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Abstract  

In this lecture note the vibration of linear and nonlinear dynamical systems has been 

briefly discussed. Both inertia and energy based approaches have been introduced to 

derive the equation of motion. With the help of simple numerical examples, responses 

of linear and nonlinear systems, their stability and bifurcations have been studied.   

 

1. Introduction 

 

Any motion that repeats itself after an interval of time is called vibration or 

oscillation. The swinging of a pendulum (Fig.1) and the motion of a plucked string are 

typical examples of vibration. The theory of vibration deals with the study of 

oscillatory motion of bodies and forces associated with them. 

 

Elementary Parts of Vibrating system 

• A means of storing potential energy (Spring or elasticity) 

• A means of storing kinetic energy (Mass or inertia) 

• A means by which energy is gradually lost (damper) 

The forces acting on the systems are   

• Disturbing forces 

• Restoring force 

• Inertia force 

• Damping force 

Degree of Freedom: The minimum number of independent coordinates required to 

determine completely the position of all parts of a system at any instant of time 

defines the degree of freedom of the system. 

System with a finite number of degrees of freedom are called discrete or lumped 

parameter system, and those with an infinite number of degrees of freedom are called 

continuous or distributed systems. 

 

Classification of Vibration:  

• Free and forced  

• Damped and undamped 

• Linear and nonlinear 

• Deterministic and Random 

 

Free vibration: If a system after initial disturbance is left to vibrate on its own, the 

ensuing vibration is called free vibration. 

Forced Vibration: If the system is subjected to an external force (often a repeating 

type of force) the resulting vibration is known as forced vibration 

 

Damped and undamped: If damping is present, then the resulting vibration is damped 

vibration and when damping is absent it is undamped vibration. The damped vibration 

can again be classified as under-damped,   critically-damped and over-damped system 

depending on the damping ratio of the system. 

Fig. 1: Swinging of a Pendulum 



Linear vibration: If all the basic components of a vibratory system – the spring the 

mass and the damper behave linearly, the resulting vibration is known as linear 

vibration. Principle of superposition is valid in this case. 

Nonlinear Vibration: If one or more basic components of a vibratory system are not 

linear then the system is nonlinear. 

Depending on excitation:  

Deterministic: If the value or magnitude of the excitation (force or motion) acting on 

a vibratory system is known at any given time, the excitation is called deterministic. 

The resulting vibration is known as deterministic vibration. 

Random Vibration: In the cases where the value of the excitation at any given time 

can not be predicted. Ex. Wind velocity, road roughness and ground motion during 

earth quake.  

Coordinate:  

 In Newtonian mechanics motions are measured relative to an inertial reference frame, 

i.e, a reference frame at rest or moving uniformly relatively to an average position of 

“ fixed stars” and displacement, velocity and acceleration are absolute values. 

Generalized coordinate: These are a set of independent coordinates same in number as 

that of the vibrating system. For example, the motion of a double pendulum in planar 

motion can be represented completely either by  1 2,θ θ  the rotation of the first and 

second link respectively or by 1 1 2 2, , ,x y x y  the Cartesian coordinates of first and 

second links. While in the later case 4 coordinates are required to represent 

completely the system, in the former case only 2 coordinates are required for the 

same. Hence, in this case 1 2,θ θ  is the generalized co-ordinate while 1 1 2 2, , ,x y x y are 

not the generalized one. One may note that these four coordinates are not independent 

and can be reduced to two by the use of length constraint. 

 

2. Linear and Nonlinear systems                                                     
                                                                                            

A system is said to be linear or nonlinear depending on the force response 

characteristic of the system.  The block diagram relating to output and input can be 

represented as shown in Fig 2(a) and mathematically represented as shown in Fig. 

2(b).  

 

 

 

               (a)                                                                     (b) 

Fig. 2 Block diagram showing the force-response and mathematically relating the 

input to the output through the operator D. 

 

A linear system may be of  first  or second order depending on the presence of the 

basic elements. Atypical first order system with linear spring and viscous damping is 

shown in Fig 3(a) and that of a second order system is shown in Fig.3 (b) as they can 

be represented by ( )cx kx F t+ =�  and ( )mx cx kx F t+ + =�� �  respectively. 

 

As shown in Fig. 2(b), a system can be represented by using a operator D such that  

Dx(t) = f(t), where D is the differential operator, x(t) is the  response and f(t)  is the  

excitation input.                                                                          

A system )()( tftDx =  is said to be linear of it satisfies the following two condition. 

 

System x(t) f(t)          D(t) x(t) 
   f(t) 



1. The response to )(tfα  is ),(txα where α  is a const. 

2. The response to )()( 21 tftf +  is )()( 21 txtx + where the )(1 tx is the response to 

)(1 tf and )(2 tx  response )(2 tf  

 

 

 

 

 

 

 

  

                                                                   

 

 

Fig 3(a) First order system (b) second order system 

 

     In case ( ( )) ( )D t D tα α× = × , the operator D and hence the system is said to posses 

homogeneity property and   when [ ]1 2 1 2( ) ( ) ( ) ( )D x t x t Dx t Dx t+ = +  the system 

is said to posses additive property.     If an operator D does not possess the 

homogeneity and additivity property the system is said to be nonlinear.    

  

Example 1: Check whether system given by the following is linear or nonlinear  
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=  where, ∈  is a const ant 

Solution:  check the homogeneity 
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d x t dx t
D x t a t a t a t x t x t

dt dt
α α α α α = + + −∈   ( )D tα≠  

Hence homogeneity condition is not satisfied  

Similarly substituting 1 2( ) ( ) ( )x t x t x t= +   

 

[ ]1 2 1 2( ) ( ) ) ( ).D x t x t Dx t Dx t+ ≠ +  which does not satisfy additive property also. Hence 

the system is a nonlinear system.  It may be noted that, the term containing ∈  causes 

the nonlinearity of the system. If ,0∈= the equation becomes linear by satisfying 

homogeneity and additive properties. 

Hence it may be observed that 

1) A system is linear if the function )(tx and its derivatives appear to the first (or 

zero) power only; otherwise the system is nonlinear. 

2) A system is linear if 10 ,aa and 2a depend as time alone, or they are constant. 

 

3.Equivalent system The complex vibrating system can be reduced to simpler one 

by using the concept of equivalent system. The equivalent spring stiffness can be 

obtained by equating the potential energy of the actual system with that of the 

equivalent system; equivalent mass or inertia can be obtained by equating the kinetic 

energy. Similarly equivalent damping can be obtained by equating the energy 

dissipated per cycle between the actual and the equivalent system. 
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Example 2: Determine the Equivalent stiffness of the crane shown in fig. 4(a) in the 

vertical direction. 
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Fig 4. (a) A crane system, (b) simplified model,(c) equivalent spring mass system  

The P.E (U) stored in the spring 1k  and 2k can be expressed 
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Equivalent mass  
Example 3: Determine the equivalent mass / moment of inertia of the gear-pinion 

system shown in Fig 5.  
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Fig. 5 Gear and pinion system 
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Equating the kinetic energy of the actual system with that of the equivalent system 

consisting of mass me having translational velocity x�  the equivalent mass is obtained 

as follow.   
2
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e e
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�
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Similarly one may think of an equivalent system consisting of a gear of moment of 

inertia Je and rotating with angular velocity θ�  and get Je. 
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4. Steps for Vibration Analysis  

• Convert the physical system to simplified mathematical model  

• Determine the equation of motion l of the system 

• Solve the equation of motion to obtain the response 

• Interpretation of the result for the physical system. 

To convert the physical system into simpler models one may use the concept of 

equivalent system. To determine the equation of motion basically one may use either 

the vector approach with the Newtonian approach or d’Alembert principle based on 

free body diagram or one may go for scalar approach using the energy concept. In 

scalar approach one may use Lagrange method, which is a differential procedure or 

extended Hamilton’s principle based on integral procedure. Different 

methods/laws/principle used to determine the equation of motion of the vibrating 

systems are summarized below. 

 

5. Derivation of Equation of motion  
5.1 Newton’s second law A practical acted upon by a force moves so that the force 

vector is equal to the time rate of change of the linear momentum vector. 
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Fig. 6 Application of Newton’s second law 

Taking, iv -initial velocity, fv -final velocity, and   t  time, according to Newton’s 2
nd
 

Law 

 

 

 

 

Example 5   Use Newton’s 2
nd
 law to derive equation of motion of a simple 

pendulum  

 

Solution: 

Applying Newton' second law using the  

coordinate system shown in the free body  

diagram (Fig 7(b)) 

JmglmgTF ˆsinˆ)cos( θθ −+−=  

          2 ˆˆ( )m l j l Iθ θθ θθ θθ θ= −�� �  

Now the expression for tension can be obtained  

by equating the I
th
 component  

)cos(cos 22 θθθθ gLmmlmgT +=+= ��  

and the equation of motion can be obtained  

from the J th component. Hence the equation of motion is 

0sin =+ θθ mgml ��  or     sin 0
g

l
θ θ+ =��  

Also one may use momentum equation i.e., the moment of a force about fixed point is 

equal to the time rate of change of the angular momentum about that point to obtain 

the above equation of motion. The above equation is linear only for small value of θθθθ . 

 

5.2 Work energy principle 

 

The work performed in moving the particle from position 1r
�
 to 2r
�
 is equal to the 

change in kinetic energy.  
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It can be shown that 

• Force for which the work performed in moving a particle over a closed path is 

zero (considering all possible paths) are said to be conservative force. 

• Work performed by a conservative force in moving a particle from 1r
�
 to 2r
�
 is 

equal to the negative of the change in potential energy from V1 to V2. 

• Work performed by the nonconservative forces in carrying a particle from 

position 1r  to position 2r  is equal to the change in total energy  

 

5.3 d’Alembert Principle The vectorial sum of the external forces and the inertia 

forces acting on a moving system is zero. Referring to  Fig. 6. according to 

d’Alembert Principle ( ) 0F ma+ − =  where ma−  is the inertia force. 
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Fig. 7. (a) Simple pendulum  

           (b) Free body diagram 
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5.4 Generalized Principle of d’Alembert: 

The Virtual Work performed by the effective forces through infinitesimal virtual 

displacements compatible with the system constraints is zero 

( )
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5.5 Extended Hamilton’s Principle 

 

We can conceive of a 3N dimensional space with the axes ix , iy , iz  and represent 

the position of the system of particles in that space and at any time t  the position of a 

representative point P with coordinate ( )ix t , ( )iy t , ( )iz t  where  i = 1,2,…N,  the 

3N dimensional space is known as the Configuration Space. As time unfolds, the 

representative point P traces a curve in the configuration space called the true path, or 

the Newtonian path, or the dynamical path. At the same time let us think of a different 

representative point P ′  resulting from imagining the system in a slightly different 

position defined by the virtual displacement irδ  (i = 1,2…N). As time changes the 

point P ′  traces a curve in the configuration space known as the Varied Path. 

 

 
Of all the possible varied path, now consider only those that coincide with the true 

path at the two instants 1t  and 2t  as shown in Fig.8. the Extended Hamilton’s 

Equation in terms of Physical coordinates can be given by 

                  ( ) ( ) ( )
2

1

1 1 2 20,  0, 1,2,....

t

t

T dt r t r t i Nδ δω δ δ+ = = = =∫  

where Tδ is the variation in kinetic energy and δω  is the variation in the work done. 

But in many cases it is desirable to work with generalized coordinates. As Tδ  and 

δω  are independent of coordinates so one can write 

( )
2

1

0,

t

t

T dtδ δω+ =∫  ( ) ( ) 0k kq t q tδ δ= =  where k = 1, 2,…n, n = no of dof of the 

system. The extended Principle is very general and can be used for a large variety of 

systems. The only limitation is that the Virtual displacement must be reversible which 

implies that the constraint forces must perform no work. Principle cannot be used for 

system with friction forces. 

In general c ncδω δω δω= +  (subscript c refers to conservative and nc refers to 

nonconservative). Also c c Vδω δω δ= = − . Now introducing  Lagrangian L = T – V, 

the extended Hamilton’s principle can be written as 

Fig. 8:  True and Varied      path 
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5.6 Lagrange Principle  
 

The Lagrange principle for a damped system can be written as 
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where L is the Lagrangian given by L=T-U, T is the kinetic energy and U is the 

potential energy of the system. D is the dissipation energy and Qk is the generalized 

force. Fi and Mi are the vector representations of the externally applied forces and 

moments respectively, the index k indicates which external force or moment is being 

considered, ri is the position vector to the location where the force is applied, and iω is  

the system angular velocity about the axis along which the considered moment is 

applied.  

  

Example 6: The system shown in fig. 9 consists of two uniform rigid links of mass m 

and length L, a massless roller free to move in horizontally and two linear springs    of 

stiffness k1 and k2, damper with damping coefficient c and a mass M. Derive the  

equation of motion either by using extended Hamilton’s principle or by Lagrange   

principle.                        

 

 

 

 

 

 

 

 

 

Fig. 9: A system with two rigid links and spring-mass-damper system 

 

Solution: 

 The system is a two degree of freedom system with generalized coordinates θ 
and x. The first part  ABC can be consider as a slider crank mechanism where 

motion of any point on the mechanism can be defined in term of  θ. Let from 

initial position OX a small θ rotation is given to link OB.AB. To find the eom first 
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we should find the kinetic and potential energy for which we have to study the 

kinematics of the system. 

 

Kinematics  

 

Position vector of the roller   ( ) ˆcos cosc L L eθ βϒ = +  

Position vector of LCg of link1  
1 1ˆ ˆcos sin
2 2

F i jθ θϒ = −  

Position vector of LCg of link2  
1 1ˆ ˆcos cos sin
2 2

G L i jθ β β 
ϒ = + − 

 
 

Also  sin sinL Lθ β θ β= ⇒ =  

 

So the velocities 
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2 2 2

F i j i jθθ θθ θ θ θϒ = − = − +� � ��  
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G

L
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θ
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−
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�
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While Link AB will rotate about the Pivot Point O, link BC will undergoes both 

rotation and translation. 

 

 

Kinetic energy of the system 

 

= K.E of Link AB + K.E of Link BC + K.E. of mass M. 
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Now potential energy of the system 
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Spring K1 undergoes a displacement of  

( )ˆ ˆ2 .cx L i i − − ϒ
 

 

( ) ˆ2 2 cosx L L iθ = − −  ( ) ˆ2 1 cosx L iθ = − −   

 

Spring K2  undergoes a displacement of  ˆxi  
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so equation of motions are 
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Now taking θ  to be small, sinθ θ� , cos 1θ = ,  2 0θ =  
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Lagrange equation for a Dissipative System 
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Dissipative Energy = 21
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Other non conservative force Qnc=0 

q1 =θ  , q2 = x 

( )

( ) ( )

2 2 2 2

22 2 2

1 1 1 2

1
1 sin

2

1 1
         sin 2 1 cos 2 1 cos

2 2

L mL Mx

mgL x Lx L x

θ θ

θ θ θ

= + +

 − − + Κ − Κ − + Κ − + Κ  

� �

 

( )2 21 sin 2
L

mL θ θ
θ
∂

= +
∂

�
�

 ( )2 2 22 1 sin 2 .2sin cos  
d L

mL mL
dt

θ θ θ θ θ θ
θ
∂ 

⇒ = + + ∂ 
�� � �

�
 

 



( ) ( )2 2 2

1 1sin cos cos 2 sin 2 2 1 cos sin
L

mL mgL Lx Lθ θ θ θ θ θ θ
θ
∂

⇒ = + + Κ − Κ −
∂

�  

1
.2

2

L
Mx

x

∂
=

∂
�

�
,   

d L
Mx

dt x

∂ 
= ∂ 
��

�
 

( )1 1 2

1 1
2 2 1 cos 2

2 2

L
x L x

x
θ

∂
= − Κ + Κ − − Κ

∂
 

0DF

θ
∂

=
∂ �

,  
1

2
2

DF c x cx
x

∂
= =

∂
� �

�
 

 

so eom 

( )
( )

2 2 2 2 2 2

2

1 1

2 1 sin 4 sin cos 2 sin cos cos

2 sin 4 1 cos sin 0

mL mL mL mgL

Lx L

θ θ θ θ θ θ θ θ θ

θ θ θ

+ + − −

− Κ + Κ − =

�� � �

 

 

( )1 1 22 1 cos 0Mx x L x cxθ+ Κ − Κ − + Κ + =�� � ……………………….(a) 

 

( )
( )

θ θ θ θ θ θ θ

θ θ

+ + − − Κ +

Κ − =

�� �2 2 2 2

1

2

1

2 1 sin 2 sin cos cos 2 sin

4 1 cos sin 0

mL mL mgL Lx

L
  

       ……….(b) 

 

 

5.7 RESPONSE FOR LINEAR SYSTEMS 

 

After deriving the equation of motion, if the equation is a nonlinear one, one may 

either linearize the equation to solve the linearized equation, or one may directly go 

for a nonlinear analysis.  Also, for a given system parameters, the response can be 

obtained by numerical integration technique such as Runge-Kutte method. For solving 

nonlinear vibration problems one may use (i) straight forward expansion, (ii) the 

Lindstedt-Poincare method, (iii) the method of multiple scales, (iv) the method of 

harmonic balance, (v) the method of averaging, etc. Here two problems one for linear 

system and other for a nonlinear system is explained with the help of examples. The 

nonlinear system is solved using the method of multiple scales. 

 

Example 7: 

Force Vibration of Single Degree of Freedom Systems with Harmonic Oscillation: 
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6. Qualitative Analysis of Nonlinear Systems 

 

 

 

 

 

 

 

 

This represents that the sum of the kinetic energy and potential energy of the system 

is constant. Hence, for particular energy level h, the system will be under oscillation, 

if the potential energy ( )F u is less than the total energy h . From the above equation, 

one may plot the phase portrait or the trajectories for different energy level and study 

qualitatively about the response of the system.   

 

Example 8 Perform qualitative analysis to study the response of the dynamic system 
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For the nonlinear system ( ) 0

Upon integrating one may write
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Figure 10 (a) Spring-mass damper system (b) Force polygon 



 
Fig. 11 Potential well and phase portrait showing saddle point and center 

corresponding to maximum and minimum potential energy. 

Solution: For this system 3 2 41 1
( ) ( ) ( 0.1 )

2 40
F x f x dx x x dx x x= = − = −∫ ∫  

The above figure shows the variation of potential energy F(x) with x. It has its 

optimum values corresponding to 0 or 20x = ±  While x equal to zero represents the 

system with minimum potential energy, the other two points represent the points with 

maximum potential energy. Now by taking different energy level h , one may find the 

relation between the velocity v  and displacement x  as 

2 42( ( )) 2 2( (0.5 0.025 ))v x h F x h x x= = − = − −�  

Now by plotting the phase portrait one may find the trajectory which clearly depicts 

that the motion corresponding to maximum potential energy is unstable and the 

bifurcation point is of saddle-node type (marked by point S) and the motion 

corresponding to the minimum potential energy is stable center type (marked by point 

C). 

 

Lagrange and Dirichlet Theorem  If the potential energy has an isolated minimum 

at an equilibrium point, the equilibrium state is stable. 

Liapunov Theorem: If the potential energy at an equilibrium point is not a minimum, 

the equilibrium state is unstable 

 

 

 

The motion is oscillatory in the neighborhood of center 

7. Stability Analysis 

For a dynamic system, one may write the governing differential equation of motion as 

a set of first order differential equation or one may reduce the governing equation of 

motion by applying perturbation method to the following form. 

                                                               (1) 

In this equation M represents the control parameters or the system parameters. The 

steady state response of this system can be obtained by substituting 0,x =� and solving 

S 
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2 2

2 2
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the resulting nonlinear algebraic/transcendental equation. To obtain the stability of the 

steady state fixed point response, one may perturb or give a small disturbance to the 

above mentioned equilibrium point and study its behaviour.  While for a stable 

equilibrium point, the system return backs to the original position, for unstable 

system, after perturbation, the system response grows. Hence, to study stability of the 

system one uses the following steps.  

Considering  0x  as the equilibrium point, substitute = +0( ) ( )x t x y t  in equation (1). 

The resulting equation will be  
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                                (3) 

This matrix is known as the Jacobian matrix and the eigenvalues of the constant 

matrix A provides the information about the local stability of the fixed point x0.   

 

8. Classification of fixed point response 

 

� Hyperbolic fixed point: when all of the eigenvalues of A have nonzero real 

parts it is known as hyperbolic fixed point. 

� Sink: If all of the eigenvalues of A have negative real part. The sink may be of 

stable focus if it has nonzero imaginary parts and it is of stable node if it 

contains only real eigenvalues which are negative. 

� Source: If one or more eigenvalues of A have positive real part. Here, the 

system is unstable and it may be of unstable focus or unstable node. 

� Saddle point: when some of the eigenvalues have positive real parts while the 

rest of the eigenvalues have negative. 

� Marginally stable: If some of the eigenvalues have negative real parts while 

the rest of the eigenvalues have zero real parts   

 

In nonlinear systems, while plotting the frequency response curves of the system by 

changing the control parameters, one may encounter the change of stability or change 

in the number of equilibrium points. These points corresponding to which the number 

or nature of the equilibrium point changes, are known as bifurcation points. For fixed 

point response, they may be divided into static or dynamic bifurcation points 

depending on the nature of the eigenvalues of the system. If the eigen values are 

plotted in a complex plane with their real and imaginary parts along X and Y 

directions, a static bifurcation occurs, if with change in the control parameter, an 

eigenvalue of the Jacobian matrix crosses the origin of the  complex plane. In case of 

dynamic bifurcation, a pair of complex conjugate eigenvalues crosses the imaginary 

axis with change in control parameter of the system. Hence, in this case the resulting 

solution is stable or unstable periodic type. 

  

Saddle-node Bifurcation 



 

The normal form for a generic saddle-node bifurcation of a fixed point is 

( ) 2;x F x x= = −� µ µ  where, µµµµ  is the control parameter. In this case the equilibrium 

points are x µµµµ= ±  and the eigenvalue is -2 x  which change its sign at 0
0.x =  For 

positive value of 0x the response is stable and for negative value of 0x the response is 

unstable. 

 

 

Example 9 For a typical dynamic system the frequency-amplitude relation is given by 

the following equation.  

 

 

 

Here, 1 1ω εσω εσω εσω εσ= + . 4 5, , ,kζ α αζ α αζ α αζ α α  are fixed system parameters. The saddle node 

bifurcation points have been shown in Fig. 12. (b) 

 

 

 

 

Fig.12: Saddle-node bifurcation point corresponding to (a) ( ) 2;x F x x= = −� µ µ , (b) 

example  

Pitchfork bifurcation:The normal form for a generic pitchfork bifurcation of a fixed 

point is 

Trans-critical bifurcation: The normal form for a generic pitchfork bifurcation of a 

fixed point is  

Hopf  bifurcation: The normal form for a generic Hopf bifurcation of a fixed point is 
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It may be noted that while supercritical pitchfork and Hopf bifurcation, respectively 

results in stable fixed-point and periodic responses, the sub-critical  pitchfork and 

Hopf bifurcation, respectively results in unstable fixed-point and periodic responses. 

Hence, these sub critical bifurcation points are dangerous bifurcation points.  

 

In case of nonlinear vibration many phenomena such as jump-up, jump-down, 

saturation, multi-stable region along with different types of responses such as fixed-

point, periodic, quasi-periodic and chaotic are observed. Many bifurcation phenomena 

such as sub and super critical pitchfork, Hopf, saddle-point, period doubling etc are 

observed. One may observe different type of crisis phenomena in chaotically 

modulated system. 

 

 

 

Trans-critical bifurcation 

 

 

  

 

Fig. 13 (a) Pitchfork bifurcation, (b) trans-critical bifurcation, (c) super-critical Hopf 

bifurcation, (d) sub-critical Hopf bifurcation. 

Summary  
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In this lecture note the derivation of the equation of motion of dynamical systems has 

been illustrated by starting with a vector approach, and taking both inertia and energy 

based principles. For nonlinear systems, a qualitative approach has been explained 

and the classification of stability and bifurcation of the fixed-point responses have 

been illustrated with the help of examples. A number of references have been given in 

the reference section for the interested reader, which may be referred to know the 

different perturbation methods used to study nonlinear systems.    
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