Module for Summer Internship Programme – 2024

on Artificial Intelligence and Machine Learning Techniques

Objective:

This programme aims to provide a practical understanding of machine learning concepts and techniques, focusing on supervised learning, neural networks, natural language processing (NLP), and text classification. Participants will gain hands-on experience in building and evaluating machine learning models using Python and popular libraries.

Outcome:

Upon completion of the programme, participants will be able to:

- Understand machine learning fundamentals and their applications.
- Apply Python libraries for data manipulation, analysis, and modeling.
- Implement supervised learning algorithms and neural networks for classification tasks.
- Develop skills in natural language processing (NLP) and text classification.
- Visualize and interpret model results using appropriate techniques.
- Engage in hands-on projects to solve real-world machine learning problems effectively.

Duration: 1 month

Prerequisites:

- Basic knowledge of programming (preferably Python)
- Understanding of basic statistics concepts

MANTRA ASSOCIATES

Week	Торіс	
Week 1	 Introduction to Machine Learning Introduction to machine learning and its applications Overview of Python libraries for machine learning (NumPy, Pandas, Scikit-learn) Exploratory Data Analysis (EDA) using Pandas and Matplotlib Data preprocessing techniques (handling missing values, feature scaling, encoding categorical variables) 	
Week 2	 Supervised Learning Algorithms Introduction to supervised learning Introduction to neural networks and feedforward networks Decision trees and ensemble methods (Random Forest, Gradient Boosting) 	

SUMMNER INTERNSHIP PROGRAMME 2024

	 Support Vector Machines (SVM) Model selection and hyperparameter tuning Building a feedforward neural network from scratch Model evaluation metrics (accuracy, precision, recall, F1-score) 	
Week 3	 Neural Networks and Deep Learning Building a simple neural network using TensorFlow/Keras Convolutional Neural Networks (CNNs) for image classification Visualizing classification results (confusion matrix, ROC curves, precision-recall curves) Transfer learning and fine-tuning pre-trained models Audio data processing with spectrogram analysis Building an audio classification model using CNNs 	
Week 4	 Natural Language Processing (NLP) and Text Classification Overview of NLP and its applications Introduction to NLTK library in Python Tokenization, stemming, and lemmatization of text data Introduction to text classification Building a text classification pipeline with NLTK and Scikit-learn Visualizing word frequency using bar charts and word clouds Advanced NLP Techniques Named Entity Recognition (NER) using NLTK Sentiment analysis with NLTK 	

MANTRA ASSOCIATES