equation (2.5) at the (7, j)th node

and some simplifications, yield

h? [o0) Lot 03¢ dc 0d 0%¢
o= 2l d AR
Tii 12 l {8x28y2 * CaxayQ * 0x20y * Oy * or ¢ 0xdy *
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dc\ 0%¢ 82¢ 0%c 0%  Oc dc\ 0¢
2 o0C) 09 2 oc¢c oJc ~o0c ,0c) 09
+ (C 28x> Ox? + (d 8y> 0y? (8:52 + 0y? “or day ox
0%d 0*d 0od o6 02f 0*f  Of 8 f
£ c d AT AT AL R bt
8y dy

or?  0y? “or 8y
+ O(hY) (2.10)

All the derivatives and cross-derivatives appearing in the RHS of (2.10) have

O(h?) approximations. For example

%
8x282y

¢ 0%¢
0x40%y = 0x20%y

B2

= 030, ij — 19 l 1 + O(h") (2.11)
ij

The derivatives appearing in the RHS of equation (2.10) are substituted by

these O(h?) approximations following which the fourth order accurate HOC

scheme for equation (2.3) becomes

—iibodi; — Bij0rdi + Cijbadi; + Dijbydi
2
- %[535;—cz-j5z52 dij028, — Yij0s0y) b3 = Fyj, (2.12)

where &, and 4, are the first and ¢, and 6, are the second order central differ-
ence operators along - and y-directions respectively and the coefficients «j,
,61']', Yijs Cz'j, Dij and Ej are as follows:

h2
=1+ 12( — 20,¢i5), (2.13)
h2
Bi=1+15 (d2 26,dy;), (2.14)
Yij = 5yCz'j — i + 024, (2.15)
h2
Cij = cij + 15(0 + 0, — ci0s — digy)cij, (2.16)
h2
Dij = dz’j + _((52 + 52 - c,-j(sm — dij(sy)dij, (217)
= fij + (52 + 0y — €305 — dijdy) fij- (2.18)
p+q

It is to be noted here that as p,q < 2 for the terms of the type on
0xPOy1

the RHS of (2.10), the central difference approximation to those terms do not
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Figure 2.1: The 9-point HOC stencil.

extend beyond one mesh length away from the point about which differences
are taken. Therefore, the HOC computational stencil is always restricted to
a maximum of nine points as shown in Fig. 2.1. Thus, the sparse coefficient
matrix resulting from this HOC discretization is of band-width nine. The issue
of using efficient iterative solvers for this system and the related numerical

issues will be addressed at appropriate places in the next chapters.
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Chapter 3

FULLY COMPACT
HIGHER-ORDER SCHEME
FOR BUOYANCY DRIVEN
CAVITY FLOWS

3.1 Introduction

HOC schemes seen so far for viscous fluid flow problems based on the strategy
described in Chapter 2 suffered from some drawbacks. For example, HOC
approximation to the source term which appears in derivative form in many
problems was not available. Issues such as this are addressed in this chapter
giving rise to some new developments. These developments are then combined
with an existing HOC scheme for the stream-function-vorticity (¢-w) form of
the N-S equations to compute the flow in the standard buoyancy driven square

cavity 1.

The problem of buoyancy driven square cavity with adiabatic horizontal and
differentially heated vertical walls has been the topic of extensive studies in
the past few decades. Along with the lid-driven cavity problem, it has become

1This study has been published in Physical Review E [34].



16 FULLY COMPACT HOC SCHEME

one of the most popular means for testing and validating numerical algorithms
and computer codes. Some reasons for this are: (i) its simple geometry with
no singularities throughout the cavity except at the corners and (ii) the avail-
ability of experimental and numerical data on this problem. The problem is
also attractive because of its relevance in varied applications such as nuclear
reactor insulation, ventilation of rooms, solar energy collection, crystal growth

of liquids, pneumatic transport etc.

Till date, the second order (spatially) accurate schemes, particularly the cen-
tral difference schemes have been used in a large number of CFD problems be-
cause of their straight-forwardness in application. In keeping with this trend,
in most of the previous attempts to tackle this problem, the schemes were
at most second order accurate in space. Time marching approach was used
in majority of the cases [17,19] to reach the steady-state solution. A second
order ADI scheme was used by Wilkes et al. [75] to produce results up to
a Grashof number of 10%; De Vahl Davis [18] presented the benchmark so-
lutions for this problem for Ra = 10 to 10° through a second order finite
difference scheme and Richardson extrapolation; Chenoweth and Paolucci [14]
used an FTCS explicit predictor corrector method, Hortman et al. [31] a fi-
nite volume multigrid method, and Ramaswamy et al. [54] a second order
finite element method. The regime of high Rayleigh number was considered
by Le Quéré [52] using a second order Chebychev polynomial approach and
Janssen and Henkes [32] with a finite volume discretization with fourth order
central interpolation scheme for the convective derivatives. Recently Tagawa
et al. [72] carried out numerical calculations with different schemes including
Utopia and Kawamura-Kawahara scheme for low Prandtl number regime. A
new pseudo-vorticity-velocity formulation and stream-function-vorticity (¢-w)
method have also been proposed by Ho et al. [29] and Comini et al. [16] respec-
tively. In perhaps the only previous example [20] where an HOC method was
used for the problem, computation were carried out upto a Rayleigh number
of 10%. The work used O(h*) discretization of the governing equations, but the
boundary treatment was not compact and the derivative source term treat-

ment was not higher order accurate. The present work computes the laminar
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solution of the problem starting with a moderate value of Ra = 10® and going
upto a value as high as 107 (with Boussinesq approximation, the flow becomes
unstable at an Ra very close to 2 x 10® [14,52]) with the fourth order accurate
HOC scheme described in Chapter 2. The temperature gradient source term
in the vorticity equation is also discretized using a O(h*) compact scheme and
smoothly integrated to the solution procedure. This strategy seems to have
the potential of being usefully employed in similar situations, especially, to
the pressure gradient term in the extension of HOC to the primitive variable
formulation of the N-S equations. Also, the boundary conditions for vorticity
and temperature are compact and O(h?). In particular a compact temperature
Neumann boundary condition has been developed adopting a novel approach.
Because of compactness and higher order accuracy, this treatment may be
taken as the model for similar computations. Thus unlike the previous at-
tempts, the present method is fully compact and fully higher order accurate
with associated advantages. Another attractive feature of the computation is
the use of CG [37] and hybrid BiCGStab [62] algorithms for solving the lin-
ear algebraic equations and this improves the convergence behaviour of the
algorithm. As expected, the results are very accurate and even coarse grid
results compare very well with previous computations. Overall, besides open-
ing up new possibilities, the method may be considered an efficient one for

computation of flow for this physical configuration.

3.2 The Problem

The problem considered here is the 2D incompressible steady-state flow of
a Boussinesq fluid of Prandtl number (Pr) 0.71 in an upright square cavity
of side H (Figure 3.1). Both the vertical walls are isothermal; the left wall
at temperature 7} is hotter than the right wall at temperature 7,. Both
the horizontal walls are insulated. Natural convection starts owing to the
temperature difference between the left and right walls. Body forces are present

in the form of gravitational force which acts in the negative y-direction. The
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Figure 3.1: Schematic view of the differentially heated square cavity.

governing equations of the problem can be written as:

ou Ov
B + 6_y =0, (3.1)

ou ou  10p

2
A N 2
“ax+”ay P vVZu, (3.2)
ov ov 10p 9
AP T—T, .
uz- +vay pay+gﬁr( 0) + vV, (3.3)
ua—T va—T = aVT, (3.4)
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where u, v, T, p, p, v, a and Br are the velocity components along z- and
y-axes, temperature, density, pressure, kinematic viscosity, thermal diffusivity

and the coefficient of thermal expansion of the fluid respectively. Tj is a ref-

0? 0?

erence temperature, g is the acceleration due to gravity and V2 = 92 + B
The boundary conditions for the vertical walls are:

u =v=0, T=T, at =0 and

v =v=0, T=T, at z=H V uy, (3.5)
and for the horizontal walls are:

or
u=uv=0, 8—y:O at y=0 and y=H V =z (3.6)

To make the above system dimensionless, we introduce the following non-

dimensional variables:

x Y uH vH T—-1T,
R = L e e, TFP=—— d
'/'Ll H’ y H’ u a b ,U a ) Th—Tc’ a‘n
. pH?
= —. 3.7
p o (3.7)

The dimensionless form of the equations (3.1)-(3.4) on dropping the asterisks

become

ou  Ov
£ + oy 0, (3.8)
ou du  Op

T2 = P ppv2 .
Us +U8y pe + Prv-u, (3.9)
ov ov Op 9
— — = —— Pri’'+ P 1
“ax+”ay 6y+Ra rT + PrV-u, (3.10)
or  or 9
— — =VT A1
u8x+U8y VT, (3.11)

where Ra = g8 (T, — T,)H? /va. and Pr = v/a are the dimensionless parame-
ters mentioned earlier. Now introducing dimensionless vorticity w and stream-

function 1, defined by
_Ou  Ov

w—a—y—a—x,

I
oy’ 0z’

(3.12)

and
(3.13)

u
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the equations (3.8)-(3.11) can be written as

ow ow or
— — = Prv? Pr— .14
uax—i-vay rV<w + Ra "o (3.14)
V2 = —w, (3.15)
or  oT 9
— — = V-T. 1
us- —|—vay \% (3.16)

If the reference temperature 7j is taken as being equal to 7., the dimensionless

boundary conditions become:

v =v=¢v=0, T=1 at z=0 and
u =v=9v=0, T=0 at z=1 V y, (3.17)
and
oT
u=v=1=0, 8—y:0 at y=0 and y=1 V ux. (3.18)

The vorticity boundary conditions are derived from equations (3.13)-(3.15).

The Nusselt number characterizes the rate of heat transfer across the cavity.
The local Nusselt number in the horizontal direction at any point in the cavity
is

or

Q(z,y) =uT — e (3.19)

Through any line parallel to the y-axis, this is given by

Nu, = /01 Q(z,y)dy. (3.20)

Finally, integrating Nu, along the horizontal direction, the average Nusselt
number is computed by
. 1
Nuz/ Nugdz. (3.21)
0

3.3 Discretization and Related Issues

As stated earlier, discretization of the governing equations in the the present
study are carried out by the HOC scheme described in Chapter 2. This was
also used in ref. [67] for the ¢-w form of the 2D steady-state N-S equations.
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3.3.1 Discretization of the Governing Equations

For the Vorticity equation (3.14), ¢, ¢, d and f in equation (2.3) are replaced

v
P_ Pr
ter 2, it is assumed that the forcing function is either known analytically or

by w, and Raa— respectively. In the HOC scheme outlined in Chap-
its discrete approximation is available. However, the forcing function in the
vorticity equation here is not explicitly known and is in derivative form. It
may be mentioned that in the earlier HOC simulation of the present physical
configuration [20] (using a mechanism different from the one used here), al-
though the overall accuracy of the scheme was fourth, the approximation to
this derivative source term was only second order accurate. In the following,
we proceed to obtain a compact fourth order accurate approximation of this

term applying again the mechanism of using the original PDE.

or| _
ox|..
ij
From equation (3.16),
’T| l T O*T  OudT *T v (')T]
ij

h? O°T \
lmT— E@Lﬁo(h ). (3.22)

o “ozoy? "oz "oz oz  owoy oz oy
= [552T+u52T+5u5T+v55T+5v5T} + O(h?).
(3.23)

Substituting equation (3.23) into equation (3.22) yields

or h?
Gl

—\ =9,T;
8.’E i g

0,0.T — ud2T — 8,ud, T — v0,8,T — 6,v6,T| ,Towm).

(3.24)
Also for equation (3.15), ¢ = ¢, c =d = 0 and f = w. Once w and @ are

obtained, the velocities u and v can easily be calculated in the following way:

oy B2 9%y \
Ugj = a—yij_ [511 T8 e ij"‘O(h );

and using equation (3.15),

R[] ow oAl 4
yij — = [—a—y - m] i} + O(h%),

Uz’j
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h2
Oytij + g[fsyw + 626,05 + O(RY). (3.25)

Likewise for the y-component of velocity,
h? 2 4
Finally, for the equation (3.16) ¢ =T, c¢=wu, d=wv, f=0.

For the calculation of heat flux Q(z,y) appearing in equation (3.19) across

the cavity, except at x = 0 and z = 1, the fourth order approximation of —
is computed using equation (3.24). At the vertical boundaries, in addition tl;)
the standard two point first order formula, the third and fourth order Jensen
formulae [64] have also been used. The Nusselt numbers Nu, and Nu are

calculated through numerical integration using Simpson’s rule.

It may be mentioned that the treatment of the first order derivative source
term mentioned earlier can easily be extended to second order derivatives as
well. One such situation arises in the solution of pressure Poisson equation
at the end of a ¥-w computation. However, the more important point is that
through this source term treatment, an HOC scheme for the primitive variable
form of the 2D N-S equations can be constructed as the pressure gradient
term in the momentum equation and the source term in the pressure Poisson

equation can now be handled.

3.3.2 HOC Wall Boundary Conditions

The stream-function 9 equals zero on the boundaries. At the corners, both u
and v do not vary in the z- and y-directions and therefore the vorticity is equal

to zero. Using forward differencing on the left wall, equation (3.13) yields,

U = T oo

ho*p h20%y  RBOMN
- _ sty _ v °Z¥ 4
a lézw 2022 6 0z3 24 Ozt 1j+0(h )

3

(3.27)
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As vy; equals zero, using equation (3.15), we have

h 0% ow 0% 0w ot
= _|stp+ 2 nofow
0 l“” ( 32>+ <8m+8x8y>+ <8x2+ax28y2 g
+ O(h*)
0? 0 Py P
Al f th — = — — =
so in view of the fact that oF =y (u) = ' B20F 0 0 on the left

0% 03 (6¢) 83
0x20y? &vay oz’ Oxoy?

wall and [using (3.13)], the above relation

becomes

h h? h 0w R (0w OPv
sty B sy, ROWY _9v 4
0= [ AT, w (5mw 2(%2) (8:62 axay2>]1j+0(h ).

T
As u = v = 0 on the walls, equation (3.14) yields V*w + Rag— = 0 and finally
i

from the above, the following fourth order accurate expression is obtained on
the left wall:

h h3
S L __+
ldmw 2w o, 24

( ) w—Ra5+T) ﬂéjdz ] =0. (3.28)
1,j

3

Similarly on the right wall:

h 2 3 3
[—5zw+§w h =5 w+;—(6w+Ra5 T)—h—é 520 ]

2% 0| =0 (329)

7j
On the bottom wall:
h h? h3
+ + 2 2 s+ —
léy Y+ Swt F(Sy W+t o (5$w + RaémT) —46$5y L = 0. (3.30)

’

On the top wall:

b B h 2 o,

’

Here space indices vary from 1 to m in both z- and y-directions.

On the top and bottom walls, we now proceed to develop a fourth order accu-

rate temperature boundary condition. These two walls are insulated and at a
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typical node (7, ), we may write

T 2 3T
,_ 0 _[yT h2 9

=_—= ————| +0(hY.
oy 6 8y3Lj

As on the boundaries V2T = 0, the last relation yields

h2
0= léyT + g(sﬁ(sy:r] o+ O(h").

ij
Thus the finite difference approximation of the temperature equation on the
insulated boundaries are:

T +Ticjpr 4T 501 = Tiprj—1 +Timy o1 + 415 5. (3.32)

Again HOC discretization of the energy equation (3.16) at the walls are given
by

Tivijer + Ticij + 4Ty + Ty + Ticayj)
+ (Tis1,j-1 + Ticrj—1 + 4T3 5-1) — 20735 = 0. (3.33)

From equations (3.32) and (3.33), it follows that, for the lower boundary,
Tiyio+Ticap+ 4T 0 + 2(Tiy10 + Timap) — 1075, =0, (3.34)
and for the upper boundary,

Tivim +Ticime1 + 4T 1 + 2(Tip1m + Ti1n) — 1075, = 0. (3.35)

This new approach used to develop the temperature boundary conditions on
the insulated walls can also be extended to similar physical situations for a
flow variable ¢, where, on the boundary, Z—n =0 and V?¢ =0 (n being the
direction normal to the boundary). One important situation of this nature
could be the pressure Poisson equation with zero pressure gradient boundary
conditions, when HOC algorithm is attempted to be extended to the primitive

variable formulation of the N-S equations.
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3.4 Numerical Issues

The nonlinearity of the governing equations necessitates an iterative solution
procedure. We use a decoupled algorithm where vorticity, stream-function and
temperature are solved in sequence separately, lagging the appropriate terms.
The successive iterates for the temperature have been slightly over-relaxed and
that for stream-function and vorticity have been under-relaxed. That is to say,

if ¢ is the unrelaxed update of ¢", then ¢"*! is given by
d’n—H = /\r(ﬁl + (1 - /\r)d)na

where ), is the relaxation factor and the superscripts n and n+ 1 are iteration

indices.

The HOC discretization of the stream-function equation yields coefficient ma-
trices which are symmetric and positive definite and therefore, CG [37] algo-
rithm has been used for them. On the other hand, those for the vorticity and
temperature equations provide matrices that are non-symmetric and hence,
for them, a hybrid BiCGStab [62] algorithm has been employed.

For computational advantage, the computed solution for a lower Ra can be
used as the initial guess for a higher Ra. The vorticity, stream-function and
temperature equations are solved in that order. The CG and hybrid BiCGStab
iterations used for solving these equations to a certain accuracy are termed as
inner iterations. The process of iteratively solving the three equations once
may be termed as one outer iteration which is to be repeated till convergence
is achieved. It may be noted that the number of inner iterations needed to
meet a particular stopping criterion generally reduces with the progress of
outer iterations. If the systems associated with -, w- and T-equations are
represented by Az = b, the inner iterations are terminated here as soon as
the residual ||Az — b||z (where ||.||2 is the I norm) falls below 1071°. Conver-
gence is considered to be achieved when the maximum difference between two

successive iterates for all of v, w and T falls below 10 1°.

2

It may be noted that for an n x n grid, 4 is an n? x n? matrix and, z and
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b are n2-component vectors. However, the actual storage required for A is
much less than n? x n? words, as the algorithm requires the storage of only
the non zero elements of A. Number of non zero entries of A for w-, ¥- and T-
equations are 9n? —20n + 24, 9n? — 32n + 32 and 9n? — 22n + 12 respectively. A
condition number analysis based on power method for eigenvalues, shows that
the matrices are well conditioned, the value of the condition number generally
being less than 1.3. This is the reason why no need for pre-conditioning was
felt while using the CG and hybrid BiCGStab algorithms. All computations

in this work were carried out on a HP C 200 machine using a sequential code.

3.5 Results and Discussion

The results of the present computations for a fluid of Pr = 0.71 with Ra
ranging from a moderate to a high laminar regime (Ra = 103 to 107) are
presented in this section through tables and graphs. Tables 3.1, 3.2 and 3.3

compare the computed values (on a 81 x 81 grid) of the absolute value of the

Table 3.1: Comparisons for |14/

Ra 103 104 10° 108 107
De Vahl Davis [18] 1.174 | 5.071 | 9.111 | 16.32 ——
Ramaswamy et al. [54] | 1.170 | 5.099 | 9.217 | 16.68 | 29.436

Le Quéré [52] —— | —— | == [ 16.38 | 29.362
Dennis [20] 1.175 | 5.074 | 9.113 | —— ——
Present 1.175 | 5.080 | 9.123 | 16.42 | 29.382

stream-function 1 at the mid-point of the cavity |t,:a|, the average Nusselt
number Nu and the maximum vertical velocity at the horizontal mid-plane
Umaz Tespectively with some well established results and the agreement with
most of them is found to be excellent. Tables 3.4-3.7 present the results for
Ra = 103 to 10° respectively on grids of sizes 21 x 21, 41 x 41 and 81 x 8.
Table 3.8 shows the results for Ra = 107 on a 81 x 81 grid. The quantities

presented here are: |94, the maximum horizontal velocity ., on the ver-
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Table 3.2: Comparisons for Nu.

Ra 10° | 10" | 10° | 10° | 107
Chenoweth et al. [14] | 1.118 | 2.244 | 4.520 | 8.822 | 16.82
De Vahl Davis [18] | 1.118 | 2.243 | 4.519 | 8.800 | ——
Le Quéré [52] | == [ == [ 88251652
Hortmann et al. [31] | —— | 2.245 | 4.521 | 8.825 | ——
Saitoh et al. [57] | —— |2.242 | —— | 8712 | ——
Ball et al. [8] 1.118 | 2.244 | 4.522 | 8.825 | 16.52

Ho et al. [29] 1.118 | 2.248 | 4.528 | 8.824 | 16.52
Comini et al. [16] —— —— | 4.503 | 8.825 | 16.53
Present 1.118 | 2.245 | 4.522 | 8.829 | 16.52

Table 3.3: Comparisons for v,,;.

Ra 10° | 10° | 10° | 10° 10°
Chenoweth et al. [14] | 3.695 | 19.62 | 68.63 | 220.8 | 699.0
De Vahl Davis [18] 3.697 | 19.62 | 68.63 | 219.4 ——
Ramaswamy et al. [54] | —— | 19.62 | 68.64 | 232.97 | 717.04
Le Quéré [52] | —— | == [220.56 | 699.2
Saitoh et al. [57] —— | 19.62 | —— |216.76 | ——
Ho it et al. [29] 3.697 | 19.63 | 68.63 | 219.86 | 705.3
Hortmann et al. [31] | —— | 19.63 | 68.64 | 220.46 | ——
Dennis [20] 3.698 | 19.63 | 68.64 | —— ——
Present 3.697 | 19.61 | 68.61 | 221.66 | 696.2

tical mid-plane together with its location, vy,e, together with its location, Nu,
the average Nusselt number Nu 1 on the vertical mid-plane of the cavity, the
average Nusselt number Nuy on the hot wall, the maximum value of the local
Nusselt number Nug,q. on the hot wall and the minimum value of the local

Nusselt number Nug,,;, on the hot wall together with its location.

Table 3.9 shows the percentage errors of different variables due to refinement
of grid from 41 x 41 to 81 x 81. The grid-independence of the results is evident
from this and Tables 3.4-3.7 as the variation in results is insignificantly small

with grid refinement. Owing to high order (viz. fourth) accuracy of both
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Table 3.4: The solutions for Ra = 103.

Grid size | [Ymial | Umaz Umaa Nu | Nu 1 Nug | Nuomaz | NUomin
(v) (z) (v) ()

21 x 21 1.178 3.647 3.675 1.116 | 1.120 | 1.115 1.494 0.697
(0.800) | (0.200) (0.100) | (1.000)

41 x 41 1.176 3.642 3.699 |1.117 | 1.118 | 1.117 1.503 0.693
(0.800) | (0.175) (0.100) | (1.000)

81 x 81 1.175 3.650 3.697 |1.118 | 1.118 | 1.118 1.505 0.692
(0.813) | (0.175) (0.088) | (1.000)

Table 3.5: The solutions for Ra = 10%.

Grid size | |[Ymia| | Umas Vmax Nu | Nu | Nug | Nugmas | Nttomin
(y) (z) (y) (y)

21 x 21 5.165 | 16.312 | 19.520 | 2.246 | 2.259 | 2.219 3.451 0.599
(0.800) | (0.150) (0.150) | (1.000)

41 x 41 5.097 | 16.265 | 19.662 | 2.245 | 2.249 | 2.239 3.511 0.588
(0.825) | (0.125) (0.150) | (1.000)

81 x 81 5.080 | 16.203 | 19.613 | 2.245 | 2.246 | 2.243 3.526 0.586
(0.825) | (0.125) (0.150) | (1.000)

Table 3.6: The solutions for Ra = 10°.

Grid size | [Ymial | YUmaz Umaz Nu | Nu 1 Nug | Nugmaz | Ntomin
(v) (z) (v) (v)

21 x 21 9.172 | 36.375 | 66.326 | 4.507 | 4.502 | 4.321 7.001 0.809
(0.850) | (0.050) (0.100) | (1.000)

41 x 41 9.142 | 35.156 | 68.138 | 4.522 | 4.523 | 4.479 7.519 0.748
(0.850) | (0.075) (0.100) | (1.000)

81 x 81 9.123 | 34.825 | 68.606 | 4.522 | 4.522 | 4.512 7.670 0.733
(0.850) | (0.063) (0.088) | (1.000)

the scheme and the boundary conditions, high quality solutions are obtained

with as coarse a grid as 21 x 21. The Nusselt numbers which are presented
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Table 3.7: The solutions for Ra = 10°.
Grid size | |Ymia| | Umaz VUmaa Nu | Nu 1 Nug | Nugmaz | NUomin
(y) (z) (v) (y)
21 x 21 | 15.542 | 63.635 | 213.397 | 8.491 | 8.357 | 7.399 | 11.557 1.267
(0.850) | (0.050) (0.150) | (1.000)
41 x 41 | 16.442 | 66.515 | 210.696 | 8.815 | 8.807 | 8.525 | 15.761 1.095
(0.850) | (0.050) (0.050) | (1.000)
81 x 81 | 16.420 | 65.332 | 221.658 | 8.829 | 8.829 | 8.763 | 17.018 1.007
(0.850) | (0.038) (0.050) | (1.000)
Table 3.8: The solutions for Ra = 107.
Grid size | |Ymial | Umas Umaa Nu | Nu L Nug | Nuomazr | NUomin
(y) (z) (y) (v)
81 x 81 | 29.382 | 155.82 | 696.24 | 16.52 | 16.51 | 16.08 | 34.925 1.509
(0.863) | (0.025) (0.025) | (1.000)
Table 3.9: Percentage errors.
Ra ‘wmzd| Umaz | Umaz N—U N’U,% NU() NUOmaz NuOmin
10° | 0.05 | 0.03 | 0.01 | 0.09] 0.00 | 0.09 | 0.13 | 0.14
10° | 0.33 | 0.39 | 0.25 | 0.00| 0.13 | 0.18 | 043 | 0.34
10° | 0.21 | 0.95 | 0.68 | 0.00 | 0.02 | 0.73 | 0.66 | 2.05
105 0.13 | 1.81 | 4.95 | 0.16 | 0.25 | 2.72 | 7.39 | 8.74
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T
Table 3.10: Effect of order of accuracy ofa— atx=0and 1 on Nu’s.

ox
Ra | Order | Nu Nu 1 Nuy | Nugmaz | NUomin
(v) (v)
O(r®) | 1118 | 1.118 | 1.118 | 1.505 | 0.692
103 (0.088) | (1.000)

O(h*) | 1.117 | 1.116 | 1.118 | 1.505 | 0.692
(0.088) | (1.000)
O(h®) | 2245 | 2.246 | 2.245 | 3.527 | 0.587
10* (0.150) | (1.000)
O(h*) | 2.244 | 2.245 | 2.245 | 3.528 | 0.587
(0.150) | (1.000)
O(h®) | 4522 | 4.522 | 4.530 | 7.710 | 0.737
105 (0.088) | (1.000)
O(h*) | 4.521 | 4.522 | 4.538 | 7.730 | 0.737
(0.088) | (1.000)
O(h®) | 8.831 | 8.829 | 8.967 | 17.789 | 1.022
108 (0.038) | (1.000)
O(h*) | 8.830 | 8.829 | 9.028 | 17.980 | 1.024
(0.038) | (1.000)
O(h?®) | 16.530 | 16.515 | 17.668 | 42.369 | 1.561
107 (0.025) | (1.000)
O(h*) | 16.532 | 16.515 | 17.846 | 42.175 | 1.565
(0.025) | (1.000)

in Tables 3.4-3.8 are calculated using the first order approximation to 8_T at
the vertical walls. The same Nusselt numbers estimated through the uge of
the third and fourth order Jensen formulae [64] are presented in Table 3.10.
Comparisons amongst these Nusselt numbers clearly shows that except for the
values of Nug and Ntugmae calculated with the first order formula at Ra = 107,
all the other estimates are in very close agreement, in particular, the values
calculated with third and fourth order formulae. Table 3.11 gives the CPU

time for the computations carried out.

Figure 3.2 shows the streamlines, the vorticity contours, isotherms and the

Nusselt number distribution in the cavity for Ra = 103. Figures 3.3-3.6 show
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Table 3.11: CPU time (sec) for different Ra’s.

Grid

Ra | 21 x 21 [ 41 x 41 | 81 x 81
103 | 5.66 30.75 | 2114.60
104 | 9.17 53.50 | 4051.81
105 | 25.49 | 909.45 | 7209.11
106 | 575.00 | 2210.90 | 10811.23
107 | ——— | ——— | 72843.52

the same for Ra = 10%, 105, 105 and 107 respectively. (Of the three numbers
of the first three parts of the these figure captions, the number to the left
of the parantheses represents the minimum contour value whereas the one
at right represents the maximum and the number within the parantheses is
the uniform interval at which the contours are plotted.) The contours and
distributions bear very close resemblance with similar figures presented by
De Vahl Davis [18], Le Quéré [52], Ramaswamy et al. [54], Chenoweth and
Paolucci [14] and Hortmann et al. [31].

De Vahl Davis [18] obtained his results using an FTCS scheme of second or-
der spatial accuracy in conjunction with Richardson extrapolation; similarly
Chenoweth and Paolucci [14] used a second order accurate method followed
by three point Richardson extrapolation and claimed their results to be sixth
order accurate. It may however be noted that these extrapolated solutions
are obtained only at those nodes that are shared by different levels of grids.
Previously, need to use extrapolation to obtain higher order accurate solution
using a lower order accurate scheme was probably necessitated by the absence
of well-examined HOC schemes. In contrast, the present work obtains high
quality solutions with a fourth order HOC scheme on a single coarse grid. The
computations use De Vahl Davis’ non-dimensionalization to obtain reasonably
accurate solution even for a Rayleigh number as high as 107, although Le

Quéré [52] remarked that De Vahl Davis’ dimensionless form is inappropriate
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Figure 3.2: For Ra = 10°, (a) streamlines, at -1.175 (0.078) 0, (b) vorticity
contours, at -32.02 (5.55) 51.25, (c) isotherms, at 0 (0.0625) 1 and (d) the
Nusselt number distribution across the cavity.
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Figure 3.3: For Ra = 10%, (a) streamlines, at -5.079 (0.34) 0, (b) vorticity
contours, at -124.90 (36.80) 427.17, (c) isotherms, at 0 (0.0625) 1 and (d) the
Nusselt number distribution across the cavity.
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Figure 3.4: For Ra = 10°, (a) streamlines, at -9.633 (0.60) 0, (b) vorticity
contours, at -606.95 (205.07) 2622.89, (c) isotherms, at 0 (0.0625) 1 and (d)
the Nusselt number distribution across the cavity.
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(c) ()

Figure 3.5: For Ra = 10°%, (a) streamlines, at -16.86 (1.105) 0, (b) vorticity
contours, at -3288.5 (1246.35) 1528.8, (c) isotherms, at 0 (0.0625) 1 and (d)
the Nusselt number distribution across the cavity.
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Figure 3.6: For Ra = 107, (a) streamlines, at -30.32 (2.10) 0.049, (b) vorticity
contours, at -18610 (6495.26) 86313.5, (c) isotherms, at 0 (0.0625) 1 and (d)
the Nusselt number distribution across the cavity.
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Figure 3.7: The (a) hot and (b) cold wall Nusselt number for different Ra.

for the Rayleigh number regime beyond 10° and used a slightly different scaling.

For the range of Rayleigh numbers considered here, there is generally a centro
symmetry of velocity, vorticity and temperature distribution. This is obvious
from the streamlines and vorticity contours and the isotherms in parts (a), (b)
and (c) of Figures 3.2-3.6. Secondary vortices appear at Ra = 10° and persist
for higher Ra’s. At Ra = 107, recirculation regions are seen to appear at the
upper left and lower right corners (Figure 3.6 (a)). From part (b) of Figures
3.2-3.6, on the vertical walls, boundary layer thickness is seen to progressively
decrease as Ra increases. Figure 3.7 shows the variations of local Nusselt
numbers along the hot [(a)] and the cold [(b)] walls. It is seen from the figures
that while the location of the maximum local Nusselt number at the hot wall
progressively moves downwards as Ra increases, for the cold wall, the opposite

happens. These observations tally with those of earlier investigators.

3.6 Conclusion

This work is concerned about fully HOC method for problems like the ther-

mally driven square cavity with adiabatic horizontal walls and differentially
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heated vertical walls. The present study deals with flows in the region of Ra’s
varying from 10% to 107. In the previous (probably the only) example of HOC
computation [20] for this problem, the difficult cases of Ra = 10% and 107

have not been studied. Also, the boundary conditions are not compact and
or

the derivative source term that appears in the vorticity equation (viz. 8—3:)
has been resolved at least to second order accuracy. The present work, be-
sides including the results for the high Rayleigh numbers of Ra = 10® and 107,
employes an algorithm which is uniformly fourth order accurate and compact
in the discretization of the governing equations, treatment of the boundary
conditions and source term resolution. This is the reason why the solution
procedure may be termed as fully compact higher order method with the as-
sociated advantages. The no-heat-flux boundary condition at the adiabatic
walls has been imposed through a special strategy taking care to maintain
compactness at higher accuracy. The work also achieves higher-order com-
pact resolution of the source term and its easy assimilation to the solution
procedure. Another fact that we come across in course of the work is that
Le Quéré’s [52] observation about De Vahl Davis’ non-dimensionalization [18]
being not adequate beyond Ra = 10° may not be correct as computation has
been carried out here with the same non-dimensionalization with sufficient ac-
curacy. Also, in course of the estimation of the hot wall Nusselt numbers, De
Vahl Davis [18] observed that varying the order of approximation of the finite
difference formulae produced significantly different values. But in the present
calculations, close agreement amongst the Nusselt numbers estimated through
approximation of g—f at the vertical walls with formulae of three different
orders show that the solutions obtained by the present method are indeed
very accurate. Finally, use of CG and hybrid BiCGStab algorithms to solve
the symmetric and non-symmetric algebraic systems at every outer iteration
makes the solution procedure robust. The method also has the advantage that
the fully HOC method used provides matrices that are well-conditioned and

hence the complexity of constructing an efficient pre-conditioner is avoided.



Chapter 4

HOC SCHEMES FOR
TRANSIENT
CONVECTION-DIFFUSION

4.1 Introduction

This chapter describes the development of a class of higher order compact
schemes with weighted time discretization for the 2D unsteady convection-
diffusion equation with variable convection coefficients '. The unsteady form

of the 2D convection-diffusion equation (2.3) in Chapter 2 can be written as

b2% _ 92 4 (e, 5,628 1 d(a,y, 1)

9
ot ox oy

= f(z,9,1), (4.1)

where b(> 0) is a constant, ¢ and d are as defined in Chapter 2, and f is a
forcing function analogous to the one in equation (2.3). The only difference
between the convection coefficients ¢, d and the forcing function f in equation
(4.1) and those in equation (2.3) is that they are now dependent on time ¢ as

well.

'Published in Int. J. Num. Meth. Fluids [35].
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There have been attempts earlier also to develop HOC schemes for transient
problems. Several explicit or partially implicit higher-order schemes were
developed for the unsteady incompressible N-S equations by Hirsh [28] and
Rai and Moin [53], and for compressible N-S equations by Lele [39]. Abar-
banel and Kumar [1], at about the same time, proposed some explicit schemes
based on the HOC approach for the Euler equations. These schemes are spa-
tially fourth and temporally second order accurate. Recently a second or-
der time accurate explicit scheme for 2D advection dominated flows has been
presented by Balzano [9]. Explicit schemes, though very easy to implement,
have a severe stability limit to the time step [5,6,63]. On the other hand,
implicit schemes can be applied to obtain time-accurate solution of an in-
herently unsteady flow or time marching steady-state solution with a larger
time step. Several higher-order implicit schemes for the one dimensional (1D)
time dependent convection-diffusion problems were developed by Noye and
Tan [45]. Later on, they also developed a 9-point scheme of third order spatial
and second order temporal accuracy for the 2D convection-diffusion equations
with constant coefficients [46]. The 2D fourth order accurate 9-point HOC
scheme proposed in ref. [67] was extended by Spotz to solve the unsteady
1D convection-diffusion and 2D diffusion equations [65]. Few other schemes
that have been developed for the unsteady 2D N-S equations are the implicit
higher-order accurate schemes of Strikwerda [71], the upwind compact schemes
of Yanwen et al. [78] and Sesterhenn [59], and the implicit weighted essentially
non-oscillatory scheme of Chen et al. [13]. Some of these schemes (for exam-
ple, [71]), however, could not adequately capture the high Reynolds number

regime of incompressible viscous flows.

The present work proposes a class of implicit HOC schemes for the 2D un-
steady convection-diffusion in line with the steady-state scheme of ref. [42]. In
the process it also removes, for the first time, the restriction of usual HOC
schemes [42,67] of having to use a grid aspect ratio of unity. The schemes
accommodate Dirichlet as well as Neumann boundary condition easily. They
solve very accurately and efficiently the unsteady 2D convection-diffusion prob-

lems including 2D incompressible N-S equations. One of the most important
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factors that determines the merit of a scheme for transient problems is the
time-wise accuracy [6,11] and the proposed schemes are temporally first or
second and spatially fourth order accurate. To test the robustness, accuracy
and efficiency of the schemes, they are applied to five pertinent test cases for
which numerical and/or analytical results are available. The first one serves as
a perfect example to illustrate inherent features of the schemes like diffusion
and anti-diffusion and their suppression. It is evident from the next two test
cases that the proposed schemes accurately capture the transient flow of prob-
lems governed by the 2D incompressible N-S equations even for a Reynolds
number as high as 10000. Also being implicit in nature, they capture the
steady-state time marching solutions very efficiently as can be seen from the
last two cases. Grid independence studies and error analysis has been carried
out wherever necessary. Comparison with analytical and established numerical

results shows excellent agreement.

4.2 Discretization and Numerical Procedure

For the HOC formulation (2.12) described in Chapter 2, the uniform mesh
size was the same in both z- and y-directions. In other words, the grid aspect
ratio had to be necessarily equal to unity. In this section, an HOC scheme is
first developed for the steady-state convection-diffusion equation on a grid free
from this restriction. Assuming the problem domain to be rectangular and
constructing on it a uniform rectangular mesh of steps h and k in the z- and
y-directions respectively, the truncation error 7;; of the CDS approximation
(2.5) of (2.3) is given by

w2 (. B¢ d'¢\ kK[, P ¢ 4 g4
Tz‘j—[ﬁ<26%_@ T2 My gy, TO0 ) )

As in Chapter 2, each of the derivatives in the leading TE term are compactly
approximated to O(h?, k?) using the original PDE (2.3). Finally, the O(h*, k*)
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approximation to equation (2.3) is obtained as

;i 020i; — Bij0udi; + Cij0uthij + Dijoydis
h? + k?

[5255 - Cijéwé; - dijéid — 71300y bij = Fij, (4.3)

where the coefficients «;j, B, 7ij, Cij, Dij and Fj; are as follows:

h?
a’z’j =1 + E(ij — 2(5$Cij), (44)
K*
Bij = 1+ 75 (di; — 28,dyy), (4.5)
2
f}/ij = m (h25zd” + k25ycij) — Cijdij7 (46)
L K,
Cij = (5 Cij(sw) + E(éy — dijéy) Cij, (47)
[ h2 ) ]{32
[ h2 ) k2
Ej = -1 + E(dx - C,’jdm) + 12(5 dwé )] fija (49)

As before, sufficient smoothness is assumed for ¢, ¢, d and f.

For unsteady case, equation (4.1) will be similar to equation (2.3), but the
coefficients ¢ and d are functions of =,y and ¢, and the expression on the right
hand side becomes f(zx,y,t) — b . Using forward difference for w1th a time

step At, we approximate the unsteady equation (4.1) as

AN

~

(6, — dijby)| 6 o,

k‘2
— aijég ﬁz]52 i+ Cijozdy; + Dijoy @
h* + k2

12

[5255 - Cijéa:é; — dzjégd ’)/”5 1) ] QS zg; (410)

where 67 denotes the forward difference operator and the superscript n stands

for the time level. The coefficients «j, Bij, Vij, Cij, Di; and Fj; are the same
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as those appearing in equations (4.4)-(4.9) and are to be calculated at the nth

time level. Equation (4.10) can be rewritten as

1 1 1 1
ST Wikki itk d’?—i——'_kll,j—ka = D D Wik ik Pk gk T 12F,
ki=—1ko=-1 ki=—1ko=—1
(4.11)
where
Witk jiks = Qithyjtks w;+k1,j+k2 = 12pitky ks T Qitky itk
At At
with )\1 = ﬁ, )\2 = P and
)\1 + )\2 1 Cijh d”k ’Y”hk'
Pi—1j-1 = 2 ( 6 12 " 19 + YR Gi—1,-1 =0,
XDk A+ Ao dijk (A 4+ A2) d;ik
Dij—1 = —X2fBij — 2” + 6 + 15 . -1 =b(1+ %),
)\1 + )\2 1 Cijh dmk ’Y”hk'
o _- _ _ =0
Pit1,5-1 9 ( 6 + 19 19 o1 |’ Qit1,5-1 )
/\10}1 /\1 +/\2 ciih (/\1 +/\2) ciih
Pinty = —hogy — TR e e gy = (140,
A+ A
Dij = 2A1045 + 2X28;5 — . 3 2, ¢;; = 8b,
)\10}1 /\1 +)\2 Ci'h()\l +/\2) c;qih
Dit1,j = — M0y 2” + 6 ! 1 . Qiv1; =b(1 — g ),
)\1 + )\2 1 Cz'jh d”k ’Yzjhk
s A _ =0
Pi—1j5+1 2 ( 6 12 + 12 24 ; gi—1,j+1 )
XDk A+ X dijk (M + Ao) d;ik
Dij+1 = — Aol + 2” + 5 N 1 Qi+ = b(1 — g ),
AL+ Ao 1 ¢ih  diik  vihk
Pivtin =775 <_6 t Tt T ) Gman =0
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A weighted average parameter y is now introduced through the use of the
forward time approximation of % such that ¢, = (1—p)t"+pt™ ™ for 0 < p <
1. Varying p provides a class of integrators; for example, forward Euler for u =
0, backward Euler for © = 1 and Crank-Nicholson for ; = 0.5. Consequently,
the coefficients w; g, j+x, and w;+k17j+k2 in equation (4.11) can be written as
Witkyjrks = 120Pitkyjiks T Gitkrjike A0 Wi 5o = 1200 — D)Pisky jiks +
Qitky,j+k, Tespectively, and F} on the right hand side of (4.11) takes the form
pF 4+ (1— p) F;. With these replacements, (4.11) becomes the HOC finite-
difference approximation for the unsteady 2D convection-diffusion equation
with fourth order spatial accuracy. All the schemes arising in this way are
implicit because of the operator under the brace in equation (4.10). The
accuracy of the schemes are O ((At)*,h* k*), with s = 1 or 2. Again, it
should be noted that for u = 0, the difference stencil requires 9 points in the
nth and 5 points in the (n + 1)th time level resulting in what may be called
a (9,5) scheme. Similarly, a (9,9) and a (5,9) scheme are obtained for u = 0.5
and g = 1 respectively. The HOC stencils emerging in this way have been

illustrated in Figure 4.1.

The system of equations (4.11) can be written in the matrix form as
AP = £(®"), (4.12)

where the coefficient matrix A is an asymmetric sparse matrix. For a grid of
size m x n, A has a dimension mn, and ! and f(®") are mn-component
vectors. Partitioning A, ®"*! and f(®") into sub-matrices corresponding to

the interior and boundaries, equation (4.12) can be written as

A, 0 0 0 0 optt f(®1)
0 Ag 0 0 0 L f(®5)
0 0 Ap 0 0 epHt = f(®n) |,
0 0 0 Ar 0 et f(®8)
0 0 0 0 Ag PRt f(®L)

where L, R, B and T stand respectively for the left, right, bottom and top
boundaries of the domain and D for the interior region. The block square
matrices Ag and A are of order m, Ay, and Ag are of order (n — 2), and Ap

is of order (m — 2)(n — 2). If boundary conditions are of Dirichlet type or



4.2 Discretization and Numerical Procedure 45

(n+1)th time level

(n+1) th time level
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Figure 4.1: Unsteady HOC stencils for (a) u =0, p = 0.5 and p = 1.0.

they result in explicit expressions for the transport variables, the sub-matrices
representing the boundary conditions are identity matrices. For an implicit

expression, they will be sparse matrices with the number of non-zero entries
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in a particular row depending upon the order of the scheme. The matrix Ap
which has at most nine non-zero entries in a particular row has the form shown

below. In matrix A, 0’s are rectangular null matrices of orders ranging from

m x (n—2) to m X (m — 2)(n — 2). The details of the elements of the column

vectors on the left hand side are as follows:

DL = [d12, - sP1p-1]", PB= [P0, - s Oma] s
(I’T = [¢1,na ce a¢m,n]T ; tPR = [¢m,2; ce a¢m,n—1]T

and
®p = [P22,- -, Pm—12, P23, -+ Pm—13; -,
¢2,n—la R ¢m—1,n—1]T .

On the right hand side, the (n — 2)-component vectors f(®[) and f(®R),
and the m-component vectors f(®3) and f(®%) correspond to the bound-
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aries whereas the entries of the (m — 2)(n — 2)-component vector f(®p) are
given by the right hand side of equation (4.11). Thus f(®") being known in
terms of the current transport variables, equation (4.12) can be solved with
an iterative method for the transport variables in the next time level. As
mentioned earlier, the coefficient matrix arising from the present HOC dis-
cretization is not diagonally dominant and conventional iterative methods such
as Gauss-Seidel cannot be used. In order to solve this system of equations,
conjugate gradient method (CG) [37] for pure diffusion (when ¢ = d = 0)
and a hybrid biconjugate gradient stabilized method (BiCGStab) [62] for
convection-diffusion have been employed without any pre-conditioning. For a
problem having Dirichlet or explicitly expressed boundary conditions, A will
have at most 2[m +n —2]4+9 x (m — 2)(n — 2) non-zero entries. Consequently,
the matrix-vector product A®"! required by the iterative solvers involves

2[m +n — 2]+ 81 x (m — 2)(n — 2) arithmetic operations only.

4.3 Stability Analysis

A von Neumann linear stability analysis of the schemes is now performed as-
suming the convective coeflicients c and d to be constants and forcing function
f to be zero for a particular HOC stencil with the (4, 7)th node at the centre.
If ¢, = Bre!%te!%J where I = /=1, B" is the amplitude at time level n,

and 0,(= 27h/A;) and 60,(= 27k/A;) are phase angles with wavelengths A,
n+1

and A, respectively, the amplification factor (= ), for stability, has to

Bn
satisfy the relation

&P —1<0.
Now ¢ can be found by substituting the expression for ¢} and d)?jﬂ
tion (4.11) and the stability criteria of the schemes becomes (details given in
Appendix A)

in equa-

2b

1—-2u) < .
=20 = R ) + L + PP

(4.13)
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cAt dAt

o Cy= E and cell Reynolds num-

Introducing Courant numbers C, =
bers Rey, = ch, Re, = dk, we obtain

(1—2p) [CoRe," (84 Rep) + CyRe, " (8+ Re})| <2 (4.14)

FTCS (u=0)
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Figure 4.2: The regions of von Neumann stability for different schemes.

In particular, if Re, = Re, = Re. and C, = C, = C, these yield the stability
condition

C(1 = o) < e

. 4.15
~ 8+ Re? ( )

It is seen that a scheme is conditionally stable for 0 < p < 0.5. The region
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of stability for this particular case represented by (4.15) together with that of
other schemes, viz. upwind, FTCS, and (9, 9) scheme of Noye and Tan [46] are
shown in Figure 4.2. Here, a scheme is stable in the region below its curve.
Though the conditional stability criterion is restrictive, particularly for large

Re,, for 0.5 < p < 1, the scheme is unconditionally stable for all values of Re..

4.4 Numerical Test Cases

In order to study the validity and effectiveness of the proposed schemes, they
are applied to three unsteady and two steady 2D test problems. The unsteady
problems considered are (i) the convection-diffusion of a Gaussian pulse, (ii) the
flow decayed by viscosity and (iii) the Taylor’s vortex problem. The remaining
two problems, where nonlinearity is very high and steady-state is arrived at in
a time marching fashion are, (iv) the lid-driven square cavity flow and (v) the
flow due to double-diffusive natural convection in a vertical porous annulus.
The last problem will be described in details in Chapter 5. As the first three
problems have analytical solutions, Dirichlet boundary conditions have been
used for them, whereas for the remaining two, both Dirichlet and Neumann

boundary conditions have been applied.

4.4.1 Problem 1

Consider equation (4.1) with f = 0 and constant convective coefficients in the

square 0 < z, y < 2 with initial condition given, as in [46], by

é(z,y,0) = exp [—b((x —0.5)% + (y — 0.5)2)] (4.16)

An analytical solution to this problem is

o(z,y,t) = 47:1— Teap l—L((w —ct—0.5)°+ (y —dt — 0.5)2)] (4.17)

The initial condition is a Gaussian pulse centred at (0.5, 0.5) with pulse height

1. The boundary conditions have been taken from the analytical solution given
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Figure 4.3: The initial and the numerical [(9,9), At = 0.00625] pulse at t=1.25.

by equation (4.17). For the sake of comparison of our results with those of
Noye and Tan [46], we have chosen b = 100 and ¢ = d = 80.

The initial pulse and the pulse at ¢ = 1.25 found numerically through the
present scheme are shown in Figure 4.3. A remarkably similar picture is ob-
tained from the analytical solution (Figure 4.4) where at ¢ = 1.25 the Gaussian

pulse moves to a position centred at (1.5,1.5) with a pulse height of %.

The average and the maximum absolute errors of different schemes including
the present ones along with their CPU times have been presented in Table 4.1.
Using the modified equivalent partial differential equation (MEPDE) [46] ap-
proach, it is found that if the time step is not small enough, the present (9,5)
and (5,9) schemes are not adequate to capture the original pulse. This fact
is also reflected in Figures 4.5 (a) and 4.6 (a). Table 4.2 depicts, at ¢t = 1.25,
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Figure 4.4: Surface plots of the (a) exact and (b) numerical [(9,9), At =
0.00625] approximation to the pulse in the subregion 1 < z, y < 2 att = 1.25.

Table 4.1: Errors and CPU times for Problem 1 at t = 1.25 with At = 0.0125

and h = k = 0.025.

Method Average|error| | Maximum|error| | CPU time (secs)
FTCS 3.94 x10°° 1.21 x 107" 1.67
Upwind 2.65 x 1073 6.63 x 102 3.34
Noye and Tan | 1.43 x 10°° 4.84 x 1074 ——
Present (9,5) | 1.49x 1073 3.74 x 1072 16.34
Present (5,9) 1.02 x 1073 2.25 x 1072 11.74
Present (9,9) | 1.59 x 107° 4.48 x 10™* 8.78
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the pulse height for different schemes and time steps. At the same instant, the

Table 4.2: The pulse height at t = 1.25 with different time steps schemes.

Method At Pulse height
0.00625 0.202492
(9,5) 0.00025 | 0.167553
0.0001 0.166852
0.00625 | 0.144447
(5,9) 0.0001 0.165983
0.00005 | 0.166210
0.0125 0.166863
(9,9) 0.00625 | 0.166540
0.0001 0.166656
Analytical 0.166667

location of the centre of the pulse is (1.5,1.5), the same as that of the exact
pulse, for all computations in Table 4.2. As seen from the same table, and

Figures 4.5 (a) and 4.7 (a), the first order time accurate (9,5) scheme shows a

Figure 4.5: Contour plots of the pulse in the subregion 1 < z, y < 2 att =1.25
for (9,5) scheme with (a) At = 0.00625 and (b) At = 0.0001.

pulse height higher than the exact because of the presence of in-built numerical
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anti-diffusion. To be precise, as seen from Figure 4.5 (a), the anti-diffusion

Figure 4.6: Contour plots of the pulse in the subregion 1 < x, y < 2 att = 1.25
for (5,9) scheme with (a) At = 0.00625 and (b) At = 0.0001.

Figure 4.7: Contour plots of the pulse in the subregion 1 < z, y < 2 at
t =1.25, (a) exact and (b) for the (9,9) scheme with At = 0.00625.

is prominent along the diagonal parallel to y = z, whereas little change in

diffusion is noticed along the diagonal parallel to y = —x. This asymmetry
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in diffusivity produces elliptic contours. On the other hand, the in-built nu-
merical diffusion in the (5,9) scheme explains the lower pulse height seen from
Table 4.2, and Figures 4.6 (a) and 4.7 (a).

that there is additive numerical diffusion along y = z, whereas diffusion along

From Figure 4.6 (a), it is clear

y = —x remains largely unaffected. Table 4.2 shows that the magnitudes of
numerical diffusivity and anti-diffusivity decrease with the reduction in time
step and with smaller values, highly accurate solutions can be obtained. This
is illustrated by the computed contours of Figures 4.5 (b) and 4.6 (b), and the
exact contours of Figure 4.5 (a). The (9,9) scheme gives a remarkably accurate
solution even with a relatively larger time step At = 0.00625, yielding a pulse

which is almost indistinguishable from the exact one as seen from Table 4.2

Table 4.3: Numerical and exact values of ¢ at different time levels with At =
0.00125 and h = k = .025 at the points (0.5,0.5) and (1.5, 1.5).

Time | ¢y, at Ger at | % error | @, at Ger at | % error
(0.5,0.5) | (0.5,0.5) (1.5,1.5) | (1.5,1.5)
0.125 | 0.175741 | 0.175731 | 0.006 | 0.000000 | 0.000000 | 0.000
0.250 | 0.009231 | 0.009158 | 0.797 | 0.000000 | 0.000000 | 0.000
0.375 | 0.000307 | 0.000299 | 2.675 | 0.000000 | 0.000000 | 0.000
0.625 | 0.000000 | 0.000000 | 0.000 | 0.000000 | 0.000000 | 0.000
0.750 | 0.000000 | 0.000000 | 0.000 | 0.000088 | 0.000084 | 4.762
0.875 | 0.000000 | 0.000000 | 0.000 | 0.004108 | 0.004070 | 0.933
1.000 | 0.000000 | 0.000000 | 0.000 | 0.040355 | 0.040379 | 0.059
1.125 | 0.000000 | 0.000000 | 0.000 | 0.126160 | 0.126390 | 0.181
1.250 | 0.000000 | 0.000000 | 0.000 | 0.166428 | 0.166667 | 0.143

and, Figures 4.4 and 4.7. This is also reflected by Table 4.3 which tracks the
exact and numerical pulse height at positions (0.5,0.5) and (1.5,1.5) with the
relative errors. It will be worthwhile to compare the time-wise efficiency of the
present (9,9) scheme with the (9,9) scheme of Noye and Tan [46] as both the
schemes are implicit and second order accurate in time. The CPU time ratio of
the (9,9) scheme of ref. [46] to FTCS scheme is approximately 447 (30851:69)
whereas the same for the present (9,9) scheme to FTCS is 5.257 (Table 4.1).

This clearly shows the superior time-wise efficiency of the present scheme.
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In the next three examples, the results obtained only through the (9,9) scheme
have been presented, although sufficiently accurate results are obtained using

the other two schemes as well.

4.4.2 Problem 2

The problem of flow decayed by viscosity [15,71,78] is governed by the 2D N-S

equations, which in non-dimensional form for an incompressible flow can be

written as 5 5
U v
bl TR 4.1
ox + oy 0 (4.18)
ou Ou Ou  Op 1 _,

ov ov ov op 1

— tu—+v—=—— +—V, 4.20

ot ox oy 0y Re ( )
in the square 0 < z,y < 7. Here u and v are the velocities in the directions x
and y, Re is the Reynolds number, and p the pressure. The initial conditions

are

u(z,y,0) = —coszsiny and wv(z,y,0) = sinzcosy, (4.21)

and boundary conditions at x =0, z = 7, y = 0 and y = 7 are given by the

following relations
. _ 2t . _ 2t
u=—cosxsinye & and v =sinzrcosye Ee. (4.22)
The analytical solution of this problem is

. 2 . 2 1 : _a
u=—cosxsinye R, v =sinxcosy e & and p = —Z(c0s2x+ sin 2y) e” e,
(4.23)
Introducing stream-function ¢ and vorticity w, equations (4.18)-(4.20) can be

rewritten as

— tu—+v— =V, (4.24)
e

V3 = —w, (4.25)
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where the initial and boundary conditions for ¢ and w can be derived from
equations (4.21) and (4.22). The pressure when needed, is obtained by solving

the pressure Poisson equation,

(4.26)

derived from equations (4.18)-(4.20).

Table 4.4: Numerical and exact values of u and v at (Z’ 10

levels, Re and grid sizes with At = .01.

™

) at different time

u v
Grid Exact Grid Exact
21 x 21 41 x 41 21 x 21 41 x 41
Re =50
t=0.1 |-0.217643 | -0.217636 | -0.217636 | 0.669812 | 0.669814 | 0.669814
t=20.5 |-0.214222 | -0.214184 | -0.214181 | 0.659179 | 0.659182 | 0.659182
t=1.0 |-0.210011 | -0.209945 | -0.209940 | 0.646122 | 0.646129 | 0.646129
Re = 10?
t=0.1 |-0.218086 | -0.218072 | -0.218071 | 0.671153 | 0.671155 | 0.671155
t=0.5 |-0.216417 | -0.216339 | -0.216334 | 0.665802 | 0.665807 | 0.665807
t=1.0 |-0.214328 | -0.214191 | -0.214181 | 0.659168 | 0.659181 | 0.659182
Re =10°
t=0.1 |-0.218523 | -0.218473 | -0.218464 | 0.672376 | 0.672364 | 0.672364
t=1.0 |-0.218684 | -0.218155 | -0.218071 | 0.671153 | 0.671154 | 0.671155
t=05.0 |-0.216842 | -0.216435 | -0.216334 | 0.665801 | 0.665807 | 0.665807
Re = 10*
t=0.1 |-0.218544 | -0.218523 | -0.218506 | 0.672511 | 0.672490 | 0.672485
t=1.0 |-0.219246 | -0.218652 | -0.218464 | 0.672383 | 0.672368 | 0.672364
t=05.0 |-0.218786 | -0.218428 | -0.218290 | 0.671832 | 0.671827 | 0.671826

Results for different time steps and grid sizes are shown in the Tables 4.4-4.6.
Table 4.4 shows the numerical values (for grid sizes 21 x 21 and 41 x41) of u and

v for four Reynolds numbers, viz. 50, 100, 1000 and 10000, at different time
) T . . .

levels at the point (Z’ E) together with the exact solutions. The comparison

of pressure obtained numerically (on 21 x21, 41 x41 and 81 x 81 grids) with the

exact pressure at the mid-point at ¢ = 0.1 for Reynolds numbers 100, 1000 and
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Table 4.5: Numerical and exact values of mid-point pressure for different Re

at t = 0.1 for different grid sizes with At = .001.

Re

Grid

21 x 21

41 x 41

81 x 81

Exact

100

0.495202

0.497305

0.497829

0.498004

1000

0.496933

0.499091

0.499624

0.499800

10000

0.497101

0.499273

0.499817

0.499998

Table 4.6: Numerical and exact values of vorticity at different times for differ-

ent grid sizes for Re = 10000 with At = .05.

Time Grid Exact
21 x 21 41 x 41
0.1 | 1.344416 | 1.344832 | 1.344970
1.0 | 1.342599 | 1.344190 | 1.344728
5.0 | 1.342201 | 1.343248 | 1.343653

Figure 4.8: Pressure contours for Re = 100 at t = 0.1 for the (a) numerical
and (b) exact results.

10000 are shown in Table 4.5 and similar results for vorticity [at point (%, 17r_0>]
are presented in Table 4.6 for Re = 10000 at three time levels t = 0.1,1.0 and
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5.0 (on 21 x 21 and 41 x 41 grids) with At = 0.05. Figures 4.8 and 4.9 show

the pressure and vorticity contours obtained through the present scheme for

2 RN o I

\0‘] 0 Q}/_/

8, QF \Q\g Qﬁ/f
\J 4 . /"— \1 R /’—
\(@ \ / :\/(?/ \J.s \ / A
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(a) (b)

Figure 4.9: Vorticity contours for Re = 100 at t = 0.1 for the (a) numerical
and (b) exact results.

Re =100 at time ¢t = 0.1 along with their exact contours. It is seen from these
figures that the exact and numerical contours are almost indistinguishable.
Obviously, grid independence is achieved with a grid as coarse as 21 x 21. It
has been observed that physically realistic results can be obtained even with a
11 x 11 grid. Strikwerda [71] mentions that his scheme is inadequate to provide
realistic pictures of flows for Reynolds number higher than 100. However the
present schemes are free from such limitations and results have been presented
even for Reynolds number as high as 10000 (Tables 4.4-4.6).

4.4.3 Problem 3

In this example, the Taylor’s vortex problem [13,78] has been considered with

the following initial conditions

u(z,y,0) = — cos(Nz)sin(Ny) and v(z,y,0) = sin(Nzx) cos(Ny) V0 < z,y < 27.
(4.27)
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The exact solution of this problem is given by

u = — cos(Nz) sin(Ny) e 2NRe  and gy = sin(Nz) cos(Ny) e~2N*t/Re
(4.28)
where N is an integer. Figure 4.10 depicts the computed Taylor’s vorticity

NSNS IS

Figure 4.10: Vorticity contours for the Taylor’s vortex at t = 2 for N = 4 and
Re = 1000 with At = 0.01.

contours for h = (23—1, Re = 1000 and N = 4 at t = 2 with At = 0.01. The vari-
ations of the horizontal velocity along the vertical centreline and the vertical
velocity along the horizontal centreline at time ¢ = 10 and Re = 100 for N=1,
2 and 4, along with the exact solutions have been presented in Figures 4.11 and
4.12. Variations of the velocities on either sides of the axes exhibit identical

behaviour with equal peak values.

It is seen that our results are in quite good agreement with the exact solutions.
The percentage error [78] of the maximum velocity (either u or v) has been

used to test the accuracy of the schemes. For Re = 20 and N = 1 at time
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Figure 4.11: Horizontal velocity along the vertical centreline for the Taylor’s
vortex problem at t = 10 for N = 1,2 and 4, and Re = 100.
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Figure 4.12: Vertical velocity along the horizontal centreline for the Taylor’s
vortex problem att = 10 for N = 1,2 and 4, and Re = 100.

= 10 on a 65 x 65 grid, this error with the (9,9) scheme is found to be
0.0071%, which is much less than the minimum error 0.038% obtained in [13]
with a grid size 129 x 129. For N =1, 2 and 4, the percentage errors of the
scheme are 0.054, 0.170 and 0.802 respectively when Re = 1000.
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4.4.4 Problem 4

The problem considered here is the 2D lid-driven cavity flow which is ex-
tensively used as a benchmark for code validation of the incompressible N-S
equations. The cavity is defined by the square 0 < z,y < 1. The governing
equations are given by equations (4.18)-(4.20). The top wall of the cavity
at y = 1 moving from left to right sets the fluid into motion. The veloci-
ties on that wall are v = 1 and v = 0, whereas on the other walls they are
u = v = 0. The stream-function vorticity formulations have again been used
here. A fourth order compact scheme for the Neumann boundary condition for

vorticity has been adopted. For example, on the left wall, the approximation

for the vorticity w can be found from the relation v = _8_¢’ equations (4.24)
x
and (4.25) as
h  h? h3
- 5:w0j - 5 + Fé; - Q(Revojéy — 5;) woj
h3 9
voj — 57 (0 9yv0; — 8/ wiy), (4.29)

where the suffixes 0 and j stand for the left wall and the vertical index respec-
tively. This results in an explicit expression for w on the left wall. Vorticities
on the other walls can be found in a similar way and for the corners, a third

order scheme [67] has been used.

Computations are carried out using uniform grids of sizes 41 x 41, 81 x 81
and 121 x 121 with a time step At = 0.0125 for Re = 100 and 1000. Steady-
state results have been compared with those of Ghia et al. [24] and Spotz
[64]. Table 4.7 depicts the steady-state values of 1, w and the location of
the primary and the secondary bottom vortices along with their horizontal
and vertical lengths [(H;) and (V])] for Re = 1000. Comparisons with the
results of Ghia et al. [24] and the best results of ref. [64] show very good
agreement. Figures 4.13 and 4.14 show the steady-state contours of stream-
function and vorticity respectively for Re = 100 and 1000. It is seen from the
figures that though the centre of the primary vortex is offset towards the top

right corner for Re = 100, with increasing Re, it moves towards the geometric
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Table 4.7: Steady-state vortex data for the lid-driven cavity problem for Re =
1000 (At =0.0125).

Vortex Method P w (z,v) H, Vi
Present | —0.1188 | —2.0618 | (0.5333, 0.5750)
Primary Ghia | —0.1179 | —2.0497 | (0.5313, 0.5625)
Spotz | —0.1172 | —2.0533 | (0.5250, 0.5750)
Present | 0.00023 0.3328 | (0.0833, 0.0750)
Bottom left Ghia 0.00023 | 0.3618 | (0.0859, 0.0781) | 0.2188 | 0.1680
( )
( )
( )
( )

Spotz | 0.00017 | 0.2392 0.0750, 0.0750
Present | 0.00177 | 1.1162 0.8667, 0.1167
Bottom right | Ghia 0.00175 | 1.1547 0.8594, 0.1094
Spotz | 0.00173 | 1.0441 0.8750, 0.1250

centre of the cavity (Figure 4.13). Also, as Re increases, several regions of
high vorticity gradients, indicated by concentration of the vorticity contours,
appear within the cavity (Figure 4.14). Figure 4.15 compares the horizontal
velocity along the vertical centreline with the results of Ghia et al. [24]. A
similar comparison for the vertical velocity along the horizontal centreline has
been shown in Figure 4.16. Agreement in both the cases is excellent. The
steady-state vorticity distribution on the moving wall obtained by Ghia et
al. [24] and on all the four walls obtained by the present (9,9) scheme are
shown for Re = 100 and 1000 in Figures 4.17 and 4.18. In case of the moving
wall, there is some oscillation in the vorticity profile at the left end, as reported
by Spotz and Carey [66,67] for fourth order accurate boundary conditions. In
general the solutions obtained through the present scheme, even on a coarser

grid, are in excellent agreement with the well-established results.
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Figure 4.13: Steady-state stream-function contours for the lid-driven cavity
problem at (a) Re = 100 and (b) Re = 1000.
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Figure 4.14: Steady-state vorticity contours for the lid-driven cavity problem
at (a) Re =100 and (b) Re = 1000.



4.4 Numerical Test Cases 65

I
: +
0.8+ i B
s
06 -
|
y N : Present (81x81 grid) for Re=100
04+ e - | Ghia(129x129 grid) for Re=100 o | 7
§ Present (121x121 grid) for Re=1000 -----
o ; Ghia (129x129 grid) for Re=1000 +
02f : a
\\\*\
- *)F-h\ ¥
0 L - N L L L L
-04 -02 0 0.2 0.4 0.6 0.8 1

Uu——

Figure 4.15: Steady-state results of the lid-driven cavity problem: the hori-
zontal velocity along the vertical centreline for Re = 100 and 1000.
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Figure 4.16: Steady-state results of the lid-driven cavity problem : the vertical
velocity along the horizontal centreline for Re = 100 and 1000.
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Figure 4.17: Steady-state vorticity on the four boundaries of the cavity for
Re = 100.
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Figure 4.18: Steady-state vorticity on the four boundaries of the cavity for
Re = 1000.
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4.5 Conclusion

A class of implicit HOC finite difference schemes has been developed with
weighted time discretization to solve the unsteady 2D variable coefficient
convection-diffusion equation. Both Dirichlet and Neumann boundary condi-
tions can easily be incorporated into the schemes. A linear stability analysis
shows that the schemes are unconditionally stable for 0.5 < y < 1. The
schemes are second or first order accurate in time according as p = 0.5 or oth-
erwise, and fourth order accurate in space. In a departure from the rigidity of
usual HOC schemes, the present schemes have been developed for a grid aspect
ratio which need not necessarily be unity. Three schemes viz. (9,5), (9,9) and
(5,9) for = 0, 0.5 and 1 respectively have been investigated. They are easy to
implement and the use of conjugate gradient and a hybrid biconjugate gradi-
ent stabilized algorithms for solving the algebraic systems arising at every time
level, makes the implicit procedure computationally efficient even in capturing
transient solutions. To bring out different aspects of the schemes, they have
been employed to compute the transient solutions of three 2D linear and non-
linear convection-diffusion problems and the time marching steady solution of
the 2D lid-driven cavity flow problem. The robustness of the schemes is illus-
trated by their applicability to the wide range of problems of varying physical
complexities represented, among others, by Reynolds numbers ranging from
50 to 10000. Computational efficiency of these schemes is reflected by the low
demand on CPU time. This is substantiated by a comparison of the CPU time
with an implicit scheme of identical temporal accuracy by Noye and Tan. The
results obtained in all the four test cases with coarser grids are in excellent
agreement with the analytical as well as established numerical results, under-
lining the high accuracy of the schemes. The implicit nature of the schemes
is fully exploited in arriving at the steady-state results for the lid-driven cav-
ity problem, where time-steps as high as 0.5 has been employed for some of
the computations. Because of being HOC in space, second order accurate in
time and implicit in nature, the (9,9) scheme in particular seems to have good
potential for efficient application to many problems of incompressible viscous

flows. This will be seen from the simulation of flows due to double-diffusive
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natural convection in a vertical annulus between two concentric cylinders in

the next chapter.



Chapter 5

HOC SIMULATION OF
DOUBLE-DIFFUSIVE
NATURAL CONVECTION IN
A VERTICAL POROUS
ANNULUS

5.1 Introduction

The phenomenon of natural convection in fluid saturated porous medium due
to the combined effects of temperature and concentration gradients can be
found quite extensively, both in nature and technology. Technological ap-
plications include grain storage installations, migration of moistures through
air contained in fibrous insulation, energy storage in solar ponds, contami-
nant transport in saturated soils and underground disposal of nuclear waste.
Double-diffusive flows in porous media are also seen in geophysical systems,
electrochemistry and metallurgy. All these factors have contributed to the re-
cent growth of interest in the study of this phenomenon, either experimental
or theoretical. Since analytical results could be found only for a very small

range of the large numbers of parameters present in the governing equations,
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numerical simulation has been the most popular choice for this physical config-
uration. Moreover, recent advances in numerical techniques has made possible
computations for those range of parameters, which have so far been beyond

the reach of analytical or numerical studies.

Earlier, most of the theoretical, experimental or numerical studies in natural
convection in porous media were confined mainly to double-diffusion in rectan-
gular cavities. For example, Trevisan and Bejan [73,74] investigated heat and
mass transfer by natural convection in a rectangular cavity subjected to various
boundary conditions. They developed an analytical Oseen-linearized solution
for the boundary layer regime valid for Lewis number Le = 1, and a similarity
solution for heat-transfer-driven flows for Le > 1. Apart from these, an ex-
tensive series of numerical experiments had also been carried out by them to
validate the analytical results and provide heat and mass transfer data for the
domain not covered by analysis. Recently, Alavyoon and his co-workers have
re-investigated the case considered in ref. [74] for aiding (N > 0) [2] and op-
posing (N < 0) [3] heat and mass fluxes, N being the buoyancy ratio. Besides
applying scale analysis to the two extreme cases of heat- and solute-driven nat-
ural convection, they also obtained analytical solutions, valid for stratified flow
in slender cavities. More recently, Mamou et al. [43] have demonstrated the ex-
istence of multiple steady solutions for square cavities for opposing flows. They
have further discussed the effect of the governing parameters on the domain
of existence of these multiple solutions. Also, flow structure and convective
heat transfer in a vertical porous annulus under the condition of constant heat
flux or isothermal heating or cooling along the vertical side walls have been
analyzed earlier both experimentally and numerically, but only for a single
component (i.e., either temperature or concentration gradient). For example,
theoretical and numerical studies of Havstad and Burns [27], the experimental
studies of Reda [55] and the series of experimental [50,51] and numerical [48,49]
studies by Prasad and co-workers were all confined to natural convection due

to temperature gradients only.

Thus, it is seen that most of the earlier investigatiors mainly focussed their

attention either on the study of double-diffusive natural convection in 2D rect-
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angular cavities or of natural convection due to temperature gradient only in
a vertical porous annulus. However, the rectangular models do not always
adequately represent the more practical situations in which the cavity is a
porous annulus bounded by two vertical concentric cylinders. Likewise, in
fluid mixtures saturating the porous media, where the variation of fluid den-
sity is induced by both temperature and solute, the dynamics of heat and
mass transfer can be very different from those driven by temperature distri-
bution only. The present study investigates numerically the double-diffusive
natural convection in a porous medium bounded by two vertical coaxial cylin-
ders for a wide range of the parameters governing the flow. Special emphasis
has been given to simulation of the flow in the annulus for an aspect ratio
A = 5. It is seen that, in most of the numerical studies for this physical con-
figuration [10,44, 60, 61|, spatially second-order accurate schemes, with some
form of the pressure-correction algorithms by Patankar [47] have been used.
The present study which uses the (9,9) transient higher-order compact (HOC)
scheme [35] developed in Chapter 4 is perhaps the only attempt till date where
an HOC algorithm has been applied to simulate flow involving both heat and
mass transfer. The work has two main objectives: firstly, to test the efficiency
of the present HOC scheme for the flow configuration under consideration and
secondly to compute the flow features for certain domains of the flow parame-
ters not explored earlier. It is found that the results obtained here on relatively
coarser grids, as can be expected of an HOC scheme, compare very well with

numerical results wherever available.

5.2 The Problem

The problem considered here is the flow in a rigid cylindrical annulus of height
H. whose inner and outer radii are r; and T; respectively, as shown in Figure
5.1. The annulus is filled with a fluid saturated porous medium. All bound-
aries of the annular cavity are impermeable and the inner and outer walls are

maintained at different uniform temperatures 7; and T, (7, > T,), and con-
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Figure 5.1: Schematic view of the vertical porous annulus.

centrations S, and S, (S, > S.) respectively. The top and bottom boundaries
of the enclosure are insulated and in the porous medium, Darcy’s law is as-
sumed to hold. The classical hypotheses used in this study are: (i) the Dufour
effect (heat flux produced by concentration gradient) is ignored, (ii) the Soret
effect (mass flux produced by temperature gradient) is ignored and (iii) the
fluid is assumed to be a Boussinesq fluid, i.e. both the porous matrix and the
saturating fluid are incompressible, and all thermo-physical properties of the
medium are constant, except density of the mixture which varies linearly with

temperature and concentration as:
p(T',8) = p: [L= o (T' = T7) = s (' = 5,)] (5.1)

where p, is the density at T = T,:, S = S,’, and Sr, Bs are the thermal and

solutal expansion coefficients respectively.

Under these assumptions, the equations governing the conservation of mass,

. . . . . ’ !
momentum, heat and concentration in cylindrical polar co-ordinates (r,z)
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can be written as [10]

a?n' (r'u) + ai' (rw') =0, (5.2)
v = ‘fg—f (53)
Jor Lo 6T" e -

/85’ /aS’ 1851 12
€ oF +u 5 +w 57 =DV S

V:Z_ 1 0 r' 0 +i
o or' 922

andu, w, K, u,p,p, g, T,S,a Dand ¢ indicate r and 2z components of

where

Darcy velocity, permeability of the porous medium, fluid viscosity, pressure,
fluid density, gravitational acceleration, temperature, concentration, thermal
diffusitivity, solutal diffusitivity and porosity of the porous medium. The heat

capacity o is defined as

o € (pC); + (1 — e') (pC),
B (PC)f

where (pC); and (pC), are the heat capacity of the fluid and the saturated

porous medium respectively.

The boundary conditions for the governing equations are

! ! ! ! 7

r=r, T =T, S=8, u=0. (5.7)

79
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r=r, T =T, §=85, u=0. (5.8)
, or  aSs' ,

=0,H; —=—+=0 = 0. 5.9

Z ) ) azl azl 7 w ( )

T, zZ)
(7", Z) - H Y
_ (u', w')H
(1, w) = 22
= t o
H%’
p H?
p="—,
po
T -T, S -8,
T_ AT’ ) S AS’ )
T,_T,’L+T; S,_S;L+S;
=Ty ST T

AT =T, -T, and AS =5, -85,

Cc

the non-dimensional governing equations may be written as

0
g(ru) + &(Tw) =0, (5.10)

_ 0P
U= o W= 62+Ra(T+NS), (5.11)

o Tug, tug = VT, (5.12)

oS S S 1,
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1 0
with V2 = 68 ( ) 0 The dimensionless boundary conditions are

or 022
o T=05 85=05 u=0 (5.14)
r= =0. =0. = .
A(’{/ o 1) 7 Y 7 7
r T=-05 S=-05 u=0 (5.15)
r = = —U. = —Uu. = -
A(K} _ 1) ) 7 7 7
8T BS
=0,1; , =0 5.16
H : . .
where A = — - is the aspect ratio defining the slenderness of the cavity,
Ty —T;
’ KgBrAT H
K= T—‘,’ is the radius ratio, Ra = KgprAT H (v being the kinematic viscosity)
T vo
: : BsAS' : :
is the thermal Rayleigh number, N = BoAT is the buoyancy ratio measuring
T

. « .
the relative significance of species and thermal diffusion, Le = — is the Lewis

number representing the ratio between the thermal and solutal diffusivities

and lastly, € = £ is the normalized porosity of the porous medium. It may be
mentioned thatain the expressions for IV, the thermal expansion coefficient (7
is positive for most of the fluids at ordinary temperature and pressure, whereas
the solutal expansion coefficient 5s can also be negative which indicates op-

posing flow.

Now introducing dimensionless stream-function 1) defined by

10y 10y
- - - -7 1
v roz’ U ror (5.17)
the equations (5.10) and (5.11) can be written as
2 2
0% 10y 0% Ra <8T 85) (5.18)

B AT N
or2 ror + 022 0 + or

with ¢ = 0 on the boundaries. Thus equations (5.12), (5.13), (5.17) and
(5.18) together with the boundary conditions (5.14)-(5.16) completely define

the problem in terms of the dimensionless parameters A, k, Ra, Le, N and e.
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In most of the engineering applications, the overall heat and mass transfer
characteristics are summarized by the Nusselt number Nu and the Sherwood
number Sh respectively. The local Nu and Sh along the inner radial wall is
defined by

oT
¢ or | _ ( )
T A(k-1)
and 95
Sh; = — 5.20
87“ r=__1 ( )
T A(k—1)

Integrating these local Nu and Sh along the inner radial wall, the average

Nusselt number Nu and the average Sherwood number Sh are obtained as
1
Nu; = / Nu;dz (5.21)
0

and )
Sh; = / Shidz (5.22)
0

The corresponding values at the outer wall are given by

Nu;

- 2
Nu, = — (5.23)
and -
Sh, = Ki. (5.24)

5.3 Discretization of the Governing Equations

A slightly different approach is adopted to discretize the governing equations
for the present case. As the governing equations are in cylindrical polar co-
ordinates, they are restructured so as to fit into the unsteady HOC scheme.

For example, the concentration equation (5.13) can be written as

0S 1\ 08 0S
_ L —_ ) L V28 = 2
eLeat+(eu r>8r+ ew—- VisS=0 (5.25)
0? 0?
where V? = Er) + 97 Similar expressions can be found for the other gov-
r z

erning equations as well. Firstly equation (5.18) is solved; then the value of
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1 is used to calculate the values of v and w from (5.17) using a fourth order
compact approximation [36]. The values of u and w found in this way are
substituted in (5.12) and (5.13) to find 7" and S.

The boundary conditions for temperature and concentration in the present
configuration are Dirichlet for the vertical walls and Neumann for the hori-
zontal ones. Jensen’s [56] 4th order accurate one sided formula is used for
the Neumann boundary conditions as well as the derivatives appearing in the

expressions for local Nu and Sh.

Flow simulations are carried out using grid sizes ranging from 21 x 21 to
65 x 641 depending upon the aspect ratio A. The time marching strategy
is adopted till a steady-state is reached. As in the lid-driven cavity prob-
lem (Problem 4, Chapter 4), the governing equations being highly nonlinear,
solution proceeds by iteration and BiCG algorithm [37,62] have been used
for all the equations. The convergence criterion for the inner iterations are
set at max |¢°d — ¢""| < 10°° where ¢ is a variable for which solution is
sought. ZThe steady-state is assumed to reach when for the outer iterations,

max |p"*) — ™| < 1077, n standing for the time level.
L)

5.4 Results and Discussion

For the present physical configuration considered, six non-dimensional param-
eters, viz. aspect ratio A, radius ratio x, Lewis number L, buoyancy ratio
N, normalized porosity ¢ and thermal Rayleigh number Ra are important.
In the actual calculations, € is set to unity. Because of the presence of so
many parameters, an extensive parametric investigation of the problem is be-
yond the scope of this study. As such, the large number of computations that
has been reported in this chapter for all the parameters involved, represents
only a sample of the full blown parametric investigation. It is found that,
higher the absolute values of the parameters, greater the complexities associ-
ated with the flow, both in physics and numerics. This could be one of the

reasons that the higher values of the parameters were not attempted in the
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earlier computations, most of which were carried out with lower-order accurate
schemes. Contrary to this, the high accuracy of the present scheme coupled
with the compactness of the difference stencils affords highly efficient and ac-
curate simulation of the flow for a wide range of the parameters on relatively
coarser grids. Computations carried out in this study are for —50 < N < 50,
1<A<10,1<k<50,0< Ra <5000and 1 < L <500. Some of the
ranges of the parameters have not been explored earlier probably because of
computational difficulties. Systematic efforts have been made to illustrate the

effects of different parameters on the steady-state solution.

5.4.1 Validation of Algorithm and Code

There are very few quantitative experimental or numerical data available for

the parameters considered in the present study. Therefore, the validation of

Table 5.1: Grid independence study for A =1, Le = 10, N = 0 and Ra = 500.

K Grid Umaz
21 x 21 1381.63
1 41 x 41 1364.39
81 x 81 1363.24
Beji et al. [10] | 1359.00
21 x 21 7.9893
) 41 x 41 7.8539
81 x 81 7.8160
Beji et al. [10] | 7.6310

the present algorithm is first done through a comparison exercise for a range
of parameters for which reliable qualitative and quantitative numerical results
[10,49] are available. The parameters chosen are Ra = 500, N = 0, Le = 10,
A =1, and k = 1 and 5, which represents two cases for which the validation
exercise is carried out. Grid-independent results of the present algorithm for
the maximum stream-function value is compared with those of [10] in Table

5.1. The corresponding isotherms and, isoconcentration and stream-function
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contours for the two cases are shown in figure 5.2 and they are very similar to
those reported by, for example, Beji et al. [10] and Prasad and Kulacki [48].
The close comparison thus lends confidence in the present algorithm and code,
which can be used now for the range of parameters not explored earlier. Also
demonstrated in Table 5.1 is a notable merit of the present algorithm in that
grid-independent results for the two cases are obtained on grids as coarse as
21 x21. What follows in the next few sections, are the results of our systematic

investigation for a wide range of parameters.

Figure 5.2: Isotherms, isoconcentrates and the streamlines for N =0, A =1,
Ra =500, Le = 10 and k = 1 (left) and k = 5 (right).
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5.4.2 Influence of Aspect Ratio

The results for aspect ratios varying from 1 to 10 are presented in Figs 5.3
and 5.4 for Ra = 500, k = 2, Le = 10 and N = 5. For A > 5, Ra and N
considered in the present study are much higher than those of earlier stud-
ies [44,48]. As the value of the buoyancy ratio NNV signifies, the flow is driven
by moderately high solutal gradients. At A =1 and 2, [Figs. 5.3 (a) and (b),
centre] the concentration field is rather uniform at the central part of the cavity
and gradients are sharper near the horizontal walls. Stratification of the flow
is observed as A increases [Fig. 5.3 (centre)]. Fig. 5.4 (b) also confirms this
fact where it can be seen that isoconcentrates spread further away from the
vertical walls as A increases. It is seen that as radius increases, concentration
sharpely drops near the inner wall and remain more or less same thereafter
until it drops further in the vicinity of the outer wall. Obviously, the mass
species boundary layers are thinner than the thermal boundary layers because
of the lower diffusivity of mass species [Fig. 5.3 (top and centre)]. With the
increase in A, the isotherms from a roughly diagonal shape, become more and
more vertical [Fig. 5.3 (top)]. At high aspect ratio (particularly at A = 8 to
10), the temperature at the core of the cavity varies almost linearly in the
horizontal direction [Fig. 5.4 (a)]. Here, the temperature profile nearly looks
like that of pure conduction. Fig 5.4 (c) shows the variation of Nusselt and
Sherwood numbers with aspect ratios. It is seen that the Sherwood number
approaches a constant value asymptotically. With the increase in A, hydrody-
namic boundary layers at the top and bottom walls become thicker and the
vortex centre shifts slightly toward the upper region [figures 5.3 (a)-(f)]. Also
the flow becomes weaker, which is indicated by the fall in the value of |¢),4z|-
Hydrodynamic boundary layers grow at the vertical walls with the layer being

more prominent at the cold wall.
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Figure 5.3: Temperature (top), concentration (centre) and stream-function
(bottom) contours for k = 2, Le = 10, Ra = 500, N = 5 and various values of
A=1,2 4,6, 8and 10 (from left to right in that order).



82 DOUBLE-DIFFUSIVE NATURAL CONVECTION

(r=r)i(rgrl) ——=

04
0.2
i =8 b
° A=10 (b)
S //
_0.2 -
A=1 A=2 =4 A=6
_0.4 -
0 02 04 06 08 1
(t=e)(rr) ——=
1000 [
sh,
100 e U U AP P
- N, ©
10
1 2 3 4 5 6 7 8 9 10

Figure 5.4: Variations of (a) temperature and (b) concentration along the hor-
izontal centreline and (c) average Nusselt and Sherwood numbers with respect
to aspect ratio A for k = 2, Le = 10, Ra = 500 and N = 5.
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5.4.3 Influence of Radius Ratio

Here, computations are carried out in the range 1 < x < 50 for A = 5,
Le =10, Ra = 500 and N = 5. The influence of increasing radius ratio is to
impart asymmetry to the flow. As also can be seen from Fig. 5.2 (left) and
Fig. 5.5 (a), for Kk = 1, a centrosymmetry exists about the geometric centre
of the cavity. With the increase in x the centre of the primary vortex moves
towards the top right of the cavity [Fig. 5.2 and Fig 5.5 (bottom)]. Also,
the strength of the flow is reduced as seen from the value of |¢,,4,| shown

in Table 5.2. The increasingly asymmetric behaviour of the temperature and

Table 5.2: 9,4, and its position for different radius ratios.

K Ymaz | Primary vortex centre
1 | 301.482 (0.5000, 0.5062)
2 3.936 (0.5315,0.4844)
5 1.509 (0.5515, 0.5875)
10 | 0.940 (0.5440,0.6594)
20 | 0.6659 (0.6110,0.6719)
50 | 0.4778 (0.5940, 0.7250)

concentration field shifts causes greater changes in the stream-line pattern in
the upper part of the annulus. As can be seen from Fig. 5.5 (top), at £ = 1,
the thermal boundary layers exist at the top right and bottom left regions of
the annulus. With the increase in x they become more prominent on the hot
(inner) wall and less on the cold (outer) wall. Also from the isoconcentrates
[Fig. 5.5 (centre)], it is seen that concentration gradients near the hot wall
increase while the reverse happens at the cold wall. Temperature variation
along the horizontal centreline is found to be almost linear at the core of the
annulus for small k and the curvature increases with « [Fig. 5.6 (a)]. At the
core, the concentration remains largely constant and decreases sharply to the
value of -0.5, as x increases. The high concentration gradients near the top
and the hot walls [Fig. 5.5 (middle)] indicate high mass transfer, and high
temperature gradients near the hot wall [Fig. 5.5 (top)] indicate high heat
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Figure 5.6: Variations of (a) temperature and (b) concentration along the hor-
izontal centreline and (c) average Nusselt and Sherwood numbers with respect
to radius ratio k for A =5, Le = 10, Ra = 500 and N = 5.
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transfer in those regions and these effects increase with . This is confirmed by
the increasing values of Nu; and Sh; [Fig. 5.6 (c)]. It may be mentioned that

in the earlier studies, the simulations were confined only up to £ = 10 [10,44].

5.4.4 Influence of Lewis Number

Here the parameters other than Le, viz., N, Ra, k and A have been kept
constant at 1, 500, 5 and 5 respectively. When Le = 1, the thermal diffusion
equals the solutal diffusion and the isotherms and isoconcentrates are identi-
cal [Fig. 5.7 (a)]. With increase in Le, concentration boundary layers become
sharper [Fig. 5.7 (centre)] whereas there is little change in the isotherm patterns
[Fig. 5.7 (top)]. These facts are also evidenced by the centreline temperature
and concentration distributions [Figs. 5.8 (a) and (b)] where for Le > 5, the
temperature distribution is almost identical whereas the concentration bound-
ary layers are seen thinning with increasing Le, particularly on the hot wall.
At high Le’s, as the mass diffusivity is much lower than the thermal diffusivity,
the horizontal intrusion layers of concentration at the top and the bottom are
considerably sharper than their thermal counterpart. As a result of this, the
core of the concentration field at higher Le’s is in a state of almost uniform
concentration [Fig. 5.7 (b)-(f)]. Also, with increase in Le, there is a shift of
the vortex centre toward the cold wall and hydrodynamic boundary layers thin
down on the cold wall and thicken at the hot wall. The maximum Lewis num-
ber in the present study (viz., 500) is much greater than what was considered
by the earlier investigations for this aspect ratio [2,10,44]. From Fig. 5.8 (c)
it is seen that up to about Le = 100, Sh; shows an increasing trend and a
decreasing trend thereafter. Same figure shows that up to about Le = 50, Nu;

shows a decreasing trend and remains almost constant thereafter.
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Figure 5.8: Variations of (a) temperature and (b) concentration along the hor-
izontal centreline and (c) average Nusselt and Sherwood numbers with respect
to Lewis number Le for A =5, k =2, Ra = 500 and N = 1.
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5.4.5 Influence of Buoyancy Ratio

Results are presented here for a wide range of Buoyancy ratios, viz., —50 <
N < 50 with «, Le, Ra and A fixed at 2, 10, 500 and 5 respectively. As a result
of the thermal and solutal boundary conditions assumed here, the direction of
the thermal flow is clockwise, whereas the direction of the solutal flow depends
upon the sign of the concentration coefficient s, so that for N > 0 it is
clockwise and for N < 0 it is anticlockwise. Though the range of buoyancy
ratios explored here is also claimed to have been investigated in ref. [10], no
qualitative or quantitative results are presented for |N| = 50 in that study. For
N >0, Figs. 5.9 (f)-(h) represent a selection of the simulated double-diffusive
flows under the influence of mutually aiding effects of both the temperature
and solute gradients. When N << 1, the buoyancy forces that drives the fluid
motion are mainly due to the gradients in temperature; for N = 0, effects
of concentration does not exist [Fig. 5.9 (e)] and the resulting flow pattern is
that of pure heat transfer. That for N > 0, the mass species and thermal
buoyancy forces augment each other, is also seen from Table 5.3 through the
maximum and minimum values of ¥. Development of boundary layers is also
seen with increase in N. For larger values of N, a large portion of the core of
the annulus is seen to be stagnant [Fig. 5.9 (h)] because of the blocking effect

of the combined effects of vertical concentration and temperature gradients.

The typical features of opposing double-diffusive flow can now be seen from
Figs 5.9 (a)-(d). On lowering the buoyancy ratio to -2, one solute-driven
rotating counterclockwise cell in the core region and two clockwise thermal-
solute-driven cells develop on the top and bottom the annulus. When N
is further decreased to -5, the lower clockwise cell is annihilated and with
further decrease in NV, only the counterclockwise cell remains with development
of boundary layers which become prominent at N = —50. The effects of
multiple cell formation at N = —2 are seen to modify the pattern of isotherm
and isoconcentrates. With decreasing N, the isotherm pattern changes from
vertical to diagonal. The vertical pattern at N = —2 indicates that the side-

to-side heat transfer process is almost ruled by pure diffusion; at N = —50,
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Figure 5.10: Variations of (a) temperature and (b) concentration along the hor-
izontal centreline and (c) average Nusselt and Sherwood numbers with respect
to buoyancy ratio N for A =5, Le = 10, Ra = 500 and k = 2.
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Table 5.3: Maximum and minimum values of 1 for different buoyancy ratios.

N d)mam d)min
-50 0 -13.5306
-10 0 -4.1492
-5 | 0.1948 | -2.6408
-2 1.0462 | -1.2397
-1.5 | 1.9720 | -0.0412
-1 1.6016 | -0.1661

-0.5 | 3.1688 0
0 3.1596 0
1 3.4990 0
2 3.6331 0
3 3.9362 0
10 | 5.0713 0
50 | 14.2914 0

the thermal field at the upper and lower parts of the annulus is now fairly
homogeneous, whereas in the core, it is observed to be diagonal. The same
can be said about the isoconcentration contours for N = —2. With further

decrease in N, the flow becomes more stratified.

From the temperature distribution along the horizontal centreline [Fig. 5.10
(a)], it is seen that as |N| increases the curves corresponding to the respective
positive and negative values come increasingly close to each other and for
|N| = 50, they almost merge into one. The temperature profile looks almost
like that of a pure conduction regime. This is because of the relatively stagnant
core for this kind of flow. For high |N|, the horizontal centreline concentration
profile seems to remain constant within the core region [Fig. 5.10 (b)]. This is
because of weaker mass species diffusivity (Le = 10), in which the mass species

gradients can not penetrate the stagnant core as far as the thermal gradients.

The effect of buoyancy ratio on Nu; and Sh; can be observed from Fig 5.10 (c).
They tend to remain minimum in the transitional range of N, where the flow

reversal is about to take place. Expectedly, Nu; for a certain |N| is less when
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the flow is opposing (N < 0) than when it is aiding (N > 0). This is also true
for Sh;; however, the relative difference for corresponding aiding and opposing
buoyancy ratios is lower. This difference is attributed to the fact that the
opposing flow has a lower flow rate adjacent to the enclosure walls than does

the corresponding aiding flow.

Many of the trends observed for this configuration are keeping with the ob-
servation of earlier studies. For example, flow patterns in the sub-range —5 <
N < 5 shown in Figs. 5.9 (c¢)-(f) are very close to those presented in ref. [10].
Again, the trends for Nu; and Sh; distribution shown in Fig. 5.10 (c) resembles

the ones presented for rectangular annulus in [60].

5.4.6 Influence of Thermal Rayleigh Numbers

Computations are carried out for the range of Ra from 0 to 5000, keeping the
other parameters A, k, Le and N fixed at 5, 2, 10 and 5 respectively. The
strength of the general convective movement increases with increasing Ra.
This can be seen from the Nu; and Sh; distribution in Fig. 5.12 (c), indicating
increased heat and solute transfer rates at the inner wall and also from the

computed Y, values of Table 5.4, which indicates increased flow rate. With

Table 5.4: 1,4, values for different Ra.

Ra djmaw
0 0
10 | 0.3733
20 1.1771
100 | 1.7227
200 | 2.3909
200 | 3.9362
1000 | 6.1550
5000 | 20.5441
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Figure 5.12: Variations of (a) temperature and (b) concentration along the
horizontal centreline and (c) average Nusselt and Sherwood numbers w. r. t.
thermal Rayleigh number Ra for A=5, Kk =2, Le = 10 and N = 5.
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increase in Ra, development of hydrodynamic boundary layers becomes in-
creasingly obvious [Fig. 5.11 (bottom)]. The concentration boundary layers
become much sharper in the inner wall compared to the outer [Figs. 5.11 (cen-
tre) and 5.12 (b)]. As Ra increses the isotherm pattern undergoes an inter-
esting change [Fig. 5.11 (top)]. At low Ra’s, the isotherms are almost vertical
[Figs. 5.11 (a)-(c), top] indicating conduction dominated heat transfer. This
fact is also observed from Fig. 5.12 (a). As Ra increses the isotherms be-
come more and more diagonal [Figs. 5.11 (d) and (e), top] and at a high
Ra = 5000, they become almost horizontal in the central portion of the annu-
lus. As expected, with increase in Ra, Nu at the inner wall steadily increases,
but Sh generally approach a constant value. It may be mentioned that at high
Rayleigh numbers such as Ra = 5000, the computational complexities increase
drastically and timestep used must necessarily be very small. This complexity
could be one of the reasons why no results for such high Ra has been seen for

this configuration so far.

5.5 Conclusion

A numerical investigation has been carried out on the phenomenon of ther-
mosolutal convection in a concentric vertical annulus filled with a porous
medium through the (9,9) transient HOC scheme proposed in Chapter 4. The
higher-order accuracy of the scheme coupled with compactness of the computa-
tional stencils affords efficient computations for a wide range of the parameters
governing the flow on relatively coarser grids. The influences of the aspect ratio
A, the radius ratio k, the buoyancy ratio N, the Lewis number Le and thermal
Rayleigh number Ra on the flow have been investigated. As the number and
range of parameters are quite large, exact comparisons with earlier work is
not always possible. Wherever results of earlier investigations are available,
comparisons are made and close resemblance is observed. For some difficult
cases, for example, for large |N| and Ra, computations for the configuration
have been carried out probably for the first time, highlighting the efficiency

and robustness of the present algorithm. As the algorithm and code has been
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carefully validated through a comparison excercise, and considering the high
order of accuracy of the scheme, the new results produced for difficult cases are
expected to be highly reliable. These results are quantified in several tables
which may be used by later investigators to advantage. Based on the study,
many observations can be made by varying one of the parameters k, A, N, Ra

or Le while keeping the others constant. They are summarized below:

As radius ratio & increases Nu and Sh increse indicating increased heat and
mass transfer. At x = 1, there is a centrosymmetry of temperature, concen-

tration and flow, which is lost as k increases.

As aspect ratio increases from A = 1, mass transfer indicated by Sh at the
inner wall increases gradually and at higher values like A = 5 and beyond, it
remains almost constant. Heat transfer represented by Nu exhibits almost a

similar behaviour.

Lewis number Le is mainly seen to have an influence on the concentration field.
At lower values there is variation of concentration throughout the cavity; but
as Le increases, the gradients almost completely vanish from the core of the

annulus.

Effect of buoyancy ratio N on the behaviour of the solution has been studied
in some details. The flow pattern undergoes some interesting change as the
buoyancy ratio changes sign. When N is positive, thermal and solutal gradients
tend to drive the flow in the same direction producing a clockwise flow pattern.
At N = 0 the flow is still clockwise, but completely thermally driven. As N
decreases below zero, solutal gradients start opposing thermally driven flow
first giving rise to an interplay of counter rotating cells and finally at still
lower values of N (or higher values of |N|) the clockwise rotating cells due to
thermal gradients are completely annihilated and a single anticlockwise flow
cell is obtained. Hot wall Nu and Sh also exhibit interesting behaviour with
the values being minimum for NV close to -1, indicating that opposing effects of
thermal and solutal gradients, being comparable in magnitude, impedes heat

and mass transfer greatly. Any increase of |N| expectedly results in increased
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activity giving rise to gradual increase of Nu and Sh.

Also studied are the effects of Ra for an aiding flow. Expectedly, increase
in Ra aids heat transfer as seen from the steady rise of Nu with Ra at the
inner wall. Mass transfer, however, appears to stagnate beyond a certain Ra

as indicated by an almost constant value of Sh.



Chapter 6

HOC SCHEME ON
NONUNIFORM GRIDS
WITHOUT
TRANSFORMATION

6.1 Introduction

Finite difference method is frequently used in computational fluid dynamics.
The method essentially consists in setting up a grid in the problem domain,
discretizing the governing equations with respect to the grid and solving them
numerically. The common practice is to use a uniform grid, though it may not
be the most appropriate one for efficient computation. Accurate resolution
of the solution requires that grid points are clustered in the regions of large
gradients while economy demands that they are spread out in the regions of
small gradients [5,6,30]. Hence a nonuniform grid is indicated for many flow
configurations. The popular approach is to map the physical space with a
nonuniform grid onto a computational space with uniform grid where a trans-
formed set of equations is first solved before mapping this solution back onto
the physical space. Disadvantages of such an approach are many. There is

a substantial increase in the number of terms to be discretized in the trans-
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formed governing equation giving rise to added computation. Many a time the
transformation of the equations results in the appearance of cross-derivative
terms which increases the computational complexity in many solution algo-
rithms [30]. Moreover if the transformation is not explicitly known, it may
have to be generated by numerical solution of some differential equation and
this results in additional error. Overall, the solution procedure becomes com-

plicated, expensive and sometimes error-prone.

The HOC finite difference schemes for the computation of incompressible vis-
cous flows [42,46,67,71,78] are gradually gaining popularity because of their
high accuracy and advantages associated with compact difference stencils.
However such computations have so far been carried out only on uniform
grids. In a departure from this practice, Spotz and Carey [69] recently ap-
plied a fourth order accurate HOC scheme on a nonuniform grid to linear
convection-diffusion equations without source term. They use the conventional
transformation technique which inevitably brings in the complications of hav-
ing to deal with some new cross-derivative terms in the transformed partial
differential equations (PDE) in addition to the increase in terms of arithmetic
operations. Also, the advantage of setting the diffusive coefficients appearing
in the PDEs in the physical space to unity is lost because they no longer re-
main the same in the transformed space. An additional constraint is that the
transformation has to be carried out in such a way as to keep the grid aspect
ratio unity in the computational space. In the present work, we propose an
HOC scheme on rectangular nonuniform grids for the steady 2D convection-
diffusion equation with variable coefficients without any transformation . It
is based on the Taylor series expansion of a continuous function at a partic-
ular point for two different step lengths and approximation of the derivatives
appearing in the 2D convection-diffusion equation on a nonuniform stencil. As
before, the original PDE is then used again to replace the derivative terms
appearing in the finite difference approximations, resulting in a higher order
scheme on a compact stencil of nine points. We have seen that the grid aspect

ratio in the earlier HOC schemes has to be necessarily unity. Even in the case

IReview of this work, after revision, is in progress in J. Comp. Physics.
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where nonuniform grid has been used with transformation [69], this constraint
remain in the computational space. The present scheme not only frees HOC
schemes from such a constraint, but also makes it possible to use whatever
nonuniform pattern of spacing one chooses in either direction. The order of
accuracy of the scheme lies between three and four based on the pattern of
grid spacing. Apart from avoiding the complexities associated with transfor-
mation techniques, this method affords a solution procedure that marries the
virtues of a clustered grid to the efficiency of an HOC scheme. To validate
the algorithm, the method has first been tested on two problems governed by
linear PDEs for which analytical solutions exist. The power of the algorithm
is better realized when applied to two fluid flow problems governed by the 2D
incompressible N-S equations at high Re’s in that it captures the physics of the
flow accurately with relatively smaller number of grid points — a result of grid
clustering — with complexities not higher than that associated with an HOC
scheme on a uniform grid. The scheme handles both Dirichlet and Neumann
boundary conditions with ease and has the potential for extension to transient

flow problems and curvilinear co-ordinates as well.

6.2 Basic Formulations, Discretization and Nu-
merical Procedure

Consider a rectangular domain a; < z < ag, by < y < by. We divide the interval
[a1, as] into sub-intervals, not necessarily of equal length, by the points a;=x,,
T1y Ty wery T—1, Tm=ap and similarly [by, be] by the points b=y, y1, Y2, -,
Yn—1, Yn=bs. In the z-direction, the forward and backward step lengths are
given by z; = x;11 — z; and xp = x; — x;_1 respectively, and similarly, in the
y-direction, we have yy = y;;1 —y;and yp = y; —y;—1, 1<i<m-—-1, 1<
j < n—1. For a function ®(z,y) assumed smooth in the given domain, a

Taylor series expansion at point (i + 1, j), (Figure 6.1) gives



1d20C SCHEME ON NONUNIFORM GRIDS WITHOUT TRANSFORMATION

b 22 2®| A oPd| ot oo
iy =Pyt Siam Y aigm| T g TOED 6D
- ij g o gl
Similarly at (i — 1, j)
0d 22 9*® z3 PP zy 0*P
®im1y = Pij = Tpp + 2—?@ T 3_7@ 4_7@ +0@) (62
ij ) (4] ) i
y
(i-1j+1) (j+1)  |(i+1j+1)
%
(i-1,) @i.J) (i+1,))
Yo
(i'l,j'l) (I ’j_l) (|+11J_1)
X, Xs

Figure 6.1: Non uniform HOC stencil.

From equations (6.1) and (6.2), we have

0o . q)i—i—l,j — (I)i—l,j 1 62(13
oz N (s = o) 0z? i 6 oz i

Ty + Xy 2
+ O ((zf — 25) (2} + 23)) (6.3)

1 03P
— —(aF + 2} —xpmy) =

ij
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and

82(I> 2 (I)i+1j (I>i—1j ( 1 1 ) ] 1 63@

ox? i (xf + xb) [ Ty Ty Ty Ty 2] 3( f b) ox3 i
1 0*®

— (@} + ) —xpmy) + 0 ((xf — ) (2 + x%)) (6.4)

12 Ozt |

1]
In the z-direction, the first and second order central difference (CD) operators

are defined by,

5.0, — Ditt = Piciy
T ¥ij xf"‘a:b
and
2 D, Dy 1 1
520, = l i+l | Pili (_ n _) q)i’j]‘
(xf + xb) Ty Tp Ty T
With these notations, (6.4) becomes
%P 1 03®
z - — 52(1%" _ = _ il
Ox2 y T =1 3(1’]‘ xb) ox3 ;

4

aot| T O ((er )@} +4}) (65)

ij

1
- ﬁ(xfc + 27 — T4Tp)

From equations (6.3) and (6.5), the first derivative may be approximated as

('3_@
o0x

1 zpxy OPP
%o = 3(ar = 20)%:% — =G~ G|
2]

+ O ((w — m) (@} +23)) (6.6)

ij

Similar expressions can be derived for the y-derivatives.

Now, we proceed to derive the HOC scheme for the 2D convection-diffusion
equation (2.3) on nonuniform grids. In view of equations (6.5) and (6.6), it

may be approximated as

(=02 = 02+ ¢ {0 — 0.5(x; — 2)02} + d {8, — 0.5(yr — )02 }| 61 + 755 = fis
(6.7)
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where 7;; is the truncation error given by

2% % ' '

Ty = Hla$3 +K16y3 +H28$4 +K28y4
+ O ((wr — )@} +23) + vy — vn) (W} +12)) (6.8)
with
1 1 /5 2
H, = 5 {2(xf —xp) — cxpap}, Hy= 1 (xf +xy — acfxb)
and

1 1
Ki= 20 —w) —dymm}, Ko =35 (v} +v2 — vrw)

6.2.1 Constant Convective Coeflicients

If the convective coefficients ¢ and d are constants, using the original equa-
tion (2.3) to substitute for the third and fourth order derivatives, (6.8) can be

written as
82¢ 82</5
Tij = (H1+HQC) C@"‘ (K1+K2d) a—y2
+ {(Hi+ Hye)d + (K + Kad)c} ¢
1 2C 1 20)C 6x8y
83¢ 63¢
_ (H1+HQC—KQC)aTay2—(Kl—}—KQd—HQd)aTay
34¢
— (Hy+ Ky) 9220,7

0 0 0? 0?
— (H1+H20)%+(K1+K2d)a_y+H2@+K28—y2 f

+ O ((wy — o) (@} +73) + (yr — ) (¥} +13)) (6.9)

From equations (6.7) and (6.9), the HOC scheme in nonuniform grids for the

equation (2.3) with constant convective coefficients can be written as

[—Aij0% — Byjoy + cb, + do, + Gijb,0, — Hyj0,07 — K020, — Lijo207] ¢i; = Fiy,
(6.10)
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where the coefficients A;;, B;;, Gy, Hij, Kij and L;; are as follows:

A;j =140.5(xf — zp)c — (H1 + Hao)e, (6.11)
Bij =1+ 0.5(ys — yp)d — (K1 + Kad)d, (6.12)
Gij = (H1 + Hayc)d + (K1 + Kad)c, (6.13)
Hi; = Hy + Hye — K, (6.14)

Kij = Ky + Kod — Hyd, (6.15)

Li; = Hy + K, (6.16)

and

Fyj = [1+ (Hi+ Hyo), + (K1 + Kpd)5, + {Hy — 0.5(xs — ) (Hy + Hac)} 02
+ Ky — 0.5(y; — o) (K + Kad)} 67 £ (6.17)

6.2.2 Variable Convective Coefficients

For variable convective coefficients the formulations are more complicated with
the derivatives of ¢ and d also coming into the picture. Using (2.3), as before,

to substitute for the derivatives, (6.8) can be written as:

0%,

Ty = <H10+H20 +2H28 )a D)

2
(Kld + Kod? + 2K, ad) o’¢

oy ) 0y?
dc dc 0?%c 0%c) 0¢

+ {(Hl + HQC)% + (K1 +K2d)a— +HQW + Kga 2} 8x
od od 0%d 0%d) 0¢

-+ {(H1+HQC)£+(K1+KQCZ)8—+H28 2+K82}8
ad dc) 9%
3¢ a3¢
0x0y? 0220y

— {H1 + HQC KQC} {Kl + KQd Hgd}
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0]
- (HQ + KQ)@T@Z/Q
0 o 82 82
_ {(H1 + ch)a—x + (K + sz)a—y + HQ@ + K28—y2} f
+ O((zp—z)@F +2) + (ur —w) (W} + 1) (6.18)

From equations (6.7) and (6.18), we have the following HOC scheme on nonuni-
form grids for equation (2.3) with variable convective coefficients:
[ — Ai62 — Byd, + Cyj0, + Dyj6,
+ Gijbaby — Hij0,0, — Kijo20, — Lij0202] ¢ = Fyy,  (6.19)

JVxVy

where the coefficients Cj;, D;j, A;;, B;; and G;; are given by

C;; = [1 + (Hy + Hac)dy + (K + Kod)dy, + {Hy — 0.5(z; — ) (Hy + Hac)} 62
+ {Ka—0.5(y; — ) (K1 + K2d)} 67 c, (6.20)

Dy = [1+ (Hi+ Hye)0s + (Ky + Kad)d, + {Hz — 0.5(x; — z,) (Hy + Hac)} 02
+ {Kz — 0.5(y; — uy) (K1 + K»d)} 2] d, (6.21)

Aij =1- [(Hl + HQC) + 2H2 {5;50 — 05($f — xb)éiC}] + 05(1’f — :cb)C,-j,
(6.22)

Bij =1 - [(Ky + Kad) + 2K, {8,d — 0.5(y; — y)02d}] + 0.5(y; — 1) Dyj,
(6.23)

and

Gy = (Hy+ Hac)d + (K + Kyd)c + 2Hyb,d + 2K56,¢
— {H(xy — m)52d + Ks(ys — p)dyc) (6.24)

The details of the FD operators appearing in equations (6.10) and (6.19) are
given in the Appendix B. The discretized form of equations (6.10) and (6.19)
can now be put in the form

1 1

1 1
Do D Mitkigtks Divkrgthe = D D Sitkigtks fitkijtks  (6:25)

ki=—1ko=-1 ki=—1ko=—1
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where 7, £’s are functions of the convection coefficients ¢ and d, their derivatives
and the step lengths z ¢, x5, y; and y,. In matrix form, the system of algebraic

equations given by (6.25) can now be written as
A® =f (6.26)

where the coefficient matrix A is an asymmetric sparse matrix with each row
containing at most nine non-zero entries. For a grid of size m x n, A is of size
mnxmn, and ® and f are mn-component vectors. Partitioning A, ® and f into
sub-matrices corresponding to the interior and the boundaries, equation (6.26)

can be written as

A, 0 0 0 0O ®y, f,
0 Ay 0 0 O Py fa
0 0 Apb 0 O Ip = f5 |,
0 0 0 Apr O O fr
0 0 0 0 Ay Iy fr

where suffixes L, R, B and T stand respectively for the left, right, bottom
and top boundaries of the domain and D represents the interior. The struc-
tures of the partitioned matrices appearing in the left hand side of the expres-
sion following equation (6.26) are similar to those following equation (4.12) in
Chapter 4. Likewise, the vectors [f1]i, o)1+ [fRl(n_2)x1 [Blmx1 and [f7],.,
correspond respectively to the left, right, bottom and top boundary condi-
tions, and the entries of [fp],, 5)(,_2)x; are given by the right hand side of

equation (6.26).

The next step is to solve equation (6.26) with iterative methods. On uniform
grids, some of the associated matrices are symmetric and positive definite,
which allows algorithms like conjugate gradient (CG) [37] to be used. As
nonuniform grid invariably leads to unsymmetric matrices, in order to solve
these systems, the hybrid biconjugate gradient stabilized method (BiCGStab(2))
[37,62] is used without preconditioning. For a problem having Dirichlet bound-
ary conditions, A will have at most 2[m +n — 2]+ 9 x (m — 2)(n — 2) non-zero

entries. Therefore, for such iterative methods, the computation of the matrix-
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vector product A® involves 2[m + n — 2] + 81 x (m — 2)(n — 2) arithmetic

operations only.

It may be noted that for the coupled nonlinear PDEs (such as the ¢-w form
of the N-S equations), an iterative solution procedure must be adopted. These
iterations may be termed as outer iterations. We use a decoupled algorithm
where vorticity and stream-functions are solved iteratively and sequentially
through hybrid BiCGStab(2) and lagging the appropriate terms. The latter
iterations may be termed inner iterations which must be carried out at every

outer iteration with updated data.

6.3 Numerical Test Cases

The proposed scheme has been applied to two linear and two nonlinear test
cases. The nonlinear cases deal with the fluid flows governed by the 2D steady-
state incompressible N-S equations. Care has been taken to choose such prob-
lems as will permit the use of nonuniform grids at certain portions of the
solution domain for better scale resolution with grid economy. Both Dirichlet

and Neumann boundary conditions have been used wherever necessary.

6.3.1 Problem 1.

We take the problem proposed by Gartland [22], where in equation (2.3),
c=Re, d=0, f=0V 0<z,9<1,
with boundary conditions
¢(2,0) = ¢(z,1) =0  0<y<1
¢(0,y) = ¢(L,y) =sinTy  0<z <1
The exact solution is given by

Re
ex 2 ~72 si h i h 1_ R 2
é(z, 1) - sin 7y e~ 2 sinh oz + sinh o( x)’ 02:W2+Te' (6.27)

sinh o
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Figure 6.2: For problem 1, at Re = 100: (a) The grid used (21 x 21) and the
surface and contour plots of (b) the analytical solution, (c) the present scheme
(A =0.5) and (d) the CD scheme.

The solution has a boundary layer attached to the line x = 1 and therefore, a
uniform grid along the y-direction, and a nonuniform grid along the z-direction

with clustering near x = 1 has been used with the following stretching function

[69]
i A m
x; = —|——sm<, ) ,

Zmacc ™ Zmacc

where ) is a stretching parameter controlling the density of grid points in the
z-direction. It may be noted that higher the value of )\, greater the clustering
near the boundary. The grid is shown in Figure 6.2 (a). Figures 6.2 (b), (c) and
(d) respectively show the surface and contour plots of the exact, the numerical
solution with the present scheme (A = 0.5) and the numerical solution with
the central difference (CD) scheme on a 21 x 21 grid for Re = 100. While the
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numerical solution with the present scheme shows no discernible differences

with the exact solution, the CD solution shows a clear oscillation in the region

S S,
LT
e A et O \ S
"'."".','.':".'i:l:“ &‘s\‘\
2>

Figure 6.3: Surface plots of the absolute errors for problem 1 (Re=100, 21 x 21
grid), (a) Upwind, (b) Central difference, (c¢) Uniform HOC and (d) Present
scheme (A = 0.5).

of the boundary layer. This is attributed to the violation of the so-called

cell-Péclect condition

2
Repar, = ReAx <2 or Az < —.
Re

On the other hand the maximum and the minimum values of Ax with our
scheme are 0.064 and 0.045, which being greater than the limit 0.02, clearly
violates the above condition. Inspite of this violation, no oscillation is seen
in our results which indicates that our scheme has the oscillation suppressing
property. Also the surface plots of the absolute errors (Fig. 6.3) for the upwind,

CD, HOC uniform and the present scheme for the same problem confirms that,
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the present scheme yields the best result. Table 6.1 compares the maximum
error (max(er)) and the root mean square error (rms(er)) of the HOC scheme
on a uniform grid with those of the present scheme for different A\’s and grid
sizes. Max(er) of the present scheme for all \’s is lower than that of the uniform

grid whereas rms(er) for higher clustering on finer grids may be higher.

Table 6.1: Comparison of the errors on the uniform and nonuniform grids for
Problem 1.

Grid Uniform

rm(er) max(er)

26 x 26 | 1.09 x 1072 | 8.12 x 1072

51 x 51 |[1.41x107° | 1.27 x 10~*

101 x 101 | 2.45 x 107" | 2.37 x 1073
Grid Non uniform (A = 0.5)
rm(er) max(er)

26 X 26 | 5.21 x 1073 | 2.86 x 102

51 x 51 |9.50x 10 *|4.76 x 10®

101 x 101 | 2.23 x 107* | 9.21 x 10~*
Grid Non uniform (A = 0.6)
rm (er) max(er)

26 X 26 | 4.69 x 1073 | 2.18 x 1072

51 x 51 [9.63x107*| 3.75 x 103

101 x 101 | 2.34 x 10~* | 7.20 x 1074
Grid Non uniform (A = 0.7)
rm (er) max(er)

26 x 26 | 4.42 x 1073 | 1.60 x 1072

51 x 51 | 1.00x 1073 | 2.88 x 1073

101 x 101 | 2.49 x 10™* | 5.75 x 10~*
Grid Non uniform (A = 0.8)
rm(er) max(er)

26 x 26 | 4.36 x 1073 | 1.11 x 1072

51 x 51 | 1.06 x 1073 | 2.12 x 1073

101 x 101 | 2.67 x 104 | 4.73 x 1074
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6.3.2 Problem 2.

The domain of this problem is the same as that of problem 1 and in equa-

tion (2.3), ¢ = Recosf, d = Resinf and f = 0 with boundary conditions
é(z,0) =¢(r,1) =0 0<z<1,

o(0,y) =4y(1—y) o(l,y)=0, 0<y<1.

This problem has the exact solution

(a) (b)

Figure 6.4: The contour plots of the Problem 2 for Re = 80: (a) § = 7, (b)
==
8

o(z,y) = exp (—%(:p cos 0 + ysin 0)) i {B, sinh[o, (1 — )] sin(n7y)}
" (6.28)

where

and

] 1 _
B, = / y(1 —y)exp ( ;zy sin 0) sin(nmy)dy
0
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The problem deals with the convection of ¢ (temperature or concentration) in
a fluid moving with a uniform velocity at an angle 6 to the x-axis. It has earlier
been solved numerically by Gupta et al. [26] and Mackinnon and Johnson [42].
The present computation uses the stretching function of Problem 1 to generate
clustered grids with refinement near x=1 and y=1. The method captures the
boundary layers developed on x = 1 and y = 1 very well as can be seen from
from Figure 6.4 where the computed contours of ¢ has been plotted for two
convection angles g and g Table 6.2 compares of the max(er) for Re = 40

for three convection angles, viz., g, i and 0 with those obtained from the
Upwind Difference Scheme (UDS), the Central Difference Scheme (CDS), and
the higher order schemes of Gupta et al. [26] and Spotz and Carey [66] for
different grid sizes. When judged against the orders of accuracy of the other

schemes, the errors of the present computations are within the expected limits.

Table 6.2: Comparison of the maximum errors on the uniform and nonuniform
grids for different schemes in Problem 2 with stretching factor A = 0.8.

0 Grids UDS | CDS | Gupta | Spotz Present
O(h) | O(R?) | O(RY) | O(h") | O(h?) to O(h?)
0 |16 x16 | 0.1604 | 0.1532 | 0.01323 | 0.04050 0.01403
32 x 32 | 0.1256 | 0.0445 | 0.00112 | 0.00856 0.00306
g | 16 x16 | 0.2268 | 0.1286 | 0.01019 | 0.01769 0.02992
32 x 32| 0.1394 | 0.0348 | 0.00081 | 0.00492 0.00759
7 |16 x 16 | 0.2035 | 0.0803 | 0.00598 | 0.00598 0.00496
32 x 32 ] 0.1218 | 0.0195 | 0.00041 | 0.00041 0.00046

6.3.3 Problem 3: Lid-driven Cavity Flow

The solution procedure is now extended to the 2D laminar lid-driven square
cavity problem which has been used extensively to study the strength and
accuracy of numerical methods for incompressible flow problems. This flow

is governed by the 2D incompressible N-S equations. The stream-function-
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Figure 6.5: The lid-driven cavity flow configuration with boundary conditions.

vorticity (1-w) form of these equations has been used in the present computa-
tions. The geometry and the boundary conditions have been shown in Fig. 6.5
where the top wall is moving from left to right and the remaining three walls
are stationary. The flow is driven by the moving wall and the resultant flow
patterns depend on Re. Because of the presence of large gradients near the

walls, grid has been clustered there using the stretching function

T; = — —sin

tmaz 2T

7 A (27m>’ 0<A<1
Ymaz

which we obtain by combining the functions used by Spotz and Carey [69]
and Janssen and Henkes [32]. Here, the parameter A determines the degree
of clustering near the boundaries with centrosymmetric stretching. The effect
of A on grids can be seen from Figs. 6.6 (a) and (b) where a uniform and a
clustered 81 x 81 grid have been shown. Numerical results are presented for
Re’s ranging from 0 to 7500 with grid sizes varying from 11 x 11 to 121 x 121.
As the boundary layer thickness is of the order of Re™%°, grid size and A have

been chosen in such a way that there are several points within the boundary
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(a) (b)

Figure 6.6: 81 x 81 grids for square cavity: (a) uniform and (b) clustered with
A =0.6.

layer. For example, the minimum internodal distance near the wall is 0.0345 for
Re =100 (11 x 11, A = 0.7) and 1.37 x 10~* for Re = 3200 (81 x 81, A = 0.99).
The Neumann boundary conditions for vorticity are obtained through a third

order compact formula [67] as a fourth order compact boundary scheme is

N

(a) (b)

Figure 6.7: Streamlines for the lid-driven cavity flow on 11 x 11 grid for Re =
100: (a) uniform HOC and (b) present scheme (A = 0.7).
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Figure 6.8: Comparisons of (a) vorticity along the moving wall, (b) horizon-
tal velocity along the vertical centreline and (c) vertical velocity along the
horizontal centreline for Re=100 in the lid-driven cavity flow.
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Figure 6.9: Comparisons of (a) horizontal velocity along the vertical centreline
and (b) vertical velocity along the horizontal centreline for different Re’s in
the lid-driven cavity flow (A = 0.6).
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Figure 6.10: The bottom right vortices for the lid-driven cavity flow at Re =
3200 on 81 x 81 grid: (a) tertiary (A = 0.6) and (b) tertiary, quaternary and
post-quaternary (A =0.99).
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found to be oscillatory at the moving wall. For Re = 100 the streamline
contours obtained by HOC schemes on 11 x 11 uniform and nonuniform grids
are shown in Figs. 6.7 (a) and (b). It is clear from the figures that the fourth
order accurate scheme on uniform grids captures none of the corner vortices
whereas the present scheme with accuracy lower than fourth does. Interestingly
the present scheme with a grid as coarse as 21 x 21 (A = 0.6) captures the flow
details quite accurately as can be seen from the comparison with the results
of Ghia et al. [24] produced with a 129 x 129 grid (Fig. 6.8). The centreline
velocity profiles obtained through the present scheme with those of Ghia et
al. [24] are presented side by side in Fig. 6.9 for different Re’s. Again it is
seen that the present scheme computes the flow with a much coarser grid. The

significance of grid clustering at high Re’s involving multiple scales can be seen

Figure 6.11: Streamline patterns for the lid-driven cavity flow for Re = 1000
(31 x 31, A = 0.9).
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from Fig. 6.10 where for Re = 3200, the corner vortex features on 81 x 81 grids
are shown for A = 0.6 and 0.99. With A = 0.6 [Fig. 6.10 (a)], corner vortices
only up to the tertiary level have been resolved whereas with A = 0.99 two
hitherto unreported vortices - the quaternary and post-quaternary - have been
captured [Fig. 6.10 (b) - walls removed for clarity]. Fig. 6.11 (walls removed
for clarity) shows the streamline contours for Re = 1000. It is seen that for
Re = 1000, the present scheme on a 31 x 31 grid captures even the tertiary
vortices whereas on uniform grid of the same size, iteration stagnates [67].
The following observations (as also can be seen from Figs. 6.12, 6.13, 6.14
and 6.15), which are in agreement with the earlier investigations [12,24,38,58],
can be made with increase in Re: (i) for Re = 0, flow is symmetric about
the vertical centreline and from Re = 100 onwards, the primary vortex center
shifts from the top right corner towards the geometric centre of the cavity which
virtually becomes invariant for Re > 5000 (Figs. 6.12 and 6.13). (ii) there
is an expansion of the recirculation zone for the secondary vortices with a
tendency of their centers to shift towards the geometric center (Figs. 6.12
and 6.13). The appearance of the top-left secondary vortex can be seen for
Re = 2000 and more. (iii) several regions of high vorticity gradients indicated
by the concentration of the vorticity contours, appears within the cavity (Figs.
6.14 and 6.15). As against the stream-function, they are not aligned with
the geometric boundaries of the cavity. In Table 6.3, the stream-function and
the vorticity values at the primary vortex centers of the present study have
been compared with the calculations of Kim and Moin [38], Ghia et al. [24]
and Bruneau and Jouron [12] and, agreement has been very close. Shown
in Fig. 6.16 is the convergence history based on the root mean square error
[rms(er)] of w at Re = 1000 for the present scheme for two different grid sizes.

This error has been defined as

-

2

1

rms(er) = l 3 (w(k+1) _ w(k)ﬂ

where k and k£ 4+ 1 denote two consecutive iteration levels. The CPU times

imaz X jmaz

on a Sun enterprise 250 workstation for the two grids are 10.94 and 173.33
seconds respectively when the exit criteria for the fall of residuals of the inner

iterations for both ¢ and w are set at 1073.
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Figure 6.12: Stream function contours for the lid-driven cavity flow for (a)
Re =0, (b) Re =100, (c) Re =400 and (d) Re = 1000.
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Figure 6.13: Stream function contours for the lid-driven cavity flow for (a)
Re = 2000, (b) Re = 3200, () Re = 5000 and (d) Re = 7500.
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\j

Figure 6.14: Vorticity contours for the lid-driven cavity flow for (a) Re = 0,
(b) Re =100, (c¢) Re = 400 and (d) Re = 1000.
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Figure 6.15: Vorticity contours for the lid-driven cavity flow for (a) Re = 2000,
(b) Re = 3200, (c) Re = 5000 and (d) Re = 7500.
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Table 6.3: Stream function and vorticity at primary vortex center for Different
Reynolds numbers.

Re | Kim and Moin Ghia et al. Bruneau | Present (A = 0.6)
100 | —0.103(—3.177) | —0.103(—3.166) | —0.103(——) | —0.103(—3.152)
65 x 65 129 x 129 128 x 128 41 x 41
400 | —0.112(—2.260) | —0.114(—2.295) — ~0.113(—2.260)
65 x 65 257 x 257 —— 41 x 41
1000 | —0.116(—2.026) | —0.118(—2.050) | —0.116(——) | —0.117(—2.057)
97 x 97 129 x 129 256 x 256 61 x 61
3200 | —0.115(—1.901) | —0.120(—1.989) —— —0.120(—1.962)
97 x 97 129 x 129 —— 81 x 81
5000 | —0.112(—1.812) | —0.119(—1.860) | —0.114(——) | —0.119(—1.926)
97 x 97 257 x 257 512 x 512 81 x 81
7500 — —0.120(—1.880) | —0.111(——) | —0.115(—1.874)
—— 257 x 257 512 x 512 121 x 121
10 F
Ly
01 F
001 F
rms(er) |

0.001 F
0.0001 F

1le-05 F

1le-06

60 80
Outer iterations ——=

100

120

140

Figure 6.16: Convergence history based on the root mean square error of w for
Re=1000 (A = 0.8) in the lid-driven cavity flow.
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6.3.4 Problem 4: The Backward-facing Step Flow

Next we consider the flow over the backward-facing step in a channel which
provides an excellent test case for the accuracy of numerical methods because
of the reattachment length being a function of the Reynolds number. The
governing equations are the incompressible 2D N-S equations and the -w
formulation has been used here as well. The problem configuration is shown

in Figure 6.17. At the inlet, a parabolic velocity profile is usually prescribed

u=0.v=0 =0.75(1-4
7227, ? AN \Lj:o' (1-4y9

reattachment
point

U=0v=0 dividing
streamline

Figure 6.17: Backward-facing step geometry with boundary conditions and
channel dimensions.

[7,23,33,38] and the one used here is given by Gartling [23] as u = 24y(0.5—y),
v = 0. The downstream boundary conditions are prescribed at a distance of
30 step heights, where the fully developed velocity profile can be determined
by equating the flow rates at the inlet and the outlet. Thus the outlet velocity
becomes u = 0.75(1 — 4y?), v = 0. The corresponding v and w at these
boundaries can easily be found from the velocity profiles. At the stationary
walls, as in problem 3, a Neumann vorticity BC is prescribed using a third order

compact formula [66]. Numerical simulations are carried out for the range of

a'UL
Reynolds numbers (Re) from 100 to 800. It is defined as Re = “ [23]
v

where ug, is the average inlet velocity, L is the channel height and v is the

kinematic viscosity of the fluid. In all the computations, a 81 x 21 grid was
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0.5

-05

Figure 6.18: Grid spacing for the backward facing step flow.

enough to capture the flow (Figure 6.18). In the streamwise direction z, as
a finer grid is necessary to capture the recirculation zone, a stretching grid
is used in the zone 0 < x < 10 and uniformity is maintained thereafter.
Although boundary layers exist near both the top and bottom walls and as such
a grid refinement indicated, we use a uniform grid as the number of grid points
necessary to resolve the normal gradients is moderate for the flow considered
[70]. Figures 6.19 and 6.20 show the streamline and vorticity patterns for
Re=200, 400, 600 and 800. For the same Re’s, the velocity vector (relative
and uniform) plots are shown in Figures 6.21 and 6.22. The spacing in the
y-direction has been magnified twice for a better resolution. The formation
of a secondary vortex at the upper wall can be seen with increasing Re’s.
In our simulations, this vortex is visible for Re=500 (figure not shown) and
above. This is also reported by John [33] who used the FIDAP code. The
velocity vector plots give a clear picture of the recirculation zones and the
velocity profiles at different streamwise locations, indicating the development
of a parabolic profile towards the exit. In Figure 6.23, the re-attachment
length as a function of Reynolds number is shown against the experimental
and computational results of Armaly et al. [7] and the numerical results of
Kim and Moin [38]. As they give no tabular results, the graphical results
were optically scanned to produce the cited quantities. Our results are in
excellent agreement with the experimental results of Armaly et al. [7] for the
whole range of Re from 0 to 800, whereas those of the previous numerical
experiments [7,23,38] failed to tally with the same experimental results for

Re > 600. The reason was thought to be because of the three-dimensionality
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Figure 6.19: Streamlines for the backward facing step flow.
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Figure 6.20: Vorticity contours for the backward facing step flow.
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Figure 6.21: Velocity vectors (in magnitude) for the backward facing step flow.
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Figure 6.22: Uniform velocity vectors for the backward facing step flow.
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Figure 6.23: Re-attachment length as a function of Reynolds number.

of this flow at Re > 400. Streamwise velocity profiles along vertical lines
through the centers of the upper and lower eddy for Re=800 in Figure 6.24

gives a clear picture of the recirculation and the associated flow reversals.

-02

- Upper Eddy - - -
LT Lower Eddy —
i - I I I T T T

04 02 0 0.2 0.4 0.6 0.8 1 12 14

Figure 6.24: The streamwise velocity profile along the vertical lines through
the centers of the upper and lower eddy for Re=800 in the backward-facing
step flow.
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Figure 6.25: Comparison with Gartling for (a) Horizontal velocity profile, (b)
Vertical velocity profile and (c) the vorticity at x = 15 for Re = 800.
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Figure 6.25 presents, at station =15, the distributions of u, v and w along
with those of Gartling [23] and agreement in u and w is observed to be close.
However, the distribution of v does not agree as closely which fact has also
been observed by Srinivasan and Rubin [70]. Again, the upper wall separation
length [,=4.31 found by this study is much closer to the experimental value
l, = 4.1 of Armaly et al. [7] against the predicted values of I, ~ 4.7, 5.63 and
5.75 of John [23,33]|Gartling and Kim and Moin [38] respectively.

6.4 Conclusion

The HOC scheme on nonuniform grids for convection-diffusion has so far been
tested only for linear problems with grid transformation. The present work
affords an HOC method on nonuniform grids which avoids the complexities
associated with transformation. Dispensing with transformation also reduces
computational effort as the method now deals with smaller number of terms at
each grid point. Because of clustering the method is seen to produce accurate
solution of complex flows with significantly smaller number of grid points with
resultant economy. For instance, a 31 x 31 grid is found to be good enough
to capture the flow details including the tertiary vortices for the lid-driven
cavity problem up to Re=1000. The method may therefore, in many respects,
be considered superior to similar ones on either uniform grids or nonuniform
grids with transformation. Nonuniformity in grid, however, renders the alge-
braic system for the Poisson equations (for example, those associated with 1)
nonsymmetric, necessitating the use of hybrid BiCGStab algorithm instead of
CG. We believe that the solution procedure does not lose much competitive
edge because of this, as it uses smaller number of grid points which again may
become significant at times in terms of saving memory. Since it is possible for
the present method to place comparatively larger number of grid points in the
boundary layer regions, it brings out some unreported features, for example,
two new vortices in the much examined lid-driven cavity flow at Re=3200. The
solution procedure is very robust and to our knowledge this is the first instance

of extension of an HOC algorithm on nonuniform grid to the N-S equations,
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with or without grid-transformation. Also we believe that the present work,
for the first time, effectively extends an HOC algorithm to Re’s much beyond
1000 in the lid-driven cavity problem and beyond 200 in the backward-facing
step problem. For the cavity, the method captures very accurate solutions
including new flow features and for the step, our results at higher Re (600 to
800) are much closer to the experimental results compared with earlier inves-
tigations. Overall we consider the present method an important addition to

the existing solution procedures for incompressible viscous flows.
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Chapter 7

CONCLUSION

7.1 Observations and Remarks

This dissertation is concerned with HOC schemes for convection-diffusion equa-
tions in general and incompressible viscous flows in particular. New HOC finite
difference algorithms are developed and some already existing ones modified for
the 2D linear and nonlinear convection-diffusion equations. The new schemes
are first tested on linear convection-diffusion problems to have an understand-
ing of their mode of working, merits and demerits. All the schemes are then
employed to different complex physical flow situations with or without heat
and mass transfer to examine their accuracy, efficiency and robustness. Exten-
sive validation exercise is carried out by comparing the results obtained from
the schemes with existing analytical, numerical and experimental results. In
what follows, first the work carried out in the thesis is described briefly so that

insightful comments can be made on it later.

Scheme 1: An HOC scheme for the 1-w formulation of the N-S equations is
combined with some new developments to solve the thermally driven cavity
flow. These developments are in the shape of a compact O(h*) approximation
for the first order derivative source term and a zero-gradient Neumann bound-

ary condition of identical accuracy for temperature. The resultant method is
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termed fully HOC as the scheme, the boundary conditions and the source term

treatment are all compact and fourth order accurate.

Scheme 2: A parametrized class of implicit HOC schemes are next developed
for the 2D unsteady convection-diffusion equations with variable convection
coefficients. The schemes are spatially fourth order accurate. They are tempo-
rally second or first order accurate and unconditionally stable depending on the
choice of a weighted average parameter. The schemes are studied in great de-
tails bringing out interesting features like numerical diffusion and anti-diffusion
exhibited by them. They are employed to a large number of problems of vary-
ing complexities with great success. Especially the O[(At)?] (9,9) scheme is
seen to compute transient solution of coupled nonlinear PDEs represented by
the 2D N-S equations very effectively. The same scheme computes the steady
solution (in a time-marching fashion) of two problems involving complex flows,
namely, the lid-driven cavity flow and the double-diffusive flow in a vertical
porous annulus. A large number of results are presented for a wide range of

flow parameters and they compare very well with existing results.

Scheme 3: Also in a significant development, a transformation-free HOC finite
difference scheme on nonuniform Cartesian grids is introduced. Conventional
finite difference algorithms on nonuniform grids generally involve to-and-fro
transformations between the physical and the computational spaces, bringing
in a lot of additional complexities into the solution procedure especially in the
context of HOC schemes. Against this, the present scheme uses a nonuniform
grid, but no transformation! Its distinguishing feature is the simplicity of the
underlying idea and high effectiveness in the computation of wall-bounded
incompressible viscous flows, exemplified by the highly accurate and efficient
coarse grid computation of flow in the lid-driven cavity and the backward-

facing step problem at high Re’s.

The work therefore, achieves with great success three major objectives set at
the beginning, namely, development of some new HOC algorithms for com-
putation of steady and unsteady viscous flows, modification of some existing

ones to enhance their strength, and broadening the scope of applicability of
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HOC schemes. In what follows the major achievements of the thesis will be
highlighted in the form of observations and comments, further substantiating

the claim of objectives having been achieved.

(i) The HOC treatment of the first order derivative source term by Scheme 1
can be easily extended to higher order derivatives making it possible to handle
the pressure-Poisson equation in the primitive variable formulation of the N-S
equations. The temperature boundary conditions developed for the adiabatic
walls can be extended to any variable with zero normal gradient satisfying
Laplace equation. These developments broaden the scope of applicability of
HOC schemes.

(ii) Time accurate implicit schemes is an interesting area of research to which
much research effort is currently being directed. However, HOC schemes for
transient problems are seen only for linear convection-diffusion and there is
a distinct void in this area. Scheme 2 developed here applies to general 2D
convection-diffusion and can be considered a notable step in filling this void.
Significantly, the scheme is also seen to have better time-wise efficiency com-

pared to similar schemes and is therefore an important development.

(iii) The earlier HOC schemes all suffered from the debilitating constraint of
having to use a grid aspect ratio of unity. Scheme 2 removes this constraint for
the first time; Scheme 3 goes much beyond that by making it possible to use
whatever nonuniform pattern of spacing one chooses in either direction —an

important achievement indeed!

(iv) The only earlier HOC computation on a nonuniform grid is for a simple
linear convection-diffusion problem through a transformation technique. In
contrast, Scheme 3 produces remarkably accurate results on nonuniform grids
for complex wall-bounded flows at high Re’s. Multiplicity of scales at high
Re’s is known to pose a challenge to all computational methods. This is
because, for near-wall small scales to be captured through an uniform grid,
the number of points has to be so large as to go beyond the range of most

of the ordinary computers. The scheme removes this hurdle to a great extent
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as it makes a much lower demand on memory. The solution procedure is
so effective and accurate that for the much investigated lid-driven cavity, it
captures some hitherto unreported flow features and for the backward-facing
step flow problem, it produces results which are much closer to experimental
compared with other numerical results. Elimination of transformation also
results in marked simplicity. Clearly the method is a very important addition
to the existing methods for computing incompressible viscous flows. Attempts
have been initiated (see Appendix C) to extend the method to orthogonal

curvilinear co-ordinates to enhance its power.

(vi) The robustness and versatility of the schemes can be realized from the
accurate computation of viscous flows under complex situations represented,
for instance, by high Rayleigh number, high Reynolds number, and buoyant

flow driven by thermal and solutal gradients acting in opposition.

(v) For many of the difficult range of flow parameters, no earlier HOC result
exist. For instance, for the lid-driven cavity flow, no earlier result beyond
Re = 10? is seen whereas results included here are up to Re = 7500. For
the thermally driven cavity flow again, no HOC result beyond Ra = 10° is
seen whereas results for Ra = 10° and 107 are included in this thesis. For the
double-diffusive flow in a porous annulus, some of the computations performed
here for difficult range of flow parameters were not attempted earlier by any
other method. It is thus seen that schemes developed in this work are put to
severe tests not known to earlier HOC methods. The HOC computation of the
double-diffusive flow in the porous annulus through Scheme 2 is perhaps the
first instance of an HOC method being applied to a problem of both heat and
mass transfer. This work thus broadens the range and scope of applicability

of HOC schemes to a great extent.

(vii) Another point worth mentioning is that throughout the present work,
advanced iterative solvers like CG, BiCG, BiCGStab and hybrid BICGStab
are extensively used to solve the discrete algebraic systems. This appears to
have added strength to the methods as computation in some complex flow

situations are accomplished without much difficulty.
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7.2 Scope for Future Work

The work also opens up a host of interesting research possibilities, the major

ones of which are listed below.

1. As mentioned earlier, this work makes it possible to handle the pressure-
Poisson equation arising in the primitive variable form of N-S equations. This
opens up the possibility of efficient solution of 3D incompressible N-S equations
through HOC schemes.

2. All the HOC schemes in this work have been applied only to incompressible
viscous flow problems. It will be worthwhile to examine to what extent the
strategy of using the original PDE to construct HOC schemes can be used in

relation with compressible flows.

3. The transient (9,9) scheme is spatially fourth and temporally second order
accurate. Whether the scheme in some modified form can be extended to direct
numerical simulation (DNS) of turbulent flows seems to be an interesting and

important area of research.

4. Preliminary work of extension of Scheme 3 to orthogonal curvilinear system
of co-ordinates has already been included in Appendix C. The idea appears
to have good potential for efficient computation of physically meaningful flows
like incompressible viscous flow past a cylinder. Future work in this direction

seems to be fraught with interesting possibilities.

5. Because of the presence of the four corner points in the 9-point stencil for
the transient scheme (Scheme 2), it was found difficult to adopt an alternate
direction implicit (ADI) strategy. Whether this hurdle can be removed and an

efficient HOC scheme can be constructed is another idea worth pursuing.
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Appendix A

Stability analysis of the
transient HOC scheme

As described in section 4.3 in Chapter 4, the amplification factor £ can be found

by substituting the expression for ¢}; and qb?j“ in equation (4.11) whereby

with

a; =

o =

+

(a1 + Iby) + (ag + Iby) B
= s (1= v=1) (A1)

A+ Ay (2 hk
i [— 1—5 2 <§ cos 0, cos 0, + %sin@z sin0y>

A
2( 1+ Ay
6

(2A1a + 2A2B -

A+ Ay

- A1a> cosf, + 2 ( - A25> cos 0,
Ay +A2>] b (cosﬁz + cos b, N 2)

6 3
(A.2)

AL+ A
2
9 <A1 + Ay

2 hk
<§ cos 0, cos 0, + 77 sin 6, sin 0y>

— A1a> cosf, —2 (Al —g A

A+ A2>
3

— AQB) cos 0,

<2A1a + 20,8 —
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Ar+ A
b = u[ 1t 2(hcsin@mcosey+kdcos€xsin9y)+A1h(0—§>sin0$

+ Aok (D — g) sin Oy] — % (hesinby + kdsin6,)

(A.4)
Ay + A
by = g 2 (hesin 6, cos 6, + kd cos 0, sin6,) — Arh (0 - %) sin 0,
— AQ]C (D — g) sin Gy

(A.5)

so that ; ; )
0 = s+ b (w N _> , (A.6)

6 3

and ;

by = —puby — 3 (hesin 0, + kdsin 6,) (A.7)

Therefore using equation (A.1) and the stability criterion |£2| — 1 < 1, we get

<1 4 aiay — b1b2)2 4 (albg + a2b1>2 1 S 1’

at + b7 ai + b7
ie.,
a% + bg + 2 (a1a2 - blbg) S 0
or
. 6 2 bb . .
(1—2u) (a% - b§)+2 as cos b, + cos by + 2 ) + =2 (hesin b, + kdsin6,)| <0
6 3 12
(A.8)
Now, & has its strictest stability restriction when cosf, = cosf, = —1. Also

R2c2 2,12
C:c,Dzd,a=1+TandB=1+

Using these facts in the expressions for as and be, equation (A.8) after some

when ¢ and d are constants.

simplifications yield the relation (4.13) given by

2b
< :
= Ai(8+ h%e?) + Ao (8 + K2d?)

(1—2p)
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Details of finite difference
operators

The expressions for the finite difference operators appearing in the equa-
tions (6.10), (6.17) and (6.19)-(6.24) in Chapter 6 are as follows

_ Pivg ~ Py
0pPij = o (B.1)
Gijr1 — Pij—1
Bytij = — ok ’ (B.2)
1 ¢i 1,5 1 1 ¢i—1 ]
82 = — tly (24 i J B.
i h{ g <$f+$b>¢]+ 4 } (B3)
1 ¢i j+1 1 1 ¢z’ i—1
0, ij —{ . —<—+—) i+ } B.4
v =5 Yy yr o W % Yy (B4)
1
0p0yPij = Tk (Git1,j+1 — Dit1,j-1 — Dic1,j+1 + Pi1,5-1) (B.5)
1 1 1 1
0:8, = ok {y_f (Pit1j+1 — Pi1+1) — (y_f + %> (Piv1j — Pi-1)
1
+ = (Pit1,4-1— ¢i—1,j—1)} (B.6)
Yb
1 1 1 1
020, = Sk {m_f (Pig1,541 — Biv1,j-1) — <.’L'_f + m—()) (hijs1 — Gij—1)

1
+ 2 (ic1j+1 — ¢i—1,j—1)} (B.7)
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oy 1 1
5252 T i+1 j+1 ¢z 1,5+1 _ + o
0y { TrYs Ty TrYr  ToYs Pit

hk
1 1 1 1
- (— —> Giv1,j + < + + + ) ij
Yy ZfYp TrYr  TfYs  ToYr  TolYs
( 1

1 1 i1 i 1
) Pij—1— (— + —) Gi—1,5 + Pirtjo1 + Gi-1y 1}
TrYyp  TolYs TpYr  TolYs ZfYp TpYp

(B.8)

Ty + Tp

where x ¢, xy, Y5 and y, are as defined in section 6.2 of Chapter 6 and h = 5

Yr+Ys
-

and k£ =

When z; = x, = h and y; = y» = k, these become the operators appearing
in equations (4.3)-(4.10) of Chapter 4 and on setting z; = x, = yy = yp = h,
they reduce to the operators appearing in equations (2.4) and (2.12)-(2.18) of
Chapter 2.



Appendix C

Extension of nonuniform HOC
methodology to Curvilinear
Co-ordinates

So far, the present dissertation has dealt only with rectangular Cartesian co-
ordinates; however, it is possible to extend the HOC methodology on nonuni-
form grids developed in Chapter 6 to orthogonal curvilinear co-ordinates as
well. An HOC formulation is developed here on a curvilinear co-ordinate sys-

tem without transformation. The procedure is briefly described below:

The convection-diffusion equation for a transport variable ¢ in 2D general

orthogonal curvilinear co-ordinates (s,n) may be written as

2
—a(s, n)T —b(s, n)% + (s, n)% + d(s,n)

g—z = f(s,n) (C.1)
It is worth mentioning that unlike the earlier HOC formulation for 2D convection-
diffusion, the diffusion coefficients a¢ and b in the present case are variables as
in most of the curvilinear cases (e.g. the polar co-ordinates) one is likely to
come across at least one variable diffusion coefficient. The HOC formulation
for this on nonuniform grids with forward and backward steplengths Asy, As,,

in s- and Any, An, in n-directions may be written as
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[—Aij07 = Byjo7 + Cijs + Dyj6n

+ Gij6y0n — Hijdu0) — Kijo26, — Lij0207] ¢i; = Fiy, (C.2)
where the coefficients Cj;, D;j, Aij, Bij, Gij, Hij, K;j and L;; are given by
C, = [1 + 2(1{1 — )6, + %(K1 — BE)6,
+ 2 (Ha — 0.5(s; — 50) (Hy — a.Hy)} 2
b2 — 0500y — m)(Ky — BE)} 6 e (C.3)
Dy = |1+ 2(H1 — aHy)6, + %(K1 — BK>)6,,

1
+ a {H2 — 0.5(8f - Sb)(Hl - a’H2)}5§

+ % {K2 —0.5(ny —ny) (K1 — BK3)} 5721} d, (C.4)
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+ E(Kl - ,BKQ) {Jna — O5(nf - nb)5na} + (76501 + Téna)
H.
- 272 {550 —0.5(sy — sb)éfc}] +0.5(s5 — s5)Cij, (C.5)
1 2
Bz'j =b + E(Hl — O!HQ) {531) - 0.5($f - Sb)dsb}
1 H. K.
+ (K = B {dub = 0.5(ng — )82 — d} + (72531) 4 fagb)
K.
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1 1 H
Gij = —(Hi—aH)d+ (K - fKp)e+ 272 {60 —0.5(s; — 5,)07d}

K.
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1 H 1
Hyj = —(H, — aHp)b+ 2= {60 — 0.5(sy — )02} — 5 Ko, (C8)

1 K, 1
Kij = 7 (K1 — aKa)a + 2— {60 — 0.5(ny — m)02a} — “Hod,  (C.9)

b a
and
1 1
Ej = 1+ a(Hl - aH2)53 + Z(Kl — ,BKQ)(SH
1
+ E {Hg — 0.5(Sf - Sb)(Hl - OéHQ)}é?
1
+ 5 K = 05(ny — o) (K: — B} 55] f, (C.11)
with

o= % [2 {(5Sa —0.5(sy — sb)éga} - c] , B= % [2 {(5nb —0.5(ny — nb)éflb} - d] ,

1 a
H, = - {Qa(sf — Sp) —cSpspy, Hy= D ( its— Sbe)
b

K, = G {2b(nf —np) —dngnp}  and Ky = T ( +ng— nfnb) :

We have already applied this on small problems in polar co-ordinates with
moderate success. Further research is required to completely establish the
scheme which is beyond the scope of this dissertation and can go a long way in
efficiently solving incompressible viscous fluid flows in curvilinear co-ordinates

as well.
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