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Abstract

A simple yet effective diversity preference approach is developed and coupled with many-
objective particle swarm optimization (PSO) for solving box-constraint optimization prob-
lems. Since the selection of global leaders in PSO is crucial for many-objective optimization,
an approach is developed using the reference-lines-based framework to update these leaders.
In the proposed approach, diversity is ensured first by making clusters of solutions for every
reference line. Thereafter, only one solution from each cluster with minimum penalty-based
boundary intersection (PBI) fitness is selected. In case any cluster of a line is empty, a solu-
tion with minimum PBI fitness with respect to the line is selected. This ensures the selection
of isolated but sometimes dominated solutions. The proposed approach is then used for up-
dating the archive of global leaders and for assigning them to particles in the swarm. The
proposed algorithm, which is referred to as MaOPSO-DP, is tested on 3-, 5-, 8-, 10-, and
15-objective instances of DTLZ and WFG test problems. Results demonstrate the effective-
ness of MaOPSO-DP over eight many-objective evolutionary and PSO algorithms from the
literature.

Keywords: Diversity Preference, Many-Objective Optimization, PSO, Reference Lines,
Global Leaders

1. Introduction

The field of many-objective optimization using evolutionary and swarm algorithms has
attracted many researchers to develop an efficient and effective algorithm that can solve
problems with a variety of complexities. The algorithms have been developed mainly using the
Pareto-ranking-based [1], decomposition-based [2], or indicators-based [3] framework. Their
main objective is to solve the optimization problem given in Equation (1) when the number
of objectives is more than three, i.e., M > 3.

Minimize: f(x) = (f1(x), . . . , fM (x)),
subject to x ∈ Ω,

(1)

where f(x) is the set of conflicting objectives, fi(x) is the i-th objective function, x ∈ Rn

is the set of decision variables, and Ω is the feasible search space. Since there are multiple
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optimal solutions to Equation (1), these solutions are compared using the concept of Pareto
Dominance. It says that solution x dominates solution y (denoted as x ≺ y) if and only if
∀i ∈ (1, . . . ,M), fi(x) ≤ fi(y) and ∃j ∈ (1, . . . ,M), fj(x) < fj(y). Any solution x̄ is said
to be Pareto-optimal (PO) if ∄y ∈ Rn : y ≺ x̄. A set of these Pareto-optimal solutions then
constitutes the PO set.

It is worth mentioning that many real-world problems often consist of multiple objectives,
as observed with parametric optimization of a bulldozer and its blade in soil cutting [4],
topology optimization of continuum structures [5, 6, 7], water resource management [8], etc.
to name a few. Therefore, an efficient algorithm is needed that can generate solutions close
to or on the PO front.

The Pareto-ranking-based many-objective evolutionary and swarm algorithms solve the
problem given in Equation (1) by first assigning Pareto-ranking to solutions and then applying
diversity preserving operator. The major problem with such algorithms is the lack of selection
pressure for many-objective optimization problem in which almost all solutions become non-
dominated [9]. Therefore, the Pareto-ranking cannot differentiate solutions and selection, thus
depends only on diversity preserving operator. It leads to a poor convergence and diversity
of solutions on the PO front. Researchers target this problem by introducing relaxed Pareto-
ranking procedures, such as fuzzy dominance [10], L−dominance [11], α−dominance [12],
etc. Still, these procedures cannot generate a well diverse set of solutions on the PO front.
Researchers then focus on developing efficient environmental selection procedures. One of the
efficient procedures is developed using the reference-lines-based framework in which solutions
are selected through a set of reference lines or vectors. NSGA-III [1] uses this framework
and develops the concept of niching via association of solutions with the reference lines.
An efficient environmental selection procedure is developed by choosing solutions from less
crowded regions. Using the same framework, algorithms like MOEA/DD [13], VaEA [14],
many-objective PSO [15], etc. have been developed.

The decomposition-based many-objective algorithms decompose the problem given in
Equation (1) into many scalar single-objective optimization sub-problems. All sub-problems
are made using aggregate functions and are solved simultaneously. As per the survey [16],
the first limitation is the generation of weight vectors that can help algorithms in generating
a diverse set of solutions on the PO front. Another limitation is the selection of aggregate
functions such as Weighted Sum (WS) method, Tchebycheff (TS) method, and Penalty-based
boundary interaction (PBI) method. These methods always have shortcomings in approxi-
mating the widespread of the PO front. In order to address these limitations, MOEA/DD [13]
uses both dominance- and decomposition-based approaches. REVA [17], on the other hand,
uses angle-penalized distance with the decomposed objective space using reference lines and
selects one solution from each subpopulation. I-DEBA [18] eliminates θ in the PBI method
by giving precedence of a distance over others in the objective space. θ−DEA [19] presents
a new dominance relationship using the PBI method. These are a few decomposition-based
algorithms for many-objective optimization that can generate a well diverse set of solutions
on the PO front.

The indicator-based algorithms employ indicators to assign fitness to each solution in
order to converge on the PO front and maintain diversity among solutions. Hypervolume
is the most common indicator that has been used successfully for solving many-objective
optimization problems. However, the main limitation is the high computation time that
increases exponentially with the number of objectives. This limitation has been handled by

2



HypE [3] in which hypervolume is computed using Monte-Carlo simulation. Other indicators,
such as R2 indicator [20], unary epsilon indicator [21], etc. have also been used. However,
these algorithms fail to generate a well diverse set of solutions on the PO front.

The decomposition-based and indicator-based algorithms generally assign a composite
fitness to every solution in the population or swarm for achieving convergence and diversity
simultaneously. The Pareto-based algorithms, however, assign a rank to every solution for
convergence followed by a diversity preserving operator. In spite of that, there is another class
of algorithms that prefers diversity first followed by dominance. For example, θ−DEA [19],
MPSO/D [22], DoD [23] are few such algorithms that make clusters of solutions using the
reference-lines-based framework and select one solution from each cluster using either Pareto-
ranking or new dominance-relationship. Their performance on solving box-constrained many-
objective optimization problems motives us to employ the diversity preference approach with
particle swarm optimization (PSO).

We know that PSO is popular for its faster convergence, but maintaining diversity among
particles of a swarm is always challenging for multi- and many-objective optimization. From
the literature, it is evident that the leader selection is crucial for any multi-objective PSO
since we need to emphasize non-dominated solutions and to maintain diversity among them.
Therefore, the literature focuses on the selection of global leaders that can steer the search
toward the PO front. The global leaders, which are generally non-dominated, are thus selected
through various methods, such as at random [24], using σ− method [25], using clustering [22],
etc. In this paper, a diverse set of global leaders is selected through the proposed diversity
preference approach. The following are the contributions of the paper.

• A diversity preference approach is developed using the reference-lines-based framework
in which clusters of solutions for every reference line are made, and only one solution
from each cluster is selected using the PBI method.

• The approach is further extended for those reference lines for which clusters have no
solution. In that case, a solution, which is not selected yet, with minimum PBI fitness
to the empty line is selected.

• The proposed approach is then used to update the archive of global leaders in every
generation. Thereafter, the same approach is used for assigning a global leader to each
particle in the swarm.

A comparative study of the proposed PSO algorithm is presented with eight evolutionary and
swarm algorithms on various instances of DTLZ and WFG problems using two indicators and
the Wilcoxon significance test.

The remainder of this paper is organized as follows. Section 2 presents details of PSO
and the relevant studies of many-objective PSO algorithms. Section 3 presents the diversity
preference approach, the proposed algorithm’s framework, and other operators required for
developing the algorithm. Section 4 presents results based on inverse generalized distance
and hypervolume indicators. It also presents the average performance score of all algorithms.
Section 5 concludes the paper with future work.
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2. PSO and Relevant Studies for Many-Objective Optimization

2.1. PSO for Multi-Objective Optimization

The framework of PSO consists of a swarm that is initialized randomly. This swarm has N
number of particles, essentially potential solutions for solving Equation (1). The framework
also consists of two archives that are the archive of global leaders and the archive of local
leaders. It is noted that the purpose of these archives is to store global and local leaders so
that these leaders can be used for velocity update, etc. These leaders help PSO to explore
the search space of the optimization problem. Initially, particles of the swarm are copied into
the archive of local leaders and the non-dominated solutions from the swarm to the archive
of global leaders. Inside a standard loop of generations, the global leader is assigned to each
particle in the swarm. It is noted that there are many potential leaders in the archive, which
are non-dominated. Thereafter, the velocity (vi(t+ 1)) of the particles in the generation (t)
is updated as

vi(t+ 1) = wvi(t) + c1r1(LBi(t)− xi(t)) + c2r2(GBi(t)− xi(t)), (2)

where w is the inertia weight of the particle, c1 and c2 are the coefficients for exploitation
and exploration, r1 and r2 are the random numbers between [0, 1], LBi(t) is the i−th local
leader in the LB(t) archive at t-th generation, and GBi(t) is the i−th global leader in the
GB(t) archive at t-th generation. The position of particle i is then updated as

xi(t+ 1) = xi(t) + vi(t+ 1). (3)

The new position of each particle is evaluated, and the archives of the global and local leaders
are updated. The counter for the generation (t) is then increased by one. PSO finally
terminates when (t > T ), where T is the maximum number of allowed generations.

There are plenty of PSO algorithms for multi-objective optimization in the literature.
However, when PSO algorithms have to target many-objective optimization problems, mainly
M > 3, the challenges like an update of global and local leaders’ archives, assignment of global
leader to each particle in the swarm, convergence, and diversity of solutions, non-domination
of all solutions [1, 26], etc. need to be addressed. Therefore, we target those relevant PSO
algorithms which are designed for many-objective optimization.

2.2. Studies on Many-Objective PSO Algorithms

Mostaghim and Schmeck [25] proposed a distance-based ranking method that computed
a distance between two solutions in the objective space. The proposed method was then used
for selecting global leaders. Britto and Pozo [27] used reference points that were generated
on a hyperplane. Using a reference point, the farthest solution from this point was removed
for updating an external archive. NWSum method was used for updating the leaders in the
swarm. Dai et al. [22] proposed decomposition-based PSO, which madeN clusters of solutions
with respect to N−weight vectors by using the angle between the solution and vector. Along
with the position update, the crossover was used to explore the feasible search space. The
global leader to each particle was assigned from the neighboring particle, which made the
smallest angle with the center vector of the cluster.

Figueiredo et al. [15] used the reference-lines-based framework of NSGA-III [1]. A density
operator was used that projected solutions on the hyperplane. A convergence operator using
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achievement scalarizing function was used for assigning the fitness to each solution. An archive
of non-dominated solutions was maintained through density and convergence operators. The
global leaders were assigned from the external archive by using the extreme solutions and
tournament selection. Hu et al. [28] proposed a two-stage strategy for dominance-based PSO
in which M−extreme points were used to generate the rest of the population near to them.
The external archive and selection of global leaders were performed using a parallel cell coor-
dinate system. Zhu et al. [29] presented an immune-based evolutionary search for an external
archive that involved cloning, evolutionary search by crossover and mutation operators, and
crowding degree operator. The decomposition-based approach was adapted to update local
leaders, and the global leader was selected randomly from the external archive. Pan et al.
[30] used the decomposition-based approach in which the diversity was preserved through the
angle-based association with the reference vectors. A solution from each association of the
reference vector was selected using fitness similar to the PBI method. An external archive was
maintained through angle-based diversity and PBI-based fitness. Clustering in the variable
space was also performed using the k-means clustering method. Two-stage criteria were used
to select global leaders that were through angle-based association and randomly.

Liu et al. [31] proposed a balanceable fitness estimation for preserving diversity in the
swarm. The fitness consisted of diversity distance and convergence distance. The diversity
distance was measured in the normalized objective space by comparing the objective values
of two solutions. The convergence distance of a solution was calculated with respect to
the reference point. An external archive was updated using the proposed fitness, and an
evolutionary search was performed on the archive using crossover and mutation operators.
Liu et al. [32] proposed a bottleneck objective learning for improving the convergence of
multiple swarms in PSO. These swarms communicated through an external archive of non-
dominated solutions. This archive was updated using the niching concept of NSGA-III. Qin
et al. [33] developed a decomposition-based PSO using different ideal points on the reference
vectors. The reference vectors were used to maintain diversity via angle-based association.
The distance between the reference point on the reference vector and solution was used for
convergence. An external archive was maintained through a parameter called CAD, which
has angle value in the numerator and distance value in the denominator. The solution with
the least CAD value was retained from each reference vector.

Apart from dominance-based PSO, researchers have focused on other algorithms as well.
For example, Luo et al. [21] proposed an indicator-based PSO that used a unary epsilon
indicator. It was used to update the local leader of a particle when the Pareto-ranking of
both were the same. An external archive was maintained in which half of its size was filled
using non-dominated solutions that were closed to the reference vectors. The rest of the size
of the archive was filled using the indicator. The closest non-dominated solutions from the
current swarm and the external archive to the reference vectors were selected for assigning
a global leader to a particle. Yang et al. [34] used intuitionistic fuzzy dominance-based
PSO for sorting particles in the swarm and new particles after position update. The new
particles were generated through a double search strategy. A set of reference points was
used for selecting local and global leaders using the PBI method. Li et al. [35] proposed
a dominance difference approach that made a population size matrix. Each column of the
matrix signified the difference among solutions when almost all of them were non-dominated.
The same approach was used to select global and local leaders. The diversity among solutions
was preserved through the Lp norm. An external archive was maintained and updated with
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50% solutions using the approach. Xiang et al. [36] used historical solutions to guide the
flight of each particle in the swarm using scalar projections. A diverse set of solutions was
chosen using two fitness estimators that are L2 norm with respect to the reference point and
summation of objectives in the normalized objective space. The selection of the reference
point was made by estimating the curvature of the PO front.

It can be observed from the literature that various efforts have been made to develop
efficient many-objective PSO. These efforts focus mainly on selecting a diverse set of solutions
for the archive so that the global leaders for many-objective PSO can be selected using various
methods/approaches such as distance-based ranking method, decomposition-based approach,
parallel cell coordinate system, balanceable fitness, etc. The selected leaders then steer the
search of PSO toward the PO front. Moreover, many such algorithms have been developed
using the decomposition-based approach because of the promising results. However, none of
them have focused on retaining isolated solutions for preserving diversity. In the following
section, the diversity preference approach is discussed, and details are given of coupling this
approach for many-objective PSO.

3. Proposed Diversity Preference-based Many-Objective PSO: MaOPSO-DP

In this section, we first discuss the proposed diversity preference approach and thereafter,
the reference-lines-based framework on which the proposed approach is employed.

3.1. Proposed Diversity Preference Approach

The proposed diversity preference approach is developed using the reference-lines-based
framework, which has been successfully implemented for developing algorithms like NSGA-III
[1], θ−DEA [19], etc. The main task of this approach is to update global leaders and also
to assign global leaders to particles in the swarm in every generation. Moreover, our earlier
experiments and results of DoD [23] and LEAF [37] on the same framework motivate us to
use their concepts of diversity preference with many-objective PSO (MaOPSO).

The diversity preference approach is explained using a case of 2-objective in which the
objective space is decomposed by N = 9 reference lines (R1,. . . , R9), as shown in Fig. 1.
These lines are drawn using the structured reference points generated using [38]. In the
present case, there are (2N = 18) solutions in the swarm from which N solutions are to be
selected. In the proposed approach, the clusters for each reference line are made as shown
in Fig. 1 by calculating the Euclidean distance (dist(s, r)) between the solution (s) and the
reference line (r), which is given as

dist(s, r) = ||(s− rT sr/||r||2)||. (4)

A solution having minimum dist(s, r) value with respect to the line (r) is included in the
cluster of the same line. For example, the cluster for reference line ‘R1’ is made of only
solution ‘1’, the cluster for reference line ‘R2’ is made of solutions ‘11’ and ‘12’, and so on.
Once these clusters are made, only one solution from each cluster is chosen using the PBI
fitness, which is given as

F (s) = d(s, r) + θ × dist(s, r), (5)

where θ is a penalty parameter, and d(s, r) is the distance, which is calculated as

d(s, r) = sT r/||r||. (6)
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Figure 1: The diversity preference approach using the reference-lines-based framework. The clusters of solu-
tions are shown using elliptical curves.

The solution, which shows a minimum F (s) value, is selected from each cluster of the reference
lines. For example, solution ‘1’ is selected from the cluster of ‘R1’, solution ‘11’ is selected
from the cluster of ‘R2’, so on. Therefore, we can select eight solutions from the clusters
that are ‘1’, ‘11’, ‘13’, ‘7’, ‘2’, ‘4’, ‘9’, and ‘6’. We can see that there is no solution with the
cluster of the reference line ‘R5’. In this case, a solution, which is not selected yet and having
minimum PBI fitness to the reference line ‘R5’, is selected. From the figure, solution ‘8’ can
be selected using the minimum PBI fitness.

The major steps of the diversity preference approach are presented in two stages using
Algos. 1 and 2. In the stage-1, those clusters of reference lines are considered which are having
at least one solution in Algo. 1. The PBI fitness of solutions in a cluster Ci is calculated
with respect to the reference line i in Step 3. Solution (s) with minimum PBI fitness is then
chosen for the reference line i.

Algorithm 1 Stage-1 of the diversity preference approach

1: % Stage-1: For a cluster of reference line (i) which is having at least one solution
2: for every solution x ∈ Ci, where Ci 6= ∅ do

3: Calculate PBI fitness of solution x with respect to the reference line i using Equation
(5)

4: end for

5: Choose solution s ∈ Ci with minimum PBI fitness for the reference line i.

In stage-2, the clusters of reference lines, which have no solution, are considered in Algo.
2. In Step 3, the PBI fitness of solutions assigned to other clusters is calculated with respect
to the reference line j. Solution (s) with minimum PBI fitness is chosen for the reference line
j.
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Algorithm 2 Stage-2 of the diversity preference approach

1: % Stage-2: For a cluster of reference line (j) which is having no solution
2: for every solution x ∈ Ci, where Ci 6= ∅ do

3: Calculate PBI fitness of solution x with respect to the reference line j using Equation
(5)

4: end for

5: Choose solution s ∈ Ci with minimum PBI fitness for the reference line j

We can observe that a diverse set of solutions is selected in which preference is given to
diversity first by selecting only a single solution from each cluster. This idea is motivated by
the LEAF algorithm [37] in which the solutions are first ranked using the Pareto-ranking, and
then clusters are made using association and re-association. The solution with the minimum
rank from each cluster is then chosen. In the case of a tie, the solution with a minimum
(dist(s, r)) is chosen. However, in the proposed approach, the clusters are made first, and one
solution with minimum PBI fitness from each cluster is selected.

Another observation is that a dominated solution based on the Pareto-ranking can be
selected over a non-dominated solution in the proposed approach. In Fig. 1, solution ‘9’
(dominated solution) is chosen over solution ‘5’ (non-dominated solution). This idea is mo-
tivated by the DoD algorithm [23] in which the clusters are made, and then non-dominated
ranking is performed independently in each cluster. However, the proposed approach selects
a solution from each cluster using the PBI fitness.

In addition to selecting a diverse set of solutions, the proposed approach selects a solution
for those lines which have an empty cluster. In this case, a solution that is not selected yet,
with minimum PBI fitness with respect to the line is considered. However, DoD and LEAF
algorithms select solution using (dist(s, r)) only.

3.2. Proposed PSO using Reference-Lines-based Framework

The reference-lines-based framework for many-objective optimization is developed in the
literature with the help of reference lines for decomposing the objective space and then select-
ing a diverse set of solutions using these reference lines. In this framework, a set of reference
points is generated using [38] on a unit hyperplane, and the lines are drawn from the origin
to these reference points. The number of reference points |H | is calculated as

|H | =

(

M + p− 1
p

)

, (7)

where M is the number of objectives, and p is the number of equal division on each objective
axis. Fig. 2 shows a 3-objective case in which 15 reference points are generated by using
p = 4. The figure also shows a reference line. With the help of the Euclidean distance
(dist(s, r)), solutions in the population or swarm are associated or made clusters with the
closest reference line. This distance measure helps in selecting a diverse set of solutions, as
discussed in Sections 1 and 2.

The same reference-lines-based framework is used for the proposed MaOPSO, which is
presented in Algo. 3. It starts with initializing random swarm (P (t)) of size N and keeping
the archives of the global leaders (GB(t)) and the local leaders (LB(t)) empty. Thereafter,
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Figure 2: A set of reference points generated on a unit hyperplane is shown.

clusters of solutions of P (t) are made for every reference line in Step 2. Since clusters are made
in the normalized objective space, it requires normalization of P (t). Initially, the same swarm
of P (t) is assigned to GB(t) and LB(t) in Step 3. Thereafter, an extreme point is calculated
using the Nadir point from P (t) in Step 4. This point is utilized later in normalization. In
the standard loop of generations, the global leaders from the GB(t) archive are assigned to
each particle of the swarm in Step 6 using the diversity preference approach discussed in
Section 3.1. The velocity and position of each particle in the swarm are updated in Steps 7
and 8. The evolutionary search is applied on the leaders of the GB(t) archive using the SBX
crossover operator and polynomial mutation operator [39]. Since we have the swarm and two
archives of GB(t) and LB(t), these swarm and archives are combined together, and clusters
are made in Step 10. The archives of GB(t) and LB(t) are updated in Steps 11 and 12 using
the diversity preference approach. The generation counter (t) is then increased by one. The
algorithm terminates when (t) reaches the maximum number of allowed generations. As an
output, the non-dominated solutions from the GB(t) archive are reported. In the following
sections, details of the major steps of Algo. 3 are presented.

3.3. Clustering of Solutions: Clustering in Steps 2 and 10 of Algo. 3

As the name suggests, it is used to make clusters of solutions for the reference lines. Algo.
4 presents three major steps that are required to make clusters in the normalized objective
space. In Step 1, the non-dominated sorting of NSGA-II [40] is used, which is required
in normalization. Thereafter in Step 2, solutions of R(t) are normalized by adopting the
normalization scheme of LEAF [37].

The major steps of the normalization scheme are presented in Algo. 5. In this scheme,
the extreme point in Step 4 of Algo. 3 is used to normalize solutions. Solutions of R(t) are
thus first translated by subtracting them with the ideal point, which is given as

f̂i(x) = fi(x)− zmin
i , ∀i ∈ M, ∀x ∈ R(t), (8)

where zmin
i is the i-th component of the ideal point (zmin). This translation makes the new

ideal point at the origin. Thereafter, the extreme solution along each objective axis is found
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Algorithm 3 Reference-Lines-based Framework for the proposed MaOPSO

Input: t = 1, M : number of objectives, N : swarm size, H : reference points, T :
maximum number of generations

Output: A set of non-dominated solutions from the GB(t)
archive

1: Initialize random swarm (P (t)) and the archives of GB(t) = ∅ and LB(t) = ∅;
2: Clustering of solutions: Clustering(P (t));
3: Assign particles to GB(t) = P (t) and to LB(t) = P (t);
4: Compute extreme point: e = (e1, e2, . . . , eM )T such that ej = max

x∈P (t)
fj(x) and x is a

non-dominated solution;
5: while t ≤ T do

6: Assign global leader from the GB(t) archive to each particle in the swarm: Assign GB;

7: Update velocity of particles: Update Velocity;
8: Update position of particles: Update Position;
9: Perform evolutionary search on the leaders of the GB(t) archive: Evolution-

ary Search(GB(t));
10: Clustering of solutions: Clustering(Mt = P (t) ∪GB(t) ∪ LB(t));
11: Update the archive of local leaders: LB(t) = Update LB(P (t), GB(t));
12: Update the archive of global leaders: GB(t) = Update GB(Mt);
13: t = t+ 1
14: end while

using the augmented scalarizing function, which is given as

zej = f̂ (x),x : min
x∈R(t)

(

M
max
i=1

f̂i(x)/µi

)

, (9)

where zej is the extreme solution corresponding to j−th objective, f̂i(x) is the i−th component

of f̂ (x), and µi’s are the weights for each objective. In order to calculate j−th component,
i.e., zej , µj = 1, and the rest of the weights are kept 10−6.

The extreme solutions from every objective axis (Z) are then used to make the hyperplane.
This hyperplane intersects the objective axes to find the intercepts on them. Since we solve
a system of linear equations for determining the intercepts, the degenerate cases, such as
duplicate solutions in (Z) or negative intercept, can occur. It can be seen that the Nadir
point is determined when any degenerate case is encountered, as shown in Steps 4 and 8. For
these cases, each component of the extreme point (e) is compared in Step 14 and gets updated
in Step 15. If there is no degenerate case, the computed intercept in Step 6 is used to update

Algorithm 4 Clustering(R(t))

1: (F1, F2, . . . ) = Non-dominated sorting (R(t));
2: R̄t = Normalize(R(t)); %Using Algo. 5
3: MakeClusters(R̄t); %Using Algo. 6
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the extreme point (e) in Step 10. At last, solutions are normalized using the extreme point
(e) in Step 18.

Algorithm 5 Normalization Scheme of LEAF [37]

1: Translate the solutions of R(t) using Equation (8);
2: Compute extreme solutions (Z) using Equation (9);
3: if Duplicate solutions exist in Z then

4: Compute the nadir point (zN ) from the current non-dominated front;
5: else

6: Compute intercept a = (a1, a2, . . . , aM )T from (Z);
7: if Any intercept is negative then

8: Compute the nadir point (zN ) from the current non-dominated front;
9: else

10: Update the extreme point (e) using the intercept, i.e., ej = aj , ∀j ∈ {1, . . . ,M};
11: end if

12: end if

13: if Duplicate solutions exist or negative intercept is found then

14: if zNj < ej, where j ∈ {1, . . . ,M}, zNj ∈ zN then

15: ej = zNj ;
16: end if

17: end if

18: f̄j(x) = f̂j(x)/ej , ∀x ∈ R(t), ∀j ∈ {1, . . . ,M};

After normalization, the clustering of solutions is performed in the normalized objective
space in Step 3 of Algo. 4. The major steps of clustering are presented in Algo. 6 in which the
reference lines are computed in Step 1 using the reference points and the origin, as discussed
earlier in Section 3.1. Thereafter, the distance (dist(x,w)) is calculated for all solutions in
R(t) with every reference line. Every solution x having minimum dist(x,w) value with a
reference line w is included in the cluster of the same line.

Algorithm 6 MakeClusters(R̄t)

1: Compute every reference line w using the reference points generated through [38] and the
origin;

2: Compute the distance (dist(x,w)) for all solutions x ∈ R(t) to every reference line w

using Equation (4) in the normalized objective space;
3: Include solution x to the cluster of line w which has the minimum dist(x,w) value;

3.4. Assign Global Leader: Assign GB in Step 6 of Algo. 3

In the standard loop of generations, the first step of the proposed framework is to assign
a global leader from the archive of GB(t) to each particle in the swarm. The major steps
of Assign GB are presented in Algo. 7. Since the diversity preference approach is used for
assigning the global leader, the task is divided into two stages. In the stage-1, the clusters of
the reference lines that are having at least one solution are considered in Step 2. In Step 3,
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a solution (s) is selected using Algo. 1. The same solution is assigned as the global leader to
the particles in the swarm that belong to the cluster of the reference line i. In order to avoid
the selection of the same solution, it is removed from Ci in Step 5 for further consideration.
In the stage-2, the reference line (j) having no solution in its cluster is chosen in Step 8. In
Step 9, a solution (s) is chosen using Algo. 2. The same solution is then chosen as the global
leader for the particles which belong to the cluster of the reference line j. It is then removed
from the cluster in Step 11.

Algorithm 7 Assign GB

1: % Stage-1 of the diversity preference approach: Clusters of reference lines having at least
one solution

2: for cluster (Ci 6= ∅) of every reference line i do
3: Select solution (s) using Algo. 1;
4: Assign solution (s) as the global leader to all particles that belong to the cluster of the

reference line i;
5: Remove solution (s) from Ci, i.e., Ci \ s;
6: end for

7: % Stage-2 of the diversity preference approach: Clusters of reference lines having no
solution

8: for cluster (Cj = ∅) of every reference line j do

9: Select solution (s) using Algo. 2;
10: Assign solution (s) as the global leader to all particles that belong to the cluster of sthe

reference line j;
11: Remove solution (s) from Ci, i.e., Ci \ s;
12: end for

3.5. Velocity and Position Update of particles in Steps 7 and 8 of Algo. 3

Equation (2) is mostly used for updating the velocity of each particle. For the proposed
algorithm, some modifications are made with the parameters. For example, the weight (w)
changes with generations as w = wo(1− t/T )+ 0.05. Similarly, the coefficients c1 and c2 also
change with generation as c1, c2 = co(1− t/T ) + 0.1. An adaptive parameter δ is kept which
also changes with generations as δ = 0.5(1 − t/T ) + 0.1. When a random number between
[0, 1] is generated and found less than δ, the velocity is updated as given in Equation (2).
Otherwise, the velocity of a particle (i) is updated as

vi(t+ 1) = (GBi(t)− xi(t)). (10)

Thereafter, the position of each particle is updated as given in Equation (3). In case any
variable is jumped over its bounds, it is brought back to the nearest bound.

3.6. Evolutionary Search on GB(t): Evolutionary Search(GB(t)) in Step 9 of Algo. 3

The evolutionary search is performed so that leaders in the archive of GB(t) should not
be stuck at the local optima, and their improved positions steer the search of swarm toward
the PO front. The major steps of Evolutionary Search are presented in Algo. 8 in which
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crossover and mutation are performed on the archive of GB(t) in Step 1. Since this evolution-
ary search generates another set of leaders, the GB(t) archive is updated by combining the
new and existing leaders in Step 2. The steps for updating the archive of GB(t) are presented
in Section 3.8.

Algorithm 8 Evolutionary Search(GB(t))

1: GB(t)new = Perform crossover followed by mutation on GB(t);%by using SBX crossover
operator and Polynomial mutation operator

2: Update the archive of GB(t): Update GB(GB(t)new ∪GB(t));

3.7. Update LB(t) Archive: Update LB in Step 11 of Algorithm 3

The archive of LB(t) is updated using the PBI fitness, which is already calculated in Step
10 of Algo. 3. If the PBI fitness of the particle in the swarm (P (t)) is smaller than its local
leader, the local leader is updated for the particle.

3.8. Update GB(t) Archive: Update GB in Step 12 of Algorithm 3

An update of the GB(t) archive is developed using the diversity preference approach
discussed in Section 3.1. The major steps are shown in Algo. 9. In the beginning, the archive
of GB(t) is kept empty. In Step 3, solutions are selected using the stage-1 of the diversity
preference approach. A solution (s) with a minimum PBI fitness from each cluster (Ci 6= ∅) is
chosen and copied it in the archive of GB(t) in Step 5. This ensures the selection of a diverse
set of solutions in the archive of GB(t) through the set of the reference lines. The chosen
solution (s) is then removed from its respective cluster in Step 6. Since some clusters (Cj = ∅)
of the reference lines can be empty, the stage-2 of the diversity preference approach is used
in Step 8. In this case, the PBI fitness is calculated among the remaining solutions of the
non-empty clusters (Ci 6= ∅) and the reference line j. Solution (s) with minimum PBI fitness
with respect to the reference line j is chosen and copied it to the archive of GB(t) in Step
10. Finally, the solution (s) is removed from its respective cluster for further consideration in
Step 11.

The above procedure ensures that we can copy |H | number of solutions to the archive of
GB(t). Since the archive size can be N > |H |, we need to select a few more solutions for
filling the archive of GB(t). Therefore, a non-empty cluster (Ci 6= ∅) is chosen randomly, and
solution (s) with a minimum PBI fitness is selected in Step 16. The same solution is then
copied to the GB(t) archive in Step 17 and gets removed from its respective cluster in Step
18. This procedure is repeated until the archive of GB(t) is completely filled.

3.9. Computational Complexity

The major computation is involved either with non-dominated sorting at Step 1 of Algo. 4,
or calculating distance for making clusters in Step 2 of Algo. 6. The non-dominated sorting of
2N population size and M objectives is O(N2logM−2N) [41]. The clustering operation with
respect to H number of reference points for 2N population size with M objective requires
O(NMH) computation. In the present implementation, we consider H ≈ N or N > H
that suggests the worst complexity of clustering operation as O(N2M). Therefore, the worst
order complexity of the proposed MaOPSO is either O(N2logM−2N), or O(N2M) in one
generation.
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Algorithm 9 Update GB(R(t))

1: % In Step 10 of Algo. 3, solutions of R(t) are ranked and normalized. Clusters of solutions
are also made.

2: Initialize GB(t) = ∅;
3: % Stage-1 of the diversity preference approach
4: for every cluster Ci 6= ∅ do

5: Select one solution (s) using Algo. 1 and copy it in GB(t), i.e., GB(t) = GB(t) ∪ s;
6: Remove solution (s) from the cluster, i.e., Ci = Ci \ s;
7: end for

8: % Stage-2 of the diversity preference approach
9: for every cluster Cj = ∅ do

10: Select one solution (s) using Algo. 2 and copy it in GB(t), i.e., GB(t) = GB(t) ∪ s;
11: Remove solution (s) from the cluster, i.e., Ci = Ci \ s;
12: end for

13: % When GB(t) is not filled completely.
14: if |H | < N then

15: while |GB(t)| < N do

16: Choose a cluster (Ck : Ck 6= ∅) randomly and select the minimum PBI fitness solution
(s) from the remaining solutions in Ck;

17: Copy solution (s) into GB(t), i.e., GB(t) = GB(t) ∪ s;
18: Remove solution (s) from the cluster, i.e., Ck = Ck \ s;
19: end while

20: end if
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4. Results and Discussion

The proposed MaOPSO, which is developed using the diversity preference approach, is
now referred to as MaOPSO-DP. It is tested using DTLZ [42] and WFG [43] problems, and
its outcome is compared with the existing many-objective evolutionary and PSO algorithms.
First, the details of the simulation are given, followed by the comparison of results.

4.1. Simulation Details

Test Instances. Various test instances of 3-, 5-, 8-, 10-, and 15-objective of DTLZ and WFG
problems are chosen for generating and comparing the outcome of MaOPSO-DP. The number
of decision variables for DTLZ problems is given as n = M + k − 1. Here, k = 5 for DTLZ1,
and k = 10 for DTLZ2-4 problems. The number of decision variables for WFG1-9 problems
is set to n = k + l. Here, k is the position-related variable, which is kept as k = 2× (M − 1),
and l is the distance-related variable, which is kept constant as l = 20. It can be seen from
the literature that these problems have different characteristics that make them difficult to
solve by various algorithms [37].

Algorithms. A set of algorithms is chosen for comparison. The list includes eight many-
objective evolutionary and PSO algorithms, such as NSGA-III [1], LEAF [37], θ−DEA [19],
MEAD/D-URAW [44], ISDE+ [45], MaPSO [36], NMPSO [31], and MPSO/D 1 [22]. Al-
gorithms like NSGA-III, LEAF, θ−DEA, and MaPOS use the similar reference-lines-based
framework. Algorithm θ−DEA uses an approach similar to the diversity preference approach
in which the diversity is preserved first through the reference lines, and dominance is targeted
later through a new dominance rule called θ−sorting. MaPSO, NMPSO, and MPSO/D are
recently published and efficient many-objective PSO algorithms.

Statistical Performance Assessment. Since all algorithms are meta-heuristic, we run them
20 times with different initial population. Their performance is assessed through the inverse
generalized distance (IGD) and hypervolume (HV) indicators. IGD indicator is calculated as,

IGD(Q,P∗) =

|P∗|
∑

i=1

|Q|

min
j=1

d(pi, qj)

|P ∗|
, (11)

where P ∗ is the set of PO solutions, Q is the set of obtained non-dominated solutions, |P ∗|
is the cardinality of P ∗, |Q| is the cardinality of Q, and d(pi, qj) = ||pi − qj ||

2. Since a set of
the PO solution (P ∗) is required for the IGD indicator, the set is found using the reference
lines generated in Section 3.2. For example, we know the PO front of the DTLZ1 problem
is a hyperplane, that is,

∑M

i=1 fi = 0.5, ∀fi ≥ 0. The points of intersection between the
reference lines and the PO front generate a set of PO solutions. Similarly, we find the set
of the PO solutions for other DTLZ problems, that is, the point of intersection between the

1The source codes of LEAF, θ-DEA, ISDE+, and MaPSO are provided by the authors with a link in their
papers. PlatEMO [46] is used for MEAD/D-URAW, NMPSO, and MPSO/D algorithms. The source code of
NNSGA-III provided by the authors of LEAF is used for NSGA-III results. The source code of MaOPSO-DP
is available at https://www.iitg.ac.in/dsharma/index.html.
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reference lines and the PO front,
∑M

i=1 f
2
i = 1, ∀fi ≥ 0. We find the PO solutions for WFG4-9

problems similar to DTLZ2-4 problems. Moreover, the PO solutions of WFG1-3 problems
are also found by following the same procedure.

HV indicator measures the size of the objective space dominated by the solutions in Q
and bounded by zr, which is calculated as

HV (Q) = V OL

(

⋃

x∈Ω

[f1((x), z
r
i ]× . . . [fM ((x), zrM ]

)

, (12)

where V OL(.) indicates the Lebesgue measure, and zr = (zr1 , . . . , z
r
M )T is the reference point

in the objective space that is dominated by all Pareto-optimal solutions. The large is the HV
value, the better is the quality of Q for approximating the PO front [47]. For DTLZ1, zr =
(1, . . . , 1)T is chosen. For other DTLZ and WFG problems, zr = (2, . . . , 2)T is considered2.

HV values are normalized between [0, 1] by dividing z =

M
∏

i=1

zri . Both the indicators are

determined by normalizing Q, except for DTLZ1.
The Wilcoxon signed-rank test at 5% significance level is also used to determine the

difference for statistical significance between MaOPSO-DP and the benchmark algorithm.

Parameter Setting. We set the population size based on the reference points generated using
Equation (7) [1]. The details of no. of division for each objective instance, number of reference
points, and population size for algorithms are given in Table 1. It is noted that the two-layered
approach defined by [1] is used for a higher number of objectives.

Table 1: Population sizes for all algorithms.

No. of divisions No. of ref. Population
obj. (M) p or (p1, p2) points (H) (N)

3 12 91 92
5 6 210 210
8 (3, 2) 156 156
10 (3, 2) 275 276
15 (2, 1) 135 136

All algorithms terminate using the maximum number of allowed generations. Table 2
presents the common termination conditions for all algorithms.

The algorithm-specific parameters are listed in Table 3. These parameters are chosen
based on the general parameter settings mentioned in the original studies of algorithms for
solving DTLZ and WFG problems. NSGA-III, LEAF, θ−DEA, ISDE+, and MaOPSO-DP
use SBX crossover operator [39] for which the probability is set to 1.0 and crossover index
(ηc) is set to 30. NSGA-III, LEAF, θ−DEA, ISDE+, NMPSO, MPSO/D, and MaOPSO-DP
use polynomial mutation operator [39] for which the probability is set to (1/n) and mutation

2The source of WFG group is used for HV computation (https://github.com/lbradstreet/WFG-
hypervolume).

16



Table 2: Maximum number of generations for terminating all algorithms.

No. of DTLZ1 DTLZ2 DTLZ3 DTLZ4 WFG (all)
objectives

3 400 250 1000 600 1000
5 600 350 1000 1000 1250
8 750 500 1000 1250 1500
10 1000 750 1500 2000 2000
15 1500 1000 2000 3000 3000

index (ηm) is set to 20. As suggested in the original study, the parameter θ is set to 5 for
θ−DEA [19]. Similarly, the number of closest vectors T = N/10, and other parameters such as
δ = 0.9, nr = 2 are set for MOEA/D-URAW [44]. According to [36], the parameters K = 3,
θmax = 0.5, w = 0.1, and C = 2.0 are set for MaPSO. For NMPSO [31], the factor w is chosen
randomly between [0.1, 0.5], and the coefficients (c1, c2, c3) lie between [1.5, 2.5]. According to
MPSO/D [22], the factor w is chosen randomly between [0.1, 0.9], and the coefficients (c1, c2)
are set to 2. For MaOPSO-DP, the initial values of wo = 0.9 and co = 2.5 are set that reduce
with the number of generations.

Table 3: Parameter settings of all algorithms.

Algorithms Parameters
NSGA-III pc = 1.0, pm = 1/n, ηc = 30 ηm = 20
LEAF pc = 1.0, pm = 1/n, ηc = 30 ηm = 20
θ-DEA θ = 5.0 for PBI method

MEAD/D-URAW T = N/10, δ = 0.9, nr = 2
ISDE+ pc = 1.0, pm = 1/n, ηc = 30 ηm = 20
MaPSO K = 3, θmax = 0.5, w = 0.1, C = 2.0
NMPSO w ∈ [0.1, 0.5], c1, c2, c3 ∈ [1.5, 2.5], pm = 1/n, ηm = 20
MPSO/D c1, c2 = 2, w ∈ [0.1, 0.9], pm = 1/n, ηm = 20,

no. of weight vectors in the neighborhood is 20
MaOPSO-DP wo = 0.9, co = 2.5, pc = 1.0, pm = 1/n, ηc = 30 ηm = 20

4.2. Performance Assessment on DTLZ problems

Table 4 presents the best, median, and worst IGD values obtained from the results of
algorithms on DTLZ problem instances. The gray shaded cells represent the best (smaller
value) IGD value in the corresponding row of the problem instances. DTLZ1 problem is a
multi-modal problem with a linear PO front that is intersecting the objective axes at 0.5 coor-
dinate. While solving this problem, MaOPSO-DP shows the best IGD value for all instances,
except for the 15-objective instance. DTLZ2 problem is one of the simplest problems that has
a convex PO front. MaOPSO-DP shows the best IGD values for all instances of objectives.
DTLZ3 problem has the same PO front as DTLZ2 problem, but it is a multi-modal problem.
Although DTLZ3 problem is a relatively difficult problem, MaOPSO-DP again shows the best
IGD values for all objective instances. The last problem from DTLZ problem set considered
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for performance comparison is DTLZ4 problem that has a concave PO font similar to DTLZ2
problem, but it is a biased problem. MaOPSO-DP shows the best IGD value for all instances.

It can be seen from Table 4 that MaOPSO-DP shows the best IGD values in 54 rows out of
60. The Wilcoxon test results are shown in the same table with symbols (+,=,−). The symbol
‘+’ suggests a significantly better performance of MaOPSO-DP over the corresponding bench-
mark algorithm. Other symbols ‘−’ and ‘=’ suggest significantly bad performance and equiva-
lent performance of MaOPSO-DP over the corresponding algorithm, respectively. For DTLZ1
problem, MaOPSO-DP shows significantly better performance over eight algorithms for 3-,
5-, 8- and 10-objective instances. NSGA-III, LEAF, ISDE+, and MaPSO show significantly
better performance than MaOPSO-DP on 15-objective instance. MOEA/D-URAW shows
equivalent performance on the same objective instance against MaOPSO-DP. For DTLZ2
problem, MaOPSO-DP shows significantly better performance over eight algorithms on all
objective instances. For DTLZ3 problem, MaOPSO-DP shows significantly better perfor-
mance over eight algorithms for 3-, 5-, 8- and 10-objective instances. For 15-objective in-
stance, MaOPSO-DP shows significantly better performance over MOEA/D-URAW, ISDE+,
MaPSO, and NMPSO, and equivalent performance with NSGA-III, LEAF, θ−DEA, and
MPSO/D. For DTLZ4 problem, MaOPSO-DP shows again a significantly better performance
over eight algorithms over eight algorithms. At the bottom of the table, a collective outcome
of the Wilcoxon test for every algorithm with respect to MaOPSO-DP is given. It can be seen
that MaOPSO-DP outperforms the chosen set of algorithms on DTLZ problem instances.

Table 5 presents the best, median, and worst HV values obtained from the results of al-
gorithms on DTLZ problem instances. Again, the gray cells represent the best (larger value)
HV value for the corresponding row. For DTLZ1 problem, MaOPSO-DP shows the best HV
values in all objective instances than the chosen set of eight algorithms. For DTLZ2 prob-
lem, MaOPSO-DP shows the best HV values for 3- and 5-objective instances. ISDE+ shows
the best HV values for the remaining instances of DTLZ2 problem. For DTLZ3 problem,
MaOPSO-DP shows the best HV values for all instances over other algorithms. For DTLZ4
problem, θ−DEA, MOEA/D-URAW, and NMPSO show the best HV values for 3-objective
instance. NMPSO and MPSO/D show the best HV values for the remaining objective in-
stance. As a cumulative performance, MaOPSO-DP shows the best HV value in 27 rows out
of 48, which is the highest number among other algorithms.

The outcome of the Wilcoxon test is also presented at the bottom of Table 5. MaOPSO-DP
shows significantly better performance in 12 instances, equivalent performance in 3 instances,
and significantly worst performance in 1 instance than NSGA-III and θ−DEA for all DTLZ
problem instances. Similarly, MaOPSO-DP shows significantly better performance in 13
instances, equivalent performance in 2 instances and significantly worst performance in 1
instance than LEAF and ISDE+. MaOPSO-DP seems to be quite better than MOEA/D-
URAW and MaPSO while showing significantly better performance in almost all instances.
MaOPSO-DP shows significantly better performance in 11 and 13 instances than NMPSO
and MPSO/D, respectively. It can be seen that MaOPSO-DP outperforms the benchmark
algorithms on DTLZ problem instances using HV indicator values. The results based on the
IGD and HV indicators suggest that the proposed diversity preference approach enhances the
performance of many-objective PSO by selecting isolated leaders for the GB archive.

The obtained non-dominated solutions after the termination of algorithms are presented
in Fig. 3 for 3-objective DTLZ3 problem, which is a concave and multi-modal multi-objective
optimization problem. The solutions are drawn with respect to the run of the median IGD
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value of each algorithm. It can be seen that all algorithms converge to the PO front. Except
for ISDE+, MaPSO, and NMPSO, all algorithms generate a diverse set of solutions on the PO
front. Fig. 4 shows the value path obtained from the non-dominated solutions of algorithms
for 10-objective DTLZ3 problem. Again, all algorithms generate the non-dominated solutions
in the range of all objectives, except for MaPSO and NMPSO.

4.3. Performance Assessment on WFG Problems

Table 6 presents the best, median, and worst IGD values obtained from the algorithms for
various instances of WFG problems. The gray cells represent the best IGD values for each row.
WFG1 problem is a mixed and biased problem, and MOEA/D-URAW shows the best IGD
values for all instances. MOEA/D-URAW shows one decimal place of improvement in IGD
values for 3- and 5-objective instances over MaOPSO-DP. WFG2 is a convex, disconnected,
multi-modal, and non-separable problem on which LEAF shows the best IGD values for 3- and
5-objective instances. For 8-objective WFG2 instance, LEAF shows the minimum IGD value,
MaOPSO-DP shows the best median IGD value and MOEA/D-URAW shows the improved
worst IGD value. MOEA/D-URAW and MaPSO show the best IGD values for 10- and 15-
objective instances, respectively. WFG3 problem is a linear, degenerate, and non-separable
problem, and NMPSO shows the best IGD values for 3-, 8-, 10- and 15-objective instances.
LEAF shows the best IGD values for 5-objective instances. WFG4 problem is a concave
and multi-modal problem, and θ−DEA shows the best IGD values for 3- and 5-objective
instances. MaOPSO-DP shows the best IGD values for 8-objective instance. LEAF and
NMPSO show the best IGD values for 10- and 15-objective instances, respectively. WFG5
problem is a concave and deceptive problem, and MaOPSO-DP shows the best IGD values
for 3-, 8- and 10-objective instances. LEAF shows the best IGD values for 5- and 15-objective
instances. WFG6 problem is a concave and non-separable problem, and the best IGD values
for 3-objective instance are shown by MaOPSO-DP. LEAF shows the best IGD values for 5-,
10- and 15-objective instances. θ−DEA shows the best IGD values for 8-objective instance.
WFG7 is a concave and biased problem, and the best IGD values for all instances are shown
by MaOPSO-DP. WFG8 is a concave, biased, and non-separable problem, and the best IGD
values for 3-, 5-, 8- and 10-objective instances are shown by MaOPSO-DP. NMPSO shows the
best IGD values for 15-objective instance. WFG9 is a concave, biased, multi-modal, deceptive,
and non-separable problem, and the minimum IGD value for 3-objective instance is shown by
MaOPSO. LEAF shows the best IGD values for other objective instances. Overall, MaOPSO-
DP shows the best IGD values in 43 rows out of 135, which is the highest number, followed
by LEAF in 37 rows. MaOPSO-DP is found the best in solving 8- and 15-objective WFG1,
3-, 8- and 10-objective WFG5, 3- objective WFG6, 3-, 5-, 8- and 10-objective WFG7, 3-, 5-,
8- and 10-objective WFG8, 3- and 5-objective WFG9 instances.

The outcome of the Wilcoxon test can be seen at the bottom of Table 6. MaOPSO-
DP shows significantly better performance on many instances of WFG problems set over
NSGA-III, ISDE+, and MPSO/D. MaOPSO-DP shows a significantly better performance
on 32 and 35 instances over MaPSO and NMPSO, respectively. Similarly, MaOPSO-DP
shows a significantly better performance on 25 and 27 instances over θ−DEA and MOEA/D-
URAW, respectively. MaOPSO-DP and LEAF seem to have an equivalent performance using
the Wilcoxon test because both the algorithms show significantly better performance in 16
instances and equivalent performance in 13 instances.
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Table 7 presents the best, median, and worst HV values obtained from the algorithms.
The gray cells signify the better HV values with respect to the other algorithms. MOEA/D-
URAW seem to be the dominating algorithm that shows better HV values for all objective
instances of WFG1 and WFG4 problems, 5-objective WFG2 and WFG3 problems, 8- and
10-objective instances of WFG5 problem, 5-, 8- and 10-objective instances of WFG6 and
WFG8 problems, 3-objective instance of WFG7 problem and 3- and 5-objective instance of
WFG9 problem. MaPSO shows the best HV values for 8- and 10-objective instances of WFG2
and WFG3 problems, and 5-, 8- and 10-objective instances of WFG7 problem. MaOPSO-DP
shows the best HV values for 3-objective WFG2 and WFG6 problems only. MOEA/D-URAW
and MaPSO outperform MaOPSO-DP based on the statistical HV values.

The outcome of the Wilcoxon test is presented at the bottom of Table 7. MaOPSO-DP
shows significantly better performance in almost all instances of WFG problems over ISDE+
and MPSO/D. MaOPSO-DP shows significantly better performance in 20, 17, 19, and 18
instances over NSGA-III, LEAF, θ−DEA and MaPSO, respectively. MOEA/D-URAW, and
NMPSO show significantly better performance in 29 and 22 instances over MaOPSO-DP.

Fig. 5 shows the obtained non-dominated solutions corresponding to the run of the median
IGD value of each algorithm for 3-objective WFG7 problem. All algorithms are converged to
the PO front, except for ISDE+. Among the converged algorithms, NMPSO and MPSO/D do
not show a well-distributed set of solutions on the PO front. Fig. 6 shows value path plots for
10-objective WFG7 problem. Algorithms like MaOPSO-DP, NSGA-III, LEAF, and θ−DEA
show a similar distribution of solutions in the range of objectives. MOEA/D-URAW, ISDE+,
MaPSO, and NMPSO show dense lines in the same figure. MPSO/D is failed to distribute
solutions in the range of objectives.

The performance of MaOPSO-DP is also tested using IGD+ indicator [48] on DTLZ and
WFG problems. The results and discussion can be found in the supplementary sheet.

4.4. Average Performance Score

It can be observed from Sections 4.2 and 4.3, none of the algorithms is the clear winner on
all instances of DTLZ and WFG problems. Therefore, an average performance score of each
algorithm is calculated using IGD values, which is similar to the study presented by [19]. Fig.
7 shows an average performance score of every algorithm for different objective instances of
DTLZ and WFG problems. It can be seen that MaOPSO-DP is the best for 3-, 5-, 8- and 10-
objective instances, and the second-best for 15-objective instance. Still, MaOPSO-DP needs
to improve for a higher number of objectives, that is, 15-objective. Fig. 8 shows an average
performance score of every algorithm on each of DTLZ and WFG problems. MaOPSO-DP
is found the best in solving DTLZ1-4, WFG5 and WFG7 problems. It is the second best in
solvingWFG1 andWFG2 problems. However, MaOPSO-DP needs to improve solvingWFG3,
WFG4, WFG6 and WFG9 problems. Fig. 9 shows an average rank of each algorithm over all
instances of DTLZ and WFG problems. It can be seen that MaOPSO-DP is ranked the best
among the chosen set of algorithms for solving box-constrained many-objective optimization
problems.

5. Conclusions

The diversity preference approach was developed using the reference-lines-based frame-
work, which was coupled with many-objective PSO. The main objective was to select isolated
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solutions to maintain diversity among them. In this process, some dominated solutions can
also be selected. The proposed approach was used to update leaders of the GB(t) archive
and to assign a leader from the same archive to each particle of the swarm. MaOPSO-DP
was tested on DTLZ and WFG problem instances, and its outcome was compared with eight
many-objective evolutionary and PSO algorithms. On DTLZ problems, MaOPSO-DP out-
performed all algorithms using both the indicators. It is because of the diversity preference
approach. On WFG problems, MaOPSO-DP was the best among the chosen set of algo-
rithms using the IGD indicator. However, two benchmark algorithms were found better than
MaOPSO-DP using the HV indicator. An interesting outcome was observed when comparing
the obtained non-dominated solutions of MaOPSO-DP, NSGA-III, LEAF, and θ-DEA that
the distribution of solutions on the PO front was very similar to instances of DTLZ3 and
WFG7 problems. Nevertheless, MaOPSO-DP needs attention for solving higher-objective
problems. The main reason for not so good performance on those problem instances is fre-
quent jumping of particles out of the variable bounds. In future work, MaOPSO-DP can be
improved further by adapting an effective velocity update so that frequent jumping of par-
ticles can be reduced. Moreover, the strategy to generate structure reference points on the
unit hyperplane needs attention so that MaOPSO-DP can solve problems effectively that are
having inverted or baldy scaled PO fronts, such as with MaF problems set [49]. MaOPSO-DP
can be further extended for constraint many-objective optimization problems and real-world
problems.
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Table 4: Best, median and worst IGD values obtained by MaOPSO-DP and other algorithms on DTLZ instances with different number of objectives.
Best performances are highlighted in bold face with gray background.

M NSGA-III [1] LEAF [37] θ−DEA [19] MOEA/D-URAW [44] ISDE+ [45] MaPSO [36] NMPSO [31] MPSO/D [22] MaOPSO-DP

D
T
L
Z
1

3
3.510E-04 5.286E-04 3.854E-04 1.756E-02 2.042E-02 2.135E-02 2.083E-02 2.763E-01 5.531E-05

1.536E-03 + 1.249E-03+ 1.178E-03+ 2.092E-02 + 2.251E-02+ 2.331E-02+ 2.381E-02 + 9.869E-01 + 6.826E-05
5.787E-03 2.867E-03 4.201E-03 2.364E-02 2.396E-02 2.494E-02 2.789E-02 1.873E+00 8.439E-05

5
4.962E-04 4.148E-04 3.931E-04 5.061E-02 5.101E-02 6.422E-02 5.962E-02 1.561E-01 1.249E-04

7.431E-04 + 6.975E-04+ 4.982E-04+ 5.401E-02 + 5.550E-02+ 7.465E-02+ 6.363E-02 + 2.731E-01 + 1.549E-04
1.246E-03 1.170E-03 9.666E-04 5.657E-02 5.781E-02 1.069E-01 6.728E-02 4.682E-01 1.870E-04

8
2.175E-03 2.030E-03 1.925E-03 1.047E-01 1.021E-01 1.178E-01 1.194E-01 3.014E-01 1.021E-03

3.582E-03 + 2.638E-03+ 2.260E-03+ 1.177E-01 + 1.054E-01+ 1.370E-01+ 1.776E-01 + 4.414E-01 + 1.156E-03
6.645E-02 4.431E-03 1.519E-02 1.277E-01 1.109E-01 1.925E-01 2.133E-01 5.749E-01 1.532E-03

10
2.279E-03 1.784E-03 2.089E-03 1.177E-01 1.118E-01 1.249E-01 1.608E-01 1.192E-01 1.196E-03

2.583E-03 + 2.280E-03+ 2.380E-03+ 1.262E-01 + 1.150E-01+ 1.564E-01+ 1.850E-01 + 1.997E-01 + 1.356E-03
9.297E-02 4.756E-03 2.590E-03 1.403E-01 1.188E-01 1.969E-01 2.086E-01 2.617E-01 1.582E-03

15
1.922E-03 2.015E-03 2.143E-01 2.201E-01 1.797E-01 1.736E-01 2.986E-01 1.879E-01 2.953E-03

2.853E-03− 3.019E-03− 3.073E-01+ 2.418E-01 = 1.960E-01− 1.959E-01− 8.578E-01 + 2.822E-01 + 2.447E-01
4.324E-03 4.356E-03 4.145E-01 2.622E-01 2.376E-01 2.163E-01 4.632E+01 3.527E-01 2.982E-01

D
T
L
Z
2
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1.045E-03 1.029E-03 9.181E-04 5.069E-02 6.970E-02 4.903E-02 6.753E-02 7.596E-03 4.890E-04

1.270E-03 + 1.308E-03+ 1.058E-03+ 5.453E-02 + 7.507E-02+ 5.543E-02+ 7.492E-02 + 8.322E-03 + 6.402E-04
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3.058E-03 3.265E-03 2.072E-03 1.490E-01 1.634E-01 1.589E-01 1.634E-01 1.650E-02 1.169E-03

4.481E-03 + 4.359E-03+ 2.381E-03+ 1.548E-01 + 1.695E-01+ 1.675E-01+ 1.682E-01 + 1.780E-02 + 1.440E-03
1.128E-02 6.989E-03 2.682E-03 1.626E-01 1.716E-01 1.891E-01 1.755E-01 1.926E-02 1.707E-03

8
1.152E-02 1.065E-02 6.635E-03 2.960E-01 2.068E-01 3.167E-01 2.288E-01 2.653E-02 4.100E-03

1.293E-02 + 1.326E-02+ 7.407E-03+ 3.142E-01 + 2.273E-01+ 3.352E-01+ 2.402E-01 + 2.919E-02 + 4.754E-03
1.691E-02 1.474E-02 9.067E-03 3.290E-01 2.410E-01 3.547E-01 2.652E-01 3.409E-02 5.582E-03

10
1.142E-02 1.030E-02 6.683E-03 3.435E-01 2.452E-01 3.652E-01 2.806E-01 2.417E-02 4.094E-03

1.279E-02 + 1.195E-02+ 7.350E-03+ 3.595E-01 + 2.784E-01+ 3.833E-01+ 2.943E-01 + 2.602E-02 + 4.778E-03
1.486E-02 2.006E-02 8.375E-03 3.702E-01 2.946E-01 3.945E-01 3.204E-01 2.748E-02 5.415E-03

15
1.052E-02 1.055E-02 9.163E-03 4.907E-01 1.723E-01 4.247E-01 3.823E-01 3.115E-02 4.367E-03

1.428E-02 + 1.207E-02+ 1.042E-02+ 5.357E-01 + 2.276E-01+ 4.592E-01+ 6.317E-01 + 3.520E-02 + 5.528E-03
1.758E-02 1.731E-02 2.257E-02 6.146E-01 3.025E-01 4.797E-01 8.084E-01 3.999E-02 7.294E-03

D
T
L
Z
3

3
8.723E-04 1.600E-03 9.103E-04 4.990E-02 6.901E-02 4.860E-02 6.978E-02 7.308E-03 2.383E-04

3.991E-03 + 3.049E-03+ 3.217E-03+ 5.470E-02 + 7.500E-02+ 5.646E-02+ 7.473E-02 + 1.277E-02 + 2.891E-04
9.847E-03 9.425E-03 4.047E-02 5.743E-02 7.991E-02 2.002E+00 8.213E-02 1.428E-01 3.479E-04

5
2.174E-03 1.447E-03 1.590E-03 1.532E-01 1.620E-01 1.718E-01 1.599E-01 2.282E-02 3.720E-04

3.675E-03 + 3.637E-03+ 2.500E-03+ 1.608E-01 + 1.724E-01+ 2.153E-01+ 1.684E-01 + 3.265E-02 + 4.195E-04
1.014E-02 7.537E-03 7.298E-03 1.689E-01 1.781E-01 3.813E-01 1.759E-01 4.821E-02 5.082E-04

8
1.256E-02 1.405E-02 7.475E-03 3.182E-01 2.401E-01 3.762E-01 2.325E-01 1.216E-01 2.078E-03

2.444E-02 + 2.236E-02+ 1.407E-02+ 3.423E-01 + 2.679E-01+ 4.392E-01+ 3.753E-01 + 3.942E-01 + 2.479E-03
5.287E-02 5.302E-02 1.848E-01 4.268E-01 3.264E-01 5.171E-01 9.081E-01 9.314E-01 3.345E-03

10
8.236E-03 7.087E-03 5.746E-03 3.625E-01 2.802E-01 4.699E-01 2.983E-01 4.242E-02 2.261E-03

1.069E-02 + 9.583E-03+ 6.543E-03+ 3.880E-01 + 3.216E-01+ 5.020E-01+ 5.438E-01 + 5.420E-02 + 2.430E-03
1.929E-02 1.601E-02 8.574E-03 4.373E-01 3.447E-01 5.985E-01 1.265E+00 6.299E-02 2.999E-03

15
1.121E-02 9.958E-03 7.383E-03 6.121E-01 2.285E-01 5.234E-01 7.200E-01 7.685E-02 2.688E-03

1.766E-02 = 1.387E-02= 1.155E-02= 7.083E-01 + 3.161E-01+ 6.156E-01+ 1.323E+00+ 1.287E-01 = 3.540E-03
3.671E-02 2.184E-02 6.418E-02 8.082E-01 6.105E-01 7.536E-01 1.326E+00 2.863E-01 6.633E-01

D
T
L
Z
4

3
3.113E-04 2.668E-04 3.079E-04 4.736E-02 7.061E-02 5.124E-02 6.782E-02 4.166E-03 2.988E-04

3.918E-04 + 3.907E-04+ 3.639E-04= 5.176E-02 + 7.670E-02+ 5.555E-02+ 7.626E-02 + 4.744E-03 + 3.576E-04
5.314E-01 5.306E-01 4.493E-04 5.313E-01 8.172E-02 5.766E-02 5.325E-01 5.192E-03 4.394E-04

5
3.641E-04 3.641E-04 3.397E-04 1.348E-01 1.666E-01 1.463E-01 1.607E-01 8.703E-03 3.304E-04

4.334E-04 + 4.391E-04+ 4.093E-04= 1.414E-01 + 1.726E-01+ 1.533E-01+ 1.688E-01 + 9.675E-03 + 3.924E-04
5.072E-04 6.257E-04 4.909E-04 1.484E-01 1.798E-01 1.578E-01 1.750E-01 1.047E-02 4.322E-04

8
2.541E-03 2.963E-03 2.262E-03 2.785E-01 2.467E-01 2.532E-01 2.130E-01 4.299E-02 1.873E-03

3.442E-03 + 3.434E-03+ 3.061E-03+ 2.945E-01 + 2.645E-01+ 2.728E-01+ 2.409E-01 + 4.820E-02 + 2.678E-03
5.319E-03 4.451E-03 6.968E-01 3.099E-01 3.688E-01 2.862E-01 6.180E-01 5.154E-02 3.113E-03

10
3.578E-03 3.333E-03 2.844E-03 3.267E-01 2.863E-01 2.813E-01 2.496E-01 3.844E-02 2.546E-03

4.228E-03 + 3.951E-03+ 3.355E-03+ 3.362E-01 + 3.062E-01+ 2.990E-01+ 2.707E-01 + 4.095E-02 + 2.885E-03
5.174E-03 4.637E-03 4.182E-03 3.491E-01 3.364E-01 3.047E-01 3.111E-01 4.336E-02 3.676E-03

15
5.257E-03 5.613E-03 5.704E-03 3.950E-01 1.918E-01 2.512E-01 2.183E-01 1.687E-02 4.322E-03

7.298E-03 = 8.156E-03+ 4.619E-01+ 4.628E-01 + 2.729E-01+ 2.773E-01+ 7.359E-01 + 1.998E-02 + 6.497E-03
9.578E-03 1.319E-02 6.925E-01 5.310E-01 3.441E-01 3.023E-01 9.442E-01 2.240E-02 9.600E-03

(+/=/-) 17/2/1 18/1/1 17/3/0 19/1/0 19/0/1 19/0/1 20/0/0 19/1/0
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Table 5: Best, median and worst HV values obtained by MaOPSO-DP and other algorithms on DTLZ instances with different number of objectives.
Best performances are highlighted in bold face with gray background.

M NSGA-III [1] LEAF [37] θ−DEA [19] MOEA/D-URAW [44] ISDE+ [45] MaPSO [36] NMPSO [31] MPSO/D [22] MaOPSO-DP
D

T
L
Z
1

3
9.73656E-01 9.73583E-01 9.73593E-01 9.73046E-01 9.72445E-01 9.72251E-01 9.71801E-01 1.10624E-01 9.73687E-01

9.73423E-01+ 9.73434E-01+ 9.73395E-01+ 9.72280E-01 + 9.69382E-01 + 9.71936E-01+ 9.70241E-01 + 1.73248E-01 + 9.73669E-01
9.72470E-01 9.72982E-01 9.72737E-01 9.70319E-01 9.57022E-01 9.71078E-01 9.66553E-01 2.63190E-01 9.73663E-01

5
9.98982E-01 9.98982E-01 9.98984E-01 9.98829E-01 9.98152E-01 9.98277E-01 9.98335E-01 9.66164E-01 9.98988E-01

9.98977E-01+ 9.98975E-01+ 9.98972E-01+ 9.98491E-01 + 9.97497E-01 + 9.97662E-01+ 9.97537E-01 + 8.64720E-01 + 9.98986E-01
9.98963E-01 9.98963E-01 9.98961E-01 9.98189E-01 9.96326E-01 9.94801E-01 9.96799E-01 5.97339E-01 9.98984E-01

8
9.99974E-01 9.99977E-01 9.99967E-01 9.99946E-01 9.99707E-01 9.99884E-01 9.99432E-01 9.36488E-01 9.99980E-01

9.99971E-01+ 9.99972E-01+ 9.99954E-01+ 9.99812E-01 + 9.99361E-01 + 9.99807E-01+ 9.97911E-01 + 6.90423E-01 + 9.99979E-01
9.99896E-01 9.99966E-01 9.99927E-01 9.99528E-01 9.98801E-01 9.99051E-01 9.95176E-01 5.40445E-01 9.99978E-01

10
9.99998E-01 9.99998E-01 9.99995E-01 9.99995E-01 9.99946E-01 9.99994E-01 9.99808E-01 9.99390E-01 9.99999E-01

9.99997E-01+ 9.99997E-01+ 9.99991E-01+ 9.99984E-01 + 9.99849E-01 + 9.99972E-01+ 9.99563E-01 + 9.93112E-01 + 9.99999E-01
9.99988E-01 9.99996E-01 9.99985E-01 9.99965E-01 9.99748E-01 9.99870E-01 9.99105E-01 9.69177E-01 9.99999E-01

D
T
L
Z
2

3
9.26692E-01 9.26662E-01 9.26700E-01 9.26959E-01 9.26836E-01 9.26472E-01 9.26848E-01 9.26643E-01 9.26794E-01

9.26640E-01+ 9.26636E-01+ 9.26662E-01+ 9.24944E-01 + 9.26582E-01 + 9.26058E-01+ 9.26663E-01 + 9.26598E-01 + 9.26725E-01
9.26584E-01 9.26577E-01 9.26607E-01 9.21424E-01 9.26294E-01 9.25503E-01 9.26305E-01 9.26545E-01 9.26704E-01

5
9.90505E-01 9.90492E-01 9.90533E-01 9.90178E-01 9.90561E-01 9.89463E-01 9.90545E-01 9.90586E-01 9.90569E-01

9.90474E-01+ 9.90462E-01+ 9.90520E-01+ 9.89242E-01 + 9.90446E-01 + 9.89135E-01+ 9.90456E-01 + 9.90549E-01 + 9.90559E-01
9.90418E-01 9.90443E-01 9.90496E-01 9.87013E-01 9.90275E-01 9.87376E-01 9.90313E-01 9.90535E-01 9.90551E-01

8
9.99337E-01 9.99339E-01 9.99349E-01 9.99140E-01 9.99425E-01 9.99055E-01 9.99409E-01 9.99352E-01 9.99361E-01

9.99328E-01+ 9.99329E-01+ 9.99340E-01+ 9.98795E-01 + 9.99409E-01− 9.98856E-01+ 9.99396E-01 − 9.99343E-01 + 9.99360E-01
9.99315E-01 9.99316E-01 9.99326E-01 9.97946E-01 9.99382E-01 9.98726E-01 9.99367E-01 9.99326E-01 9.99357E-01

10
9.99919E-01 9.99920E-01 9.99920E-01 9.99872E-01 9.99927E-01 9.99825E-01 9.99925E-01 9.99921E-01 9.99923E-01

9.99917E-01+ 9.99919E-01+ 9.99919E-01+ 9.99843E-01 + 9.99924E-01= 9.99801E-01+ 9.99918E-01 + 9.99920E-01 + 9.99923E-01
9.99916E-01 9.99915E-01 9.99916E-01 9.99699E-01 9.99915E-01 9.99783E-01 9.99910E-01 9.99920E-01 9.99923E-01

D
T
L
Z
3

3
9.26593E-01 9.26466E-01 9.26602E-01 9.26760E-01 9.26726E-01 9.26684E-01 9.27081E-01 9.26633E-01 9.26783E-01

9.25882E-01+ 9.26084E-01+ 9.26050E-01+ 9.26291E-01 + 9.26162E-01 + 9.26131E-01+ 9.26728E-01 = 9.26310E-01 + 9.26731E-01
9.24558E-01 9.24700E-01 9.21048E-01 9.22296E-01 9.24835E-01 4.40325E-03 9.26192E-01 8.60481E-01 9.26730E-01

5
9.90525E-01 9.90536E-01 9.90531E-01 9.89525E-01 9.90489E-01 9.88524E-01 9.90580E-01 9.90476E-01 9.90588E-01

9.90469E-01+ 9.90425E-01+ 9.90480E-01+ 9.89034E-01 + 9.90352E-01 + 9.86276E-01+ 9.90498E-01 + 9.90281E-01 + 9.90575E-01
9.90135E-01 9.90252E-01 9.90372E-01 9.86805E-01 9.90031E-01 9.78306E-01 9.90364E-01 9.89929E-01 9.90571E-01

8
9.99334E-01 9.99323E-01 9.99342E-01 9.98655E-01 9.99380E-01 9.98633E-01 9.99399E-01 9.99043E-01 9.99364E-01

9.99264E-01+ 9.99281E-01+ 9.99313E-01+ 9.97544E-01 + 9.99342E-01 + 9.98135E-01+ 9.98167E-01 + 9.90911E-01 + 9.99364E-01
9.99166E-01 9.99162E-01 9.98320E-01 9.95905E-01 9.99194E-01 9.97371E-01 9.25750E-01 7.70214E-01 9.99363E-01

10
9.99922E-01 9.99922E-01 9.99922E-01 9.99843E-01 9.99915E-01 9.99661E-01 9.99917E-01 9.99915E-01 9.99924E-01

9.99918E-01+ 9.99919E-01+ 9.99921E-01+ 9.99652E-01 + 9.99907E-01 + 9.99590E-01+ 9.98656E-01 + 9.99910E-01 + 9.99923E-01
9.99909E-01 9.99914E-01 9.99917E-01 9.98452E-01 9.99896E-01 9.99363E-01 4.99770E-01 9.99904E-01 9.99923E-01

D
T
L
Z
4

3
9.26777E-01 9.26730E-01 9.26774E-01 9.26980E-01 9.26826E-01 9.26525E-01 9.27044E-01 9.26721E-01 9.26748E-01

9.26733E-01= 9.26729E-01+ 9.26731E-01= 9.26785E-01 = 9.26507E-01 + 9.26163E-01+ 9.26665E-01 + 9.26695E-01 + 9.26730E-01
7.98533E-01 8.01492E-01 9.26728E-01 8.01917E-01 9.25961E-01 9.25349E-01 8.01590E-01 9.26672E-01 9.26728E-01

5
9.90593E-01 9.90571E-01 9.90590E-01 9.90528E-01 9.90510E-01 9.90341E-01 9.90706E-01 9.90601E-01 9.90574E-01

9.90578E-01− 9.90570E-01= 9.90575E-01− 9.90449E-01 + 9.90284E-01 + 9.90211E-01+ 9.90524E-01 = 9.90593E-01− 9.90571E-01
9.90571E-01 9.90568E-01 9.90571E-01 9.90038E-01 9.90181E-01 9.90066E-01 9.90422E-01 9.90586E-01 9.90570E-01

8
9.99365E-01 9.99365E-01 9.99364E-01 9.99313E-01 9.99395E-01 9.99390E-01 9.99433E-01 9.99391E-01 9.99364E-01

9.99364E-01= 9.99364E-01= 9.99364E-01= 9.99099E-01 + 9.99359E-01 = 9.99339E-01+ 9.99405E-01= 9.99385E-01 − 9.99364E-01
9.99363E-01 9.99363E-01 9.71325E-01 9.98723E-01 9.98380E-01 9.99309E-01 9.89031E-01 9.99378E-01 9.99364E-01

10
9.99924E-01 9.99923E-01 9.99924E-01 9.99899E-01 9.99921E-01 9.99924E-01 9.99930E-01 9.99927E-01 9.99923E-01

9.99923E-01= 9.99923E-01− 9.99924E-01= 9.99884E-01 + 9.99916E-01 + 9.99917E-01+ 9.99927E-01− 9.99927E-01 − 9.99923E-01
9.99923E-01 9.99923E-01 9.99923E-01 9.99839E-01 9.99910E-01 9.99913E-01 9.99921E-01 9.99926E-01 9.99923E-01

(+/=/-) 12/3/1 13/2/1 12/3/1 15/1/0 13/2/1 16/0/0 11/3/2 13/0/3
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Figure 3: The value path of the obtained non-dominated solutions by the algorithms for 3-objective DTLZ3 problem.
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Figure 4: The value path of the obtained non-dominated solutions by the algorithms for 10-objective DTLZ3 problem.
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Table 6: Best, median and worst IGD values obtained by MaOPSO-DP and other algorithms on WFG instances with different number of objectives.
Best performances are highlighted in bold face with gray background.

M NSGA-III [1] LEAF [37] θ−DEA [19] MOEA/D-URAW [44] ISDE+ [45] MaPSO [36] NMPSO [31] MPSO/D [22] MaOPSO-DP

W
F
G

1

3
2.368E-01 3.385E-01 3.226E-01 4.198E-02 5.298E-01 1.815E-01 1.074E-01 5.047E-01 2.900E-01

2.401E-01 − 3.674E-01 + 3.624E-01 + 4.779E-02 − 5.303E-01 + 2.441E-01 − 1.426E-01 − 5.486E-01 + 3.234E-01
2.425E-01 3.753E-01 3.758E-01 5.658E-02 5.319E-01 3.000E-01 2.678E-01 5.626E-01 3.416E-01

5
2.403E-01 3.729E-01 3.033E-01 7.920E-02 5.466E-01 2.557E-01 1.716E-01 5.365E-01 3.229E-01

2.431E-01 − 3.992E-01 + 3.434E-01 − 8.167E-02 − 5.474E-01 + 3.263E-01 − 2.083E-01 − 5.532E-01 + 3.786E-01
2.469E-01 4.053E-01 3.683E-01 8.894E-02 5.482E-01 3.981E-01 3.233E-01 5.589E-01 4.274E-01

8
3.005E-01 1.940E-01 2.321E-01 1.357E-01 5.780E-01 2.464E-01 2.626E-01 5.799E-01 1.691E-01

3.045E-01 + 2.203E-01 + 2.578E-01 + 1.459E-01 − 5.815E-01 + 3.254E-01 + 3.137E-01 + 5.875E-01 + 2.087E-01
3.225E-01 3.710E-01 2.856E-01 1.492E-01 5.869E-01 4.288E-01 4.499E-01 5.927E-01 2.910E-01

10
3.008E-01 1.647E-01 2.161E-01 1.482E-01 5.924E-01 1.998E-01 2.661E-01 5.934E-01 1.802E-01

3.122E-01 + 1.747E-01 − 2.270E-01 + 1.628E-01 − 5.939E-01 + 2.257E-01 + 3.948E-01 + 5.972E-01 + 1.917E-01
3.203E-01 8.374E-01 2.411E-01 1.713E-01 5.963E-01 3.988E-01 4.880E-01 6.012E-01 2.034E-01

15
4.556E-01 3.211E-01 4.116E-01 2.564E-01 6.571E-01 3.260E-01 4.164E-01 6.259E-01 2.734E-01

4.584E-01 + 3.390E-01 + 4.423E-01 + 2.800E-01 − 6.632E-01 + 3.443E-01 + 5.007E-01 + 6.368E-01 + 3.153E-01
4.626E-01 3.601E-01 5.219E-01 2.933E-01 6.707E-01 3.629E-01 6.072E-01 6.479E-01 3.660E-01

W
F
G

2

3
3.332E-01 1.602E-02 3.363E-02 3.555E-02 6.131E-01 4.398E-02 1.078E-01 6.744E-02 2.652E-02

3.346E-01 + 2.036E-02= 4.112E-02 + 3.868E-02 + 6.143E-01 + 4.785E-02 + 1.286E-01 + 7.278E-02 + 2.898E-02
3.660E-01 9.824E-02 1.146E-01 4.352E-02 7.141E-01 5.373E-02 1.584E-01 7.588E-02 3.021E-02

5
2.263E-01 5.673E-02 6.936E-02 6.748E-02 7.263E-01 7.156E-02 1.570E-01 1.061E-01 8.477E-02

2.271E-01 + 5.928E-02− 7.950E-02 = 7.019E-02 − 7.269E-01 + 7.499E-02 − 1.737E-01 + 1.284E-01 + 9.236E-02
2.479E-01 1.599E-01 1.940E-01 7.399E-02 8.214E-01 7.919E-02 2.279E-01 1.386E-01 1.021E-01

8
2.258E-01 8.843E-02 1.603E-01 1.044E-01 7.637E-01 1.155E-01 1.891E-01 1.670E-01 1.108E-01

2.451E-01 + 1.976E-01 + 2.544E-01 + 1.148E-01 − 7.644E-01 + 1.216E-01 = 2.375E-01 + 1.777E-01 + 1.138E-01
2.664E-01 2.397E-01 2.620E-01 1.249E-01 8.537E-01 1.312E-01 2.449E-01 1.832E-01 2.817E-01

10
3.306E-01 1.731E-01 2.192E-01 1.675E-01 8.383E-01 1.875E-01 2.941E-01 2.188E-01 2.071E-01

3.571E-01 + 2.619E-01 = 3.363E-01 + 1.772E-01 − 8.387E-01 + 2.066E-01 − 3.188E-01 + 2.404E-01 = 2.261E-01
3.719E-01 3.165E-01 3.579E-01 1.972E-01 9.312E-01 2.227E-01 3.657E-01 2.569E-01 3.118E-01

15
9.633E-01 5.929E-01 8.548E-01 1.046E-01 1.142E+00 1.187E-02 6.612E-01 7.537E-01 5.729E-02

9.795E-01 + 6.426E-01 + 8.886E-01 + 3.344E-01 − 1.142E+00+ 2.191E-02− 7.901E-01 + 8.243E-01 + 5.615E-01
9.862E-01 8.046E-01 9.463E-01 5.160E-01 1.207E+00 4.289E-02 9.540E-01 8.552E-01 9.448E-01

W
F
G

3

3
4.275E-01 1.567E-02 1.754E-02 1.412E-02 4.543E-01 2.465E-02 9.162E-03 6.960E-02 1.376E-02

4.316E-01 + 1.901E-02 + 2.370E-02 + 1.901E-02 + 4.585E-01 + 2.923E-02 + 1.192E-02− 8.092E-02 + 1.609E-02
4.360E-01 2.736E-02 5.632E-02 3.688E-02 4.633E-01 3.721E-02 1.585E-02 9.453E-02 2.879E-02

5
4.317E-01 3.503E-02 3.815E-02 3.669E-02 5.244E-01 4.339E-02 3.961E-02 1.360E-01 4.500E-02

4.366E-01 + 4.667E-02− 5.406E-02 = 4.716E-02 − 5.255E-01 + 5.463E-02 − 5.471E-02 = 1.631E-01 + 6.211E-02
4.416E-01 6.037E-02 7.908E-02 7.953E-02 5.291E-01 6.321E-02 6.874E-02 2.061E-01 8.371E-02

8
4.754E-01 5.955E-02 1.275E-01 9.734E-02 5.626E-01 1.035E-01 6.499E-02 2.025E-01 2.066E-01

4.767E-01 + 3.004E-01 = 3.900E-01 = 1.399E-01 − 5.638E-01 + 1.645E-01 − 8.636E-02− 2.516E-01 − 2.723E-01
4.793E-01 5.617E-01 5.832E-01 2.582E-01 5.655E-01 2.385E-01 1.315E-01 3.103E-01 4.772E-01

10
4.812E-01 4.436E-02 3.902E-02 1.035E-01 5.730E-01 1.206E-01 3.068E-02 2.410E-01 1.339E-01

4.819E-01 + 8.091E-02 − 2.134E-01 = 1.537E-01 − 5.736E-01 + 1.762E-01 − 4.761E-02− 2.685E-01 = 2.674E-01
4.829E-01 2.346E-01 6.376E-01 2.052E-01 5.755E-01 2.183E-01 8.002E-02 2.961E-01 4.348E-01

15
4.913E-01 8.268E-02 6.080E-02 2.123E-01 5.837E-01 1.383E-01 3.706E-02 2.770E-01 1.300E-01

4.920E-01 = 3.211E-01 = 6.337E-01 + 2.973E-01 − 5.857E-01 + 2.069E-01 − 7.914E-02− 3.366E-01 − 4.179E-01
4.929E-01 5.716E-01 7.091E-01 4.525E-01 5.893E-01 2.956E-01 1.659E-01 3.652E-01 8.026E-01

W
F
G

4

3
6.983E-01 4.662E-03 4.495E-03 5.405E-02 4.169E-01 5.588E-02 6.982E-02 7.830E-02 4.657E-03

6.986E-01 + 6.102E-03 − 5.214E-03− 5.511E-02 + 4.205E-01 + 6.121E-02 + 7.549E-02 + 8.157E-02 + 7.411E-03
6.989E-01 7.890E-03 1.251E-02 5.857E-02 4.248E-01 6.711E-02 8.296E-02 8.399E-02 9.680E-03

5
7.735E-01 1.697E-02 1.634E-02 1.550E-01 6.299E-01 1.702E-01 1.666E-01 2.817E-01 1.753E-02

7.746E-01 + 1.981E-02 − 1.945E-02− 1.584E-01 + 6.402E-01 + 1.765E-01 + 1.729E-01 + 2.965E-01 + 2.197E-02
7.753E-01 2.327E-02 2.190E-02 1.623E-01 6.455E-01 1.840E-01 1.791E-01 3.020E-01 2.497E-02

8
8.319E-01 2.925E-02 2.863E-02 2.966E-01 8.848E-01 2.983E-01 2.136E-01 6.441E-01 2.882E-02

8.325E-01 + 3.602E-02 + 3.502E-02 = 3.076E-01 + 8.901E-01 + 3.163E-01 + 2.382E-01 + 6.882E-01 + 3.400E-02
8.331E-01 4.398E-02 3.968E-02 3.194E-01 9.027E-01 3.293E-01 2.652E-01 6.953E-01 3.797E-02

10
8.544E-01 3.345E-02 4.052E-02 3.408E-01 9.651E-01 3.301E-01 3.178E-01 7.808E-01 3.271E-02

8.547E-01 + 3.833E-02− 8.208E-02 + 3.507E-01 + 9.786E-01 + 3.533E-01 + 3.325E-01 + 7.909E-01 + 4.077E-02
8.553E-01 4.921E-02 5.009E-01 3.555E-01 9.930E-01 3.655E-01 3.437E-01 7.963E-01 9.718E-02

15
9.097E-01 5.195E-01 7.117E-01 4.717E-01 1.201E+00 3.686E-01 1.683E-01 8.738E-01 5.447E-01

9.416E-01 + 5.701E-01 = 7.746E-01 + 5.048E-01 − 1.220E+00+ 4.035E-01 − 2.354E-01− 9.729E-01 + 6.003E-01
9.549E-01 6.860E-01 8.398E-01 6.468E-01 1.230E+00 4.336E-01 4.855E-01 9.905E-01 7.587E-01

W
F
G

5 3
6.927E-01 2.956E-02 2.989E-02 6.128E-02 2.677E-01 6.614E-02 7.304E-02 7.880E-02 2.905E-02

6.931E-01 + 3.158E-02= 3.235E-02 = 6.483E-02 + 2.736E-01 + 7.025E-02 + 7.619E-02 + 8.056E-02 + 3.198E-02
6.932E-01 3.563E-02 3.703E-02 6.794E-02 2.866E-01 7.468E-02 8.018E-02 8.129E-02 3.370E-02

5
7.721E-01 3.501E-02 3.665E-02 1.604E-01 6.755E-01 1.879E-01 1.703E-01 2.939E-01 3.562E-02

7.723E-01 + 3.990E-02 = 4.169E-02 + 1.627E-01 + 6.805E-01 + 1.946E-01 + 1.759E-01 + 3.035E-01 + 3.966E-02
7.727E-01 4.426E-02 4.831E-02 1.672E-01 6.875E-01 2.081E-01 1.803E-01 3.054E-01 4.578E-02

3
0



M NSGA-III [1] LEAF [37] θ−DEA [19] MOEA/D-URAW [44] ISDE+ [45] MaPSO [36] NMPSO [31] MPSO/D [22] MaOPSO-DP

8
8.317E-01 4.612E-02 4.902E-02 2.989E-01 9.400E-01 3.410E-01 2.563E-01 5.513E-01 4.453E-02

8.320E-01 + 5.127E-02 = 5.068E-02 = 3.074E-01 + 9.648E-01 + 3.560E-01+ 2.801E-01 + 6.259E-01 + 5.013E-02
8.321E-01 5.356E-02 5.886E-02 3.190E-01 9.729E-01 3.628E-01 3.038E-01 6.710E-01 5.631E-02

10
8.541E-01 4.386E-02 4.520E-02 3.396E-01 1.026E+00 3.941E-01 3.358E-01 6.304E-01 4.215E-02

8.543E-01 + 4.948E-02 = 5.117E-02 + 3.458E-01 + 1.028E+00+ 4.037E-01+ 3.456E-01 + 6.867E-01 + 4.737E-02
8.545E-01 5.475E-02 5.804E-02 3.552E-01 1.050E+00 4.128E-01 3.550E-01 7.555E-01 5.226E-02

15
8.889E-01 3.685E-02 4.431E-02 4.411E-01 1.186E+00 4.691E-01 2.660E-01 7.120E-01 3.726E-02

8.890E-01 + 3.872E-02− 1.730E-01 + 4.857E-01 + 1.187E+00+ 4.930E-01+ 4.853E-01 + 7.397E-01 + 5.312E-02
9.110E-01 4.269E-02 5.129E-01 5.149E-01 1.188E+00 5.144E-01 7.098E-01 8.259E-01 8.015E-02

W
F
G

6

3
6.918E-01 2.090E-02 2.311E-02 5.766E-02 5.539E-01 5.568E-02 8.269E-02 8.386E-02 1.282E-02

6.934E-01 + 2.810E-02 + 2.933E-02 + 6.253E-02 + 5.607E-01 + 7.527E-02+ 8.737E-02 + 8.852E-02 + 1.308E-02
6.943E-01 3.307E-02 3.853E-02 6.765E-02 5.723E-01 8.048E-02 9.310E-02 9.369E-02 1.361E-02

5
7.713E-01 2.719E-02 2.835E-02 1.558E-01 8.832E-01 1.667E-01 1.736E-01 2.506E-01 5.566E-02

7.724E-01 + 3.419E-02 − 3.371E-02− 1.605E-01 + 8.848E-01 + 1.726E-01+ 1.796E-01 + 2.879E-01 + 6.022E-02
7.733E-01 4.051E-02 4.327E-02 1.652E-01 8.867E-01 1.768E-01 1.827E-01 3.107E-01 6.321E-02

8
8.314E-01 3.474E-02 2.971E-02 2.973E-01 1.075E+00 3.032E-01 2.178E-01 5.889E-01 5.740E-02

8.319E-01 + 3.936E-02 − 3.645E-02− 3.055E-01 + 1.076E+00+ 3.264E-01+ 2.402E-01 + 6.812E-01 + 6.148E-02
8.323E-01 4.964E-02 4.812E-02 3.137E-01 1.079E+00 3.351E-01 2.589E-01 7.068E-01 6.676E-02

10
8.539E-01 3.043E-02 3.120E-02 3.356E-01 1.139E+00 3.523E-01 2.477E-01 6.825E-01 5.703E-02

8.545E-01 + 3.719E-02 − 3.639E-02− 3.441E-01 + 1.140E+00+ 3.641E-01+ 2.764E-01 + 7.600E-01 + 6.210E-02
8.553E-01 4.184E-02 4.364E-02 3.541E-01 1.140E+00 3.742E-01 2.988E-01 8.026E-01 6.810E-02

15
8.886E-01 3.043E-02 3.103E-02 4.615E-01 1.248E+00 4.146E-01 1.329E-01 7.721E-01 3.923E-02

8.892E-01 + 3.719E-02 − 3.573E-02− 4.830E-01 + 1.248E+00+ 4.442E-01+ 2.380E-01 + 8.910E-01 + 6.210E-02
8.894E-01 4.184E-02 4.440E-02 5.734E-01 1.249E+00 4.742E-01 5.003E-01 9.531E-01 6.498E-02

W
F
G

7

3
6.992E-01 1.679E-03 1.891E-03 5.211E-02 4.545E-01 5.180E-02 6.676E-02 7.219E-02 1.423E-03

6.993E-01 + 2.606E-03 + 2.331E-03 + 5.537E-02 + 4.554E-01 + 5.561E-02+ 7.462E-02 + 7.614E-02 + 1.841E-03
6.995E-01 3.288E-03 2.728E-03 5.938E-02 4.560E-01 5.824E-02 7.924E-02 7.841E-02 2.172E-03

5
7.761E-01 6.518E-03 5.630E-03 1.506E-01 5.368E-01 1.586E-01 1.616E-01 2.753E-01 5.413E-03

7.764E-01 + 7.325E-03 + 6.636E-03 = 1.576E-01 + 5.397E-01 + 1.638E-01+ 1.699E-01 + 2.928E-01 + 6.451E-03
7.766E-01 1.424E-02 1.295E-02 1.612E-01 5.417E-01 1.715E-01 1.763E-01 2.997E-01 7.520E-03

8
8.334E-01 1.721E-02 1.656E-02 2.931E-01 6.161E-01 3.037E-01 2.223E-01 5.686E-01 1.389E-02

8.338E-01 + 1.953E-02 + 1.857E-02 + 3.071E-01 + 6.224E-01 + 3.108E-01+ 2.419E-01 + 6.626E-01 + 1.559E-02
8.340E-01 2.211E-02 2.104E-02 3.229E-01 6.275E-01 3.255E-01 2.600E-01 6.972E-01 1.823E-02

10
8.558E-01 1.944E-02 2.017E-02 3.409E-01 6.539E-01 3.275E-01 2.630E-01 6.554E-01 1.336E-02

8.559E-01 + 2.065E-02 + 2.248E-02 + 3.465E-01 + 6.566E-01 + 3.424E-01+ 2.923E-01 + 7.262E-01 + 1.446E-02
8.561E-01 2.310E-02 2.455E-02 3.583E-01 6.637E-01 3.562E-01 3.088E-01 7.949E-01 1.769E-02

15
8.895E-01 3.739E-02 5.381E-01 4.711E-01 7.352E-01 3.683E-01 1.879E-01 7.293E-01 7.991E-03

8.945E-01 + 7.754E-02 = 5.978E-01 + 4.884E-01 + 7.446E-01 + 4.085E-01+ 4.119E-01 + 8.120E-01 + 1.769E-02
9.311E-01 4.482E-01 6.633E-01 5.455E-01 7.694E-01 4.599E-01 5.800E-01 8.603E-01 5.958E-01

W
F
G

8

3
6.831E-01 6.510E-02 7.442E-02 6.414E-02 6.665E-01 8.379E-02 8.241E-02 9.211E-02 6.544E-02

6.844E-01 + 7.235E-02 + 7.598E-02 + 6.843E-02 = 6.773E-01 + 8.751E-02+ 8.783E-02 + 9.652E-02 + 6.837E-02
6.860E-01 7.515E-02 7.820E-02 7.393E-02 6.823E-01 9.144E-02 9.183E-02 9.950E-02 7.166E-02

5
7.580E-01 1.203E-01 1.183E-01 1.661E-01 9.469E-01 2.092E-01 1.746E-01 2.393E-01 1.107E-01

7.591E-01 + 1.302E-01 + 1.330E-01 + 1.713E-01 + 9.667E-01 + 2.170E-01+ 1.841E-01 + 2.538E-01 + 1.277E-01
7.606E-01 1.370E-01 1.435E-01 1.773E-01 9.712E-01 2.227E-01 1.901E-01 2.696E-01 1.369E-01

8
8.123E-01 2.049E-01 2.396E-01 3.108E-01 1.124E+00 3.715E-01 2.468E-01 4.416E-01 1.320E-01

8.129E-01 + 2.211E-01 = 2.578E-01 + 3.198E-01 + 1.133E+00+ 3.925E-01+ 2.605E-01 + 4.806E-01 + 2.205E-01
8.140E-01 2.413E-01 2.664E-01 3.432E-01 1.135E+00 4.047E-01 2.843E-01 5.618E-01 2.316E-01

10
8.371E-01 1.174E-01 2.807E-01 3.561E-01 1.175E+00 4.332E-01 2.921E-01 5.153E-01 6.663E-02

8.374E-01 + 2.025E-01 = 3.111E-01 + 3.656E-01 + 1.180E+00+ 4.442E-01+ 3.034E-01 + 5.329E-01 + 1.892E-01
8.392E-01 2.660E-01 3.274E-01 3.958E-01 1.185E+00 4.511E-01 3.268E-01 5.915E-01 4.417E-01

15
9.389E-01 5.429E-01 6.154E-01 5.172E-01 1.268E+00 5.401E-01 2.385E-01 5.997E-01 6.604E-01

9.458E-01 + 5.917E-01 − 6.565E-01 − 5.737E-01 − 1.276E+00+ 5.563E-01− 5.206E-01− 6.650E-01 − 6.987E-01
9.504E-01 6.231E-01 6.832E-01 6.065E-01 1.279E+00 5.715E-01 7.315E-01 7.443E-01 7.335E-01

W
F
G

9

3
6.869E-01 2.867E-02 3.060E-02 5.708E-02 9.316E-02 6.145E-02 8.040E-02 7.730E-02 2.060E-02

6.906E-01 + 6.484E-02 + 5.021E-02= 5.948E-02 = 9.909E-02 + 8.471E-02+ 8.412E-02 + 9.068E-02 + 6.408E-02
6.962E-01 6.542E-02 6.679E-02 6.287E-02 1.211E-01 8.889E-02 8.958E-02 9.180E-02 6.530E-02

5
7.671E-01 5.670E-02 5.407E-02 1.604E-01 1.973E-01 1.940E-01 1.801E-01 2.803E-01 4.789E-02

7.681E-01 + 6.101E-02 = 9.304E-02 + 1.672E-01 + 2.218E-01 + 2.052E-01+ 1.861E-01 + 2.928E-01 + 5.478E-02
7.736E-01 9.265E-02 9.787E-02 1.712E-01 2.409E-01 2.095E-01 1.904E-01 3.051E-01 1.007E-01

8
8.278E-01 9.049E-02 9.219E-02 3.120E-01 3.966E-01 3.504E-01 2.480E-01 5.372E-01 1.108E-01

8.286E-01 + 1.001E-01− 1.266E-01 = 3.213E-01 + 7.237E-01 + 3.625E-01+ 2.805E-01 + 6.037E-01 + 1.249E-01
8.299E-01 1.372E-01 1.644E-01 3.302E-01 8.421E-01 3.760E-01 3.013E-01 6.771E-01 1.425E-01

10
8.514E-01 9.885E-02 1.030E-01 3.507E-01 6.421E-01 3.983E-01 3.213E-01 5.999E-01 1.241E-01

8.522E-01 + 1.071E-01− 1.190E-01 = 3.635E-01 + 7.388E-01 + 4.063E-01+ 3.491E-01 + 6.731E-01 + 1.424E-01
8.543E-01 1.358E-01 2.237E-01 3.741E-01 9.268E-01 4.165E-01 3.553E-01 7.078E-01 1.888E-01

15
8.880E-01 1.272E-01 1.865E-01 4.880E-01 9.503E-01 5.051E-01 1.924E-01 6.277E-01 2.533E-01

8.901E-01 + 1.385E-01− 4.595E-01 − 5.311E-01 − 1.047E+00+ 5.221E-01− 4.262E-01 − 7.248E-01 + 5.814E-01
9.010E-01 3.000E-01 6.168E-01 5.687E-01 1.131E+00 5.607E-01 6.313E-01 7.918E-01 7.423E-01

(+/=/-) 42/1/2 16/13/16 25/11/9 27/2/16 45/0/0 32/1/12 35/1/9 40/2/3

3
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Table 7: Best, median and worst HV values obtained by MaOPSO-DP and other algorithms on WFG instances with different number of objectives.
Best performances are highlighted in bold face with gray background.

M NSGA-III [1] LEAF [37] θ−DEA [19] MOEA/D-URAW [44] ISDE+ [45] MaPSO [36] NMPSO [31] MPSO/D [22] MaOPSO-DP

W
F
G

1

3
7.12840E-01 7.30150E-01 7.25130E-01 9.89810E-01 5.88180E-01 8.45320E-01 9.53340E-01 6.27010E-01 7.57960E-01

7.03900E-01+ 7.05510E-01+ 7.02160E-01+ 9.86410E-01 − 5.85360E-01+ 7.94780E-01 − 9.15990E-01 − 6.03010E-01+ 7.31700E-01
6.95820E-01 6.97660E-01 6.93220E-01 9.79280E-01 5.81060E-01 7.54300E-01 8.75650E-01 5.97620E-01 7.19640E-01

5
6.50050E-01 6.69450E-01 7.17250E-01 9.99670E-01 5.32820E-01 7.64530E-01 9.94030E-01 5.73540E-01 6.99500E-01

6.44320E-01+ 6.49440E-01= 6.82270E-01− 9.99050E-01 − 5.31880E-01+ 7.00990E-01 − 9.60600E-01 − 5.55170E-01+ 6.57980E-01
6.40330E-01 6.45800E-01 6.63790E-01 9.89020E-01 5.30630E-01 6.47850E-01 9.23130E-01 5.51300E-01 6.26690E-01

8
6.61610E-01 9.05230E-01 8.67910E-01 9.99970E-01 4.75920E-01 8.05640E-01 9.94250E-01 5.04730E-01 9.83650E-01

6.00340E-01+ 8.29650E-01+ 8.20300E-01+ 9.99760E-01 − 4.74400E-01+ 6.95770E-01 + 9.75280E-01 − 4.97520E-01+ 9.54440E-01
5.86340E-01 6.55680E-01 7.55540E-01 9.84900E-01 4.72460E-01 6.00520E-01 9.05040E-01 4.94130E-01 8.38710E-01

10
6.93100E-01 9.84430E-01 9.60560E-01 1.00000E+00 4.51400E-01 9.61450E-01 9.94210E-01 4.87320E-01 9.85280E-01

6.51950E-01+ 9.59740E-01+ 9.20020E-01+ 9.99990E-01 − 4.50770E-01+ 9.17990E-01 + 9.49740E-01 + 4.71590E-01+ 9.85270E-01
5.66840E-01 5.78980E-01 8.71940E-01 9.99890E-01 4.49430E-01 6.20230E-01 8.74000E-01 4.69490E-01 9.62100E-01

W
F
G

2

3
9.87120E-01 9.87550E-01 9.84370E-01 9.88060E-01 4.77780E-01 9.82720E-01 9.66840E-01 9.62090E-01 9.88310E-01

9.84290E-01+ 9.85110E-01+ 9.82220E-01+ 9.87140E-01 = 4.77630E-01+ 9.80360E-01 + 9.48740E-01 + 9.56080E-01+ 9.87050E-01
8.93220E-01 8.92750E-01 8.90330E-01 9.75840E-01 4.34650E-01 9.70600E-01 9.30740E-01 9.48320E-01 9.84310E-01

5
9.96560E-01 9.97470E-01 9.89570E-01 9.99230E-01 4.45770E-01 9.98280E-01 9.94670E-01 9.61910E-01 9.83600E-01

9.95630E-01− 9.96330E-01− 9.87110E-01= 9.98820E-01 − 4.45710E-01+ 9.97770E-01 − 9.88390E-01 − 9.33280E-01+ 9.79130E-01
8.97790E-01 8.97050E-01 8.89210E-01 9.98250E-01 4.06910E-01 9.95190E-01 9.72660E-01 9.14810E-01 9.75050E-01

8
9.97490E-01 9.96200E-01 9.76870E-01 9.98820E-01 4.14660E-01 9.99280E-01 9.98660E-01 9.53110E-01 9.99270E-01

9.93110E-01+ 8.97450E-01+ 8.90790E-01+ 9.97860E-01 = 4.14600E-01+ 9.98750E-01− 9.97050E-01 = 9.41160E-01+ 9.97920E-01
8.94710E-01 8.92770E-01 8.85610E-01 9.95890E-01 3.79180E-01 9.97110E-01 9.88950E-01 9.32120E-01 8.94430E-01

10
9.98030E-01 9.96150E-01 9.92700E-01 9.99310E-01 3.99980E-01 9.99730E-01 9.99780E-01 9.63230E-01 9.99360E-01

9.94850E-01+ 9.44820E-01+ 8.93340E-01+ 9.98270E-01 = 3.99960E-01+ 9.99500E-01− 9.98810E-01 = 9.55410E-01+ 9.98010E-01
8.95970E-01 8.93820E-01 8.87790E-01 9.97000E-01 3.66030E-01 9.99040E-01 9.94910E-01 9.46990E-01 9.76190E-01

W
F
G

3

3
8.75020E-01 8.80340E-01 8.73270E-01 8.80820E-01 4.88960E-01 8.74740E-01 8.84510E-01 8.17660E-01 8.82090E-01

8.71570E-01+ 8.76760E-01= 8.70180E-01+ 8.77420E-01 = 4.87440E-01+ 8.65220E-01 + 8.76400E-01 = 7.98010E-01+ 8.76950E-01
8.66020E-01 8.71800E-01 8.57720E-01 8.68350E-01 4.84630E-01 8.59630E-01 8.69570E-01 7.90830E-01 8.64890E-01

5
8.75090E-01 8.88090E-01 8.82240E-01 8.96540E-01 4.56700E-01 8.86780E-01 8.73580E-01 7.61850E-01 8.72270E-01

8.66150E-01− 8.79870E-01− 8.75860E-01− 8.91580E-01 − 4.56480E-01+ 8.72820E-01 − 8.65190E-01 = 7.42160E-01+ 8.62730E-01
8.60270E-01 8.71050E-01 8.70690E-01 8.72600E-01 4.55290E-01 8.63440E-01 8.53260E-01 7.24770E-01 8.48990E-01

8
8.73700E-01 8.56560E-01 8.02400E-01 8.70700E-01 4.24920E-01 8.73460E-01 8.64690E-01 7.28840E-01 7.49910E-01

8.55450E-01− 7.12880E-01= 6.70270E-01= 8.52160E-01 − 4.24730E-01+ 8.62380E-01− 8.47210E-01 − 7.09460E-01= 7.20210E-01
7.91750E-01 6.13980E-01 6.02070E-01 8.28700E-01 4.24140E-01 8.39310E-01 8.21280E-01 6.92880E-01 6.44390E-01

10
8.67930E-01 8.67630E-01 8.27920E-01 8.71680E-01 4.10010E-01 8.75170E-01 8.79960E-01 7.26310E-01 8.08300E-01

8.62790E-01− 8.11510E-01− 7.42870E-01= 8.53850E-01 − 4.09860E-01+ 8.63960E-01− 8.58910E-01 − 7.11270E-01+ 7.43110E-01
8.40580E-01 7.43330E-01 5.81550E-01 8.28130E-01 4.09680E-01 8.48880E-01 8.31880E-01 6.84340E-01 6.58400E-01

W
F
G

4

3
9.23800E-01 9.23760E-01 9.23660E-01 9.25510E-01 5.96710E-01 9.18590E-01 9.24600E-01 8.99350E-01 9.23410E-01

9.22670E-01− 9.22510E-01− 9.23080E-01− 9.24370E-01 − 5.90590E-01+ 9.16450E-01 + 9.24010E-01 − 8.83780E-01+ 9.21680E-01
9.21520E-01 9.21010E-01 9.21050E-01 9.21970E-01 5.88430E-01 9.11490E-01 9.22530E-01 8.70640E-01 9.19330E-01

5
9.82040E-01 9.81810E-01 9.81960E-01 9.88070E-01 5.63550E-01 9.82000E-01 9.85240E-01 9.07880E-01 9.79760E-01

9.78910E-01− 9.80020E-01− 9.79810E-01− 9.86450E-01 − 5.57720E-01+ 9.78390E-01 − 9.83590E-01 − 8.93840E-01+ 9.76520E-01
9.74300E-01 9.78700E-01 9.78510E-01 9.84370E-01 5.53400E-01 9.73290E-01 9.80810E-01 8.86670E-01 9.74140E-01

8
9.87140E-01 9.86880E-01 9.86810E-01 9.97450E-01 5.03920E-01 9.87910E-01 9.94170E-01 8.48350E-01 9.84500E-01

9.82120E-01= 9.82270E-01= 9.83240E-01− 9.96530E-01 − 4.95740E-01+ 9.82390E-01 = 9.90470E-01 − 8.24930E-01+ 9.81330E-01
9.77580E-01 9.77270E-01 9.79280E-01 9.94870E-01 4.88940E-01 9.73770E-01 9.84960E-01 8.13520E-01 9.75640E-01

10
9.86710E-01 9.89800E-01 9.87140E-01 9.99040E-01 4.78680E-01 9.89000E-01 9.87020E-01 8.32950E-01 9.88520E-01

9.83350E-01= 9.86470E-01− 9.79080E-01+ 9.98400E-01 − 4.72700E-01+ 9.83050E-01 = 9.83120E-01 = 8.16590E-01+ 9.83580E-01
9.77770E-01 9.81940E-01 9.74510E-01 9.97610E-01 4.64610E-01 9.73810E-01 9.76080E-01 8.04820E-01 9.74780E-01

W
F
G

5

3
9.03370E-01 9.03510E-01 9.03190E-01 9.03690E-01 7.35380E-01 8.92250E-01 9.04310E-01 8.84360E-01 9.03450E-01

8.99610E-01= 9.02710E-01= 9.01910E-01= 9.01460E-01 = 7.33640E-01+ 8.87070E-01 + 9.03850E-01− 8.67720E-01+ 9.00180E-01
8.95120E-01 8.97040E-01 8.95220E-01 8.93780E-01 7.30760E-01 8.82730E-01 9.03310E-01 8.66070E-01 8.96520E-01

5
9.59720E-01 9.60070E-01 9.59910E-01 9.61810E-01 7.33620E-01 9.51630E-01 9.61880E-01 8.97310E-01 9.60620E-01

9.58590E-01+ 9.58880E-01= 9.57890E-01+ 9.60960E-01 − 7.32680E-01+ 9.40420E-01 + 9.61540E-01− 8.78510E-01+ 9.59050E-01
9.57080E-01 9.57390E-01 9.56180E-01 9.58480E-01 7.31570E-01 9.32700E-01 9.61000E-01 8.74390E-01 9.55590E-01

8
9.62480E-01 9.61710E-01 9.62090E-01 9.65630E-01 7.29190E-01 9.45370E-01 9.65440E-01 8.76790E-01 9.64270E-01

9.60390E-01+ 9.60780E-01+ 9.60880E-01+ 9.65260E-01 − 7.28080E-01+ 9.38590E-01 + 9.65200E-01 − 8.36320E-01+ 9.62270E-01
9.56410E-01 9.58600E-01 9.59480E-01 9.64130E-01 7.25950E-01 9.26950E-01 9.64770E-01 8.17800E-01 9.60070E-01

10
9.61040E-01 9.61450E-01 9.61420E-01 9.63780E-01 7.28650E-01 9.44740E-01 9.63400E-01 9.00700E-01 9.62950E-01

9.60030E-01+ 9.60010E-01+ 9.60410E-01+ 9.63730E-01 − 7.28100E-01+ 9.40820E-01 + 9.63010E-01 − 8.52280E-01+ 9.61690E-01
9.57960E-01 9.57330E-01 9.58330E-01 9.63460E-01 7.27320E-01 9.33540E-01 9.62450E-01 8.25720E-01 9.60400E-01

3
2



M NSGA-III [1] LEAF [37] θ−DEA [19] MOEA/D-URAW [44] ISDE+ [45] MaPSO [36] NMPSO [31] MPSO/D [22] MaOPSO-DP

W
F
G

6

3
9.07810E-01 9.10700E-01 9.08680E-01 9.12500E-01 5.82870E-01 9.16270E-01 8.87860E-01 8.98870E-01 9.16700E-01

9.04990E-01+ 9.04950E-01+ 9.03880E-01+ 9.06320E-01 + 5.82530E-01+ 8.82970E-01 + 8.87420E-01 + 8.86690E-01+ 9.16510E-01
8.99480E-01 9.01000E-01 8.97020E-01 8.96600E-01 5.82170E-01 8.82230E-01 8.87000E-01 8.69090E-01 9.16070E-01

5
9.65910E-01 9.67870E-01 9.66090E-01 9.75550E-01 5.78340E-01 9.36850E-01 9.45720E-01 9.18220E-01 9.58710E-01

9.61300E-01− 9.61550E-01− 9.61840E-01− 9.68090E-01 − 5.78140E-01+ 9.36550E-01 + 9.45600E-01 − 9.02320E-01+ 9.37140E-01
9.54490E-01 9.56620E-01 9.54190E-01 9.60750E-01 5.77830E-01 9.36340E-01 9.45300E-01 8.81100E-01 9.36830E-01

8
9.71930E-01 9.71610E-01 9.73540E-01 9.83830E-01 5.72920E-01 9.36130E-01 9.51810E-01 9.17120E-01 9.61220E-01

9.65630E-01− 9.64650E-01− 9.67020E-01− 9.75890E-01 − 5.72610E-01+ 9.36070E-01 + 9.51780E-01 − 8.52540E-01+ 9.36280E-01
9.60550E-01 9.56080E-01 9.59750E-01 9.67710E-01 5.72330E-01 9.36000E-01 9.51750E-01 8.24000E-01 9.36250E-01

10
9.76850E-01 9.75080E-01 9.71600E-01 9.85230E-01 5.70350E-01 9.32110E-01 9.52080E-01 9.33090E-01 9.77320E-01

9.65770E-01− 9.65710E-01− 9.65650E-01− 9.77350E-01 − 5.70090E-01+ 9.32100E-01 + 9.52070E-01 = 8.55800E-01+ 9.57170E-01
9.55710E-01 9.60820E-01 9.58720E-01 9.74160E-01 5.69890E-01 9.32090E-01 9.52060E-01 8.25210E-01 9.32140E-01

W
F
G

7

3
9.25530E-01 9.25790E-01 9.25590E-01 9.26550E-01 5.34880E-01 9.26440E-01 9.26150E-01 9.16840E-01 9.25910E-01

9.25160E-01+ 9.25170E-01+ 9.25280E-01+ 9.26250E-01 − 5.30990E-01+ 9.26070E-01 − 9.25740E-01 = 9.06190E-01+ 9.25790E-01
9.24530E-01 9.24760E-01 9.24940E-01 9.20990E-01 5.21480E-01 9.25590E-01 9.25370E-01 8.99430E-01 9.25570E-01

5
9.87490E-01 9.87850E-01 9.88020E-01 9.89850E-01 5.15450E-01 9.89750E-01 9.88300E-01 9.32120E-01 9.88590E-01

9.86590E-01+ 9.87120E-01+ 9.87380E-01+ 9.89590E-01 − 5.12230E-01+ 9.89640E-01− 9.87900E-01 = 9.09730E-01+ 9.87840E-01
9.85090E-01 9.86030E-01 9.85360E-01 9.88900E-01 5.09920E-01 9.89450E-01 9.87020E-01 8.96720E-01 9.86960E-01

8
9.95210E-01 9.95600E-01 9.95730E-01 9.98720E-01 4.65360E-01 9.99130E-01 9.97750E-01 9.13060E-01 9.96070E-01

9.93990E-01+ 9.94250E-01+ 9.94500E-01+ 9.98510E-01 − 4.63050E-01+ 9.99050E-01− 9.97340E-01 − 8.65470E-01+ 9.94960E-01
9.91930E-01 9.93550E-01 9.93300E-01 9.97870E-01 4.61390E-01 9.98940E-01 9.97110E-01 8.09950E-01 9.94090E-01

10
9.96800E-01 9.97630E-01 9.97400E-01 9.99660E-01 4.40560E-01 9.99840E-01 9.97510E-01 9.09110E-01 9.97930E-01

9.96000E-01+ 9.96650E-01+ 9.96240E-01+ 9.99410E-01 − 4.39220E-01+ 9.99810E-01− 9.97130E-01 = 8.67850E-01+ 9.97230E-01
9.94820E-01 9.96060E-01 9.95270E-01 9.98990E-01 4.37880E-01 9.99730E-01 9.96080E-01 8.02420E-01 9.96620E-01

W
F
G

8

3
9.07130E-01 9.08500E-01 9.06520E-01 9.11310E-01 5.53790E-01 9.01710E-01 9.10600E-01 8.88910E-01 9.09690E-01

9.04450E-01+ 9.06290E-01+ 9.05010E-01+ 9.08240E-01 = 5.51200E-01+ 8.99280E-01 + 9.09820E-01− 8.75180E-01+ 9.07610E-01
9.03040E-01 9.04610E-01 9.03650E-01 8.96090E-01 5.46910E-01 8.97750E-01 9.08790E-01 8.68040E-01 9.05350E-01

5
9.68530E-01 9.70340E-01 9.68300E-01 9.78460E-01 5.64850E-01 9.70330E-01 9.72600E-01 9.40270E-01 9.68270E-01

9.65260E-01= 9.66480E-01= 9.65400E-01= 9.74940E-01 − 5.63880E-01+ 9.69380E-01 − 9.70300E-01 − 9.28370E-01+ 9.66820E-01
9.60950E-01 9.63020E-01 9.61560E-01 9.71520E-01 5.61130E-01 9.64090E-01 9.67590E-01 9.15060E-01 9.63430E-01

8
9.75980E-01 9.65800E-01 9.77110E-01 9.92570E-01 5.66960E-01 9.87860E-01 9.80350E-01 9.23970E-01 9.74550E-01

9.67820E-01= 9.59860E-01+ 9.69750E-01= 9.89870E-01 − 5.66400E-01+ 9.83540E-01 − 9.76630E-01 − 9.02870E-01+ 9.66380E-01
9.55860E-01 9.48000E-01 9.59250E-01 9.86180E-01 5.65780E-01 9.77240E-01 9.74130E-01 8.57380E-01 9.58660E-01

10
9.78740E-01 9.79960E-01 9.79780E-01 9.96060E-01 5.67610E-01 9.92790E-01 9.81440E-01 9.30130E-01 9.92390E-01

9.73090E-01+ 9.66620E-01+ 9.74440E-01+ 9.92380E-01 − 5.66950E-01+ 9.91020E-01 − 9.77530E-01 + 9.04170E-01+ 9.87400E-01
9.64010E-01 9.56930E-01 9.69200E-01 9.90410E-01 5.65380E-01 9.81690E-01 9.71800E-01 8.63140E-01 9.73340E-01

W
F
G

9

3
8.93710E-01 8.96170E-01 8.94990E-01 9.14930E-01 8.60670E-01 8.92260E-01 8.87220E-01 8.82360E-01 9.04400E-01

8.74290E-01= 8.61500E-01+ 8.75520E-01= 9.09390E-01 − 8.54850E-01+ 8.53540E-01 + 8.86710E-01 − 8.54950E-01+ 8.62100E-01
8.59390E-01 8.60710E-01 8.59720E-01 8.95460E-01 8.16010E-01 8.49270E-01 8.83250E-01 8.50330E-01 8.60490E-01

5
9.45610E-01 9.48550E-01 9.49050E-01 9.69740E-01 9.00180E-01 9.39710E-01 9.44720E-01 9.02490E-01 9.53340E-01

9.07190E-01+ 9.43320E-01= 9.08770E-01+ 9.64580E-01 − 8.86240E-01+ 8.98630E-01 + 9.42780E-01 = 8.81690E-01+ 9.45240E-01
9.03020E-01 9.05420E-01 9.04500E-01 9.58390E-01 8.69100E-01 8.93420E-01 9.41470E-01 8.70060E-01 9.04930E-01

8
9.03250E-01 9.42990E-01 9.36850E-01 9.62190E-01 8.71610E-01 8.98110E-01 9.71170E-01 8.61300E-01 9.07570E-01

8.98530E-01+ 9.33660E-01− 9.01330E-01= 9.51750E-01 − 8.57720E-01+ 8.91610E-01 + 9.48720E-01 − 8.08870E-01+ 9.01650E-01
8.85810E-01 9.03180E-01 8.94970E-01 9.33120E-01 8.17870E-01 8.87440E-01 9.47340E-01 7.75140E-01 8.92450E-01

10
9.43600E-01 9.47210E-01 9.49630E-01 9.66150E-01 8.78310E-01 8.96880E-01 9.68490E-01 8.41020E-01 9.04800E-01

9.01710E-01− 9.40410E-01− 9.40680E-01− 9.56540E-01 − 8.59330E-01+ 8.91780E-01 + 9.49600E-01 − 8.18990E-01+ 8.99260E-01
8.91960E-01 9.00730E-01 8.98450E-01 9.40210E-01 8.12880E-01 8.85640E-01 9.47760E-01 7.74320E-01 8.85690E-01

(+/=/-) 20/6/10 17/8/11 19/8/9 1/6/29 36/0/0 18/2/16 4/10/22 35/1/0

3
3



NSGA−III

 0

f2

f3

 1

 0.5

 1
 0.5

 0

 1
 0.5

 0

 0.5

 1

f3

 0.5
 1f1

 0  0.5
 1f2

f1

LEAF

 0

 1
 0.5 0.5

 1
f2

f3

 1

 0.5

 0

 0

 0.5

 1

 0.5  1
 0

 0.5 f2
 1f1

f3

f1

DEAθ−

 0

f2

f3

 1

 0.5

 1
 0.5

 0

 1

 0

 0.5

 1

f3

f1
 0.5

 1  0  0.5
 1f2

 0.5
f1

MaPSO

 0

f2

f3

 1

 0.5

 1
 0.5

 0

 1
 0.5

 0

 0.5

 1

f3

 0.5  1  0f1  0.5
 1f2

f1

NMPSO

 0

f2

f3

 1

 0.5

 1
 0.5

 0

 1
 0.5

 0

 0.5

 1

f3

 0.5  1f1
 1f2 0.5 0

f1

MPSO/D

 0

f2

f3

 1

 0.5

 1
 0.5

 0

 1
 0.5

 0

 0.5

 1

f3

 0.5
 1f1  0

 0.5
 1f2

f1

ISDE+

 0

f1f2

 1

 0.5

 1
 0.5

 0

 1
 0.5

 0

 0.5

 1

f2 0.5  1  0  0.5
 1

f1

f3

f3

MOEA/D−URAW

 0

f1f2

 1

 0.5

 1
 0.5

 0

 1
 0.5

 0

 0.5

 1

f3

f1 f2 0.5
 1  0.5

 1
 0

f3 MaOPSO−DP

 0

f2

f3

 1

 0.5

 1
 0.5

 0

 1
 0.5

 0

 0.5

 1

f3

 0.5 f1  1  0  0.5
 1f2

f1

Figure 5: The value path of the obtained non-dominated solutions by the algorithms for 3-objective WFG7 problem.
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Figure 6: The value path of the obtained non-dominated solutions by the algorithms for 10-objective WFG7 problem.
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Figure 7: Average performance score based on the median IGD values over all objectives for different DTLZ
and WFG problem instances. The solid line represents the performance of MaOPSO-DP.
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