MA513: Formal Languages and Automata Theory Topic: Properties of Context-free Languages Lecture Number 29 Date: October 18, 2011

1 Greibach Normal Form (GNF)

A CFG G = (V, T, R, S) is said to be in GNF if every production is of the form $A \to a\alpha$, where $a \in T$ and $\alpha \in V^*$, i.e., α is a string of zero or more variables.

Definition: A production $\mathcal{U} \in R$ is said to be in the form **left recursion**, if $\mathcal{U}: A \to A\alpha$ for some $A \in V$.

Left recursion in R can be eliminated by the following scheme: • If $A \to A\alpha_1 |A\alpha_2| \dots |A\alpha_r|\beta_1|\beta_2| \dots |\beta_s$, then replace the above rules by (i) $Z \to \alpha_i |\alpha_i Z, 1 \le i \le r$ and (ii) $A \to \beta_i |\beta_i Z, 1 \le i \le s$

• If G = (V, T, R, S) is a CFG, then we can construct another CFG $G_1 = (V_1, T, R_1, S)$ in **Greibach Normal Form (GNF)** such that $L(G_1) = L(G) - \{\epsilon\}$.

The stepwise algorithm is as follows:

- 1. Eliminate null productions, unit productions and useless symbols from the grammar G and then construct a G' = (V', T, R', S) in Chomsky Normal Form (CNF) generating the language $L(G') = L(G) \{\epsilon\}$.
- 2. Rename the variables like A_1, A_2, \ldots, A_n starting with $S = A_1$.
- 3. Modify the rules in R' so that if $A_i \to A_j \gamma \in R'$ then j > i
- 4. Starting with A_1 and proceeding to A_n this is done as follows:
 - (a) Assume that productions have been modified so that for $1 \le i \le k, A_i \to A_j \gamma \in R'$ only if j > i
 - (b) If $A_k \to A_j \gamma$ is a production with j < k, generate a new set of productions substituting for the A_j the body of each A_j production.
 - (c) Repeating (b) at most k-1 times we obtain rules of the form $A_k \to A_p \gamma, p \geq k$
 - (d) Replace rules $A_k \to A_k \gamma$ by removing left-recursion as stated above.
- 5. Modify the $A_i \to A_j \gamma$ for i = n 1, n 2, ., 1 in desired form at the same time change the Z production rules.

Example: Convert the following grammar G into Greibach Normal Form (GNF).

$$S \to XA|BB$$
$$B \to b|SB$$
$$X \to b$$
$$A \to a$$

To write the above grammar G into GNF, we shall follow the following steps:

1. Rewrite G in Chomsky Normal Form (CNF)

It is already in CNF.

- 2. Re-label the variables
 - S with A_1 X with A_2 A with A_3 B with A_4

After re-labeling the grammar looks like:

$$A_1 \to A_2 A_3 | A_4 A_4$$
$$A_4 \to b | A_1 A_4$$
$$A_2 \to b$$
$$A_3 \to a$$

3. Identify all productions which do not conform to any of the types listed below:

 $A_i \to A_j x_k$ such that j > i $Z_i \to A_j x_k$ such that $j \le n$ $A_i \to a x_k$ such that $x_k \in V^*$ and $a \in T$

4. $A_4 \rightarrow A_1 A_4$ identified

5.
$$A_4 \rightarrow A_1 A_4 | b$$
.

To eliminate A_1 we will use the substitution rule $A_1 \rightarrow A_2 A_3 | A_4 A_4$.

Therefore, we have $A_4 \rightarrow A_2 A_3 A_4 | A_4 A_4 A_4 | b$

The above two productions still do not conform to any of the types in step 3.

Substituting for $A_2 \to b$

$$A_4 \to bA_3A_4 | A_4A_4A_4 | b$$

Now we have to remove left recursive production $A_4 \rightarrow A_4 A_4 A_4$

$$A_4 \rightarrow bA_3A_4|b|bA_3A_4Z|bZ$$

 $Z \rightarrow A_4A_4|A_4A_4Z$

6. At this stage our grammar now looks like

$$\begin{aligned} A_1 &\to A_2 A_3 | A_4 A_4 \\ A_4 &\to b A_3 A_4 | b | b A_3 A_4 Z | b Z \\ Z &\to A_4 A_4 | A_4 A_4 Z \\ A_2 &\to b \\ A_3 &\to a \end{aligned}$$

All rules now conform to one of the types in step 3. But the grammar is still not in Greibach Normal Form!

7. All productions for A_2, A_3 and A_4 are in GNF

for
$$A_1 \to A_2 A_3 | A_4 A_4$$

Substitute for A_2 and A_4 to convert it to GNF $A_1 \rightarrow bA_3 | bA_3A_4A_4 | bA_4 | bA_3A_4ZA_4 | bZA_4$

for
$$Z \to A_4 A_4 | A_4 A_4 Z$$

Substitute for A_4 to convert it to GNF

$$Z \rightarrow bA_3A_4A_4|bA_4|bA_3A_4ZA_4|bZA_4|bA_3A_4A_4Z|bA_4Z|bA_3A_4ZA_4Z|b$$

8. Finally the grammar in GNF is

$$\begin{array}{l} A_1 \rightarrow bA_3 | bA_3 A_4 A_4 | bA_4 | bA_3 A_4 Z A_4 | bZ A_4 \\ A_4 \rightarrow bA_3 A_4 | b | bA_3 A_4 Z | bZ \\ Z \rightarrow bA_3 A_4 A_4 | bA_4 | bA_3 A_4 Z A_4 | bZ A_4 | bA_3 A_4 A_4 Z | bA_4 Z | bA_3 A_4 Z A_4 Z | bZ A_4 Z \\ A_2 \rightarrow b \\ A_3 \rightarrow a \end{array}$$