
MA513: Formal Languages and Automata Theory
Topic: Properties of Context-free Languages

Lecture Number 29 Date: October 18, 2011

1 Greibach Normal Form (GNF)

A CFG G = (V, T, R, S) is said to be in GNF if every production is of the form
A → aα, where a ∈ T and α ∈ V ∗, i.e., α is a string of zero or more variables.

Definition: A production U ∈ R is said to be in the form left recursion, if
U : A → Aα for some A ∈ V .

Left recursion in R can be eliminated by the following scheme:
• If A → Aα1|Aα2| . . . |Aαr|β1|β2| . . . |βs, then replace the above rules by
(i) Z → αi|αiZ, 1 ≤ i ≤ r and (ii) A → βi|βiZ, 1 ≤ i ≤ s

• If G = (V, T, R, S) is a CFG, then we can construct another CFG G1 = (V1, T, R1, S)
in Greibach Normal Form (GNF) such that L(G1) = L(G) − {ε}.

The stepwise algorithm is as follows:

1. Eliminate null productions, unit productions and useless symbols from the
grammar G and then construct a G′ = (V ′, T, R′, S) in Chomsky Normal
Form (CNF) generating the language L(G′) = L(G) − {ε}.

2. Rename the variables like A1, A2, . . . An starting with S = A1.

3. Modify the rules in R′ so that if Ai → Ajγ ∈ R′ then j > i

4. Starting with A1 and proceeding to An this is done as follows:

(a) Assume that productions have been modified so that for 1 ≤ i ≤ k, Ai →
Ajγ ∈ R′ only if j > i

(b) If Ak → Ajγ is a production with j < k, generate a new set of productions
substituting for the Aj the body of each Aj production.

(c) Repeating (b) at most k − 1 times we obtain rules of the form Ak →
Apγ, p ≥ k

(d) Replace rules Ak → Akγ by removing left-recursion as stated above.

5. Modify the Ai → Ajγ for i = n−1, n−2, ., 1 in desired form at the same time
change the Z production rules.

1

Example: Convert the following grammar G into Greibach Normal Form (GNF).

S → XA|BB

B → b|SB

X → b

A → a

To write the above grammar G into GNF, we shall follow the following steps:

1. Rewrite G in Chomsky Normal Form (CNF)

It is already in CNF.

2. Re-label the variables

S with A1

X with A2

A with A3

B with A4

After re-labeling the grammar looks like:

A1 → A2A3|A4A4

A4 → b|A1A4

A2 → b

A3 → a

3. Identify all productions which do not conform to any of the types listed below:

Ai → Ajxk such that j > i

Zi → Ajxk such that j ≤ n

Ai → axk such that xk ∈ V ∗ and a ∈ T

4. A4 → A1A4 identified

5. A4 → A1A4|b.

To eliminate A1 we will use the substitution rule A1 → A2A3|A4A4.

Therefore, we have A4 → A2A3A4|A4A4A4|b

The above two productions still do not conform to any of the types in
step 3.

Substituting for A2 → b

A4 → bA3A4|A4A4A4|b

Now we have to remove left recursive production A4 → A4A4A4

2

A4 → bA3A4|b|bA3A4Z|bZ

Z → A4A4|A4A4Z

6. At this stage our grammar now looks like

A1 → A2A3|A4A4

A4 → bA3A4|b|bA3A4Z|bZ

Z → A4A4|A4A4Z

A2 → b

A3 → a

All rules now conform to one of the types in step 3.
But the grammar is still not in Greibach Normal Form!

7. All productions for A2, A3 and A4 are in GNF

for A1 → A2A3|A4A4

Substitute for A2 and A4 to convert it to GNF

A1 → bA3|bA3A4A4|bA4|bA3A4ZA4|bZA4

for Z → A4A4|A4A4Z

Substitute for A4 to convert it to GNF

Z → bA3A4A4|bA4|bA3A4ZA4|bZA4|bA3A4A4Z|bA4Z|bA3A4ZA4Z|bZA4Z

8. Finally the grammar in GNF is

A1 → bA3|bA3A4A4|bA4|bA3A4ZA4|bZA4

A4 → bA3A4|b|bA3A4Z|bZ

Z → bA3A4A4|bA4|bA3A4ZA4|bZA4|bA3A4A4Z|bA4Z|bA3A4ZA4Z|bZA4Z

A2 → b

A3 → a

3

