Symbolic and Numeric Kernel Division for
GPU-based FEA Assembly of Regular Meshes
with Modified Sparse Storage Formats

Subhajit Sanfui
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati
Assam, India
Email: s.sanfui@iitg.ac.in

Deepak Sharma
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Assam, India
Email: dsharma@iitg.ac.in

This paper presents an efficient strategy to perform the ate material constants. Next, in the solver stage, the ele-
sembly stage of finite element analysis (FEA) on generafental matrix for every finite element is calculated and as-
purpose graphics processing units (GPU). This strategy isembled to form the global stiffness matrix. This generates
volves dividing the assembly task by using symbolic and railinear system of equationé&X = b), which is solved af-
meric kernels, and thereby reducing the complexity of ther application of specified boundary conditions. Lastig t
standard single-kernel assembly approach. Two sparse stpost-processing stage helps understand and visualizeithe o
age formats based on the proposed strategy are also devames of the analysis.

oped by modifying the existing sparse storage formats with

the intention of removing the degrees of freedom-based re-, FEA can be computationally expensive when dealing

dundancies in the global matrix. The inherent problem (Wlth complex problem domains and very fine meshes; this

N . . is also true for some applications such as topology optimiza
race condition is resolved through the implementation d)fcog[?n ([2212]). In particular, among all the stages in FEA,

oring and atomics. The proposed strategy is compared wi & solver stage is the most time-consuming ol [5, 6, 7]).

the state-of-the-art GPU-based and CPU-based assembly, "\, remedy to this challenge is performing FEA

techniques. These comparisons reveal a significant number L \ :
L . . computation in parallel (I5]). Among many available tech-
of benefits in terms of reducing storage space requirements

L . i iques, GPU-based parallelization studies consist afsigni
and execution time and increasing performance (GFLOPS). : : . :
ant part of these FEA implementations in the literature, ow

Moreover, using the proposed strategy, it is found that th|(neg to the low cost to performance ratio of GPUs and the

coloring method is more effective compared to the atomicssl]ccess achieved by many researchers in GPU paralleliza-
based method for the existing as well as the modified stor y y P

a6n of applications ranging from CFD simulations ([8]) to
formats. : . .
molecular dynamics ([9]). The computation of elemental
stiffness matrices in FEA can be performed independently
and in parallel ([[1D]). Thus, many researchers have found

1 Introduction : : : .
Finite element method (FEM)[([1]) is a numerical techEhe calculation of elemental stiffness matrices to be lyighl

. . A A . . suitable for parallel computing (11, 12,113/14]). Besides
nigue that is used for solving partial differential equato _, . . ;
) o . ; . . this, the assembly stage is another area in FEA that can be
(PDEs), which arise in various fields of science and engineer ! ;) .
. 7 . . ; .~ computationally expensive for a number of real-life appli-
ing. Finite element analysis (FEA) is the process in which_
. . cations ([6/ 10,15, 16]). Furthermore, the position of the
real-world problems and physical phenomenon are simulaté T :
non-zero entries in the assembled sparse global matrix can

using FEM or alike in orderto obtain the response of the Sycs)'ften be highly irregular, which is another crucial factor i

tems. Typically, an FEA consists of pre-processing, solv%e efficient parallel implementations of FEA on GPU
and post-processing stages. In the pre-processing stege, t '

domain of a given problem is decomposed into finite ele- Assembly of finite element matrices on CPU is a se-
ments for which their order and type are defined, along witluential process where all the elemental stiffness matrice

are assembled one-by-one. This approach, when appliedzano entry of the global matrix in parallel using mathenwsitic
the GPU in parallel is termed aldt o method ([6.17]). expressions ([15,.16]). These were completely application
The approach, although straightforward, involves conaplic specific implementations that helped reduce executiorstime
tions such as race condition, the problem of handling larges the GPU architecture and the programming APIs (CUDA,
amounts of data on GPU and more. These issues are all@penCL) kept evolving, more intricate applications began
ated in another approach termed as the local matrix approacherging. For example, the study by Komatitsch et al. [10]
(LMA) ([18]) by obviating the need to explicitly assemblesimulated the phenomenon of seismic wave propagation re-
the entire global stiffness matrix at any point of the anialys sulting from earthquakes using NVIDIA GPUs for very high
However, the advantages of LMA come at the additional costder spectral elements. In this study, instead of using sim
of redundant computations resulting from on-the-fly calcyple mathematical expressions for global stiffness enlikes
lations. This, inadvertently increases the computatioreti in the early studies, the authors carried out the generation
of the LMA and other matrix-free methods. Thus, a tradesf local matrices and assembly for all the elements in paral-
off can be noted between the inherent complications of thel. Additionally, they handled the inherent problem ofeac
addt o method and the redundant computations of the LMA&ondition by assigning a color to each of the element and
method. performing the computation for each color sequentiallig th

It is seen from the literature that assembling the globatrategy ensured that no two elements with a shared DOF
stiffness matrix on the GPU poses several challenges. There assembled simultaneously. A similar coloring strat-
primary challenge in theddt o method is efficient han- egy for assembly on GPU was reported by Cecka et al. [6],
dling of the sparse data for the global stiffness matrix oamlong with other assembly strategies, for unstructured 2D
GPU. Here, handling the data involves efficient storage afeshes. The authors used different techniques for over-
the non-zero entries using a sparse storage scheme andcefning the race condition (coloring, non-zero-wise compu-
ficient access of the non-zero entries through kernel desigtion), among which the coloring method incurred excessiv
while taking care of the inherent race condition. This kegnemory accesses, thereby reducing the performance.
challenge is addressed in the present work by incorporating Later, the study by Markall et al. [18] compared assem-
a division-based assembly scheme along with a new spabdg by using the local matrix approach (LMA) with the stan-
storage system based on the state-of-the-art sparse ®orm@drd assembly. LMA is a matrix-free assembly technique
Splitting the assembly operation into two different pags r that was used to overcome challenges arising from GPU-
duces the complexity of a single-kernel approactaeiddt 0 based assembly implementations. In another study by Kiss et
method. Furthermore, the new formats facilitate efficient aal. [1S], the LMA method was used, for which the elemental
cess to the matrix data while significantly reducing the-stostiffness matrices were computed on the GPU, when neces-
age requirements on the GPU by exploiting the structure séry. Using large datasets, it was found that the low-storag
a FE matrix to reduce the memory footprint of the resultingompute-intensive implementation was suitable for many-
matrix. The key contributions of this paper are summarizaezbre systems. However, afterward, Fu et [al.l [11] demon-
as strated that the LMA method on GPU for 3D grids is inferior
. . : to the traditional assembly method in terms of performance.
Developing novel symbolic and numeric GPU kernelisn this work. an assembly method was proposed which is
for assembly. ' Y | prop which |
Implementing three new sparse storage formats by molc()]a_lsed on patch-based division of the problem domain.

Authors in [17[20] presented a reduction-based imple-

ifying COO and ELL formats. entation for assembly on single and multi-GPU systems
Comparative analysis of the modified sparse storage far- ' . y on singi WI-SEY Sy o
mats with the standard formats using the proposed ashe global stiffness matrix was first assembled into coordi-
sembly strategy, nate sparse storage format (COO) and afterward transformed

Comparative analysis of coloring and atomics-based i into compressed sparse row (CSR) storage format by per-

: . . rPc;rming reduction in parallel. Carrion et al._[21] acceler-
plementations with the proposed kernel division strate
and the new sparse formats. g(Qfed a coupled BEM-FEM procedure on the GPU for a dy-

namic soil-structure interaction problem. The assembled
The paper is organized in six sections. Secfidn @ass and stiffness matrices were parallelized on the GPU,
presents the relevant literature survey of assembly on GPbéth row and column-wise, to perform linear algebra op-
Preliminaries to this paper are discussed in Sedtion 3 ierations. Among more recent works, Dinh and Marechal
cluding details about GPU architecture and CUDA, FEM fdR22] reported an FEM implementation for real-time appli-
elasticity and sparse storage formats. In Sedilon 4, the poations that is similar to the approach taken by Dziekonski
posed assembly strategy and its implementation details &teal. [17[20]. After computing the elemental stiffness ma-
presented. The results are discussed in setion 5 and thetdaes, the resultant non-zero entries were arranged in un-
per is concluded in sectidn 6. sorted coordinate format with multiple non-zero entries fo
the same stiffness matrix location. Following this, paall
radix sort and a reduction algorithm is applied to the COO
2 Relevant Studies arrays to produce the final global stiffness matrix. Sanfui
Among the early studies on GPU-based assembly irand Sharma [23] presented an implementation of assembly
plementations, some researchers have computed each namere the key idea is to divide the workload into different

stages for performing only the assembly stage on GPU. the LMA and others matrix-free methods do alleviate some
Later, the study by Zayer et al. [24] used the assembbf the difficulties withaddt o assembly, the benefits come
stage in the form of matrix-matrix multiplication. This ap-at a cost of increased computation.
proach enabled the authors to reduce the memory footprint
of the application as well as the amount of pre-processing
required for the assembly operation. A recent study by K8 Preliminaries
ran et al.[25] implemented the warp-based assembly methdd GPU architecture and CUDA
using eight-noded hexahedral elements with the aim of ef- GPUs are many-core processors that were initially de-
ficient utilization of on-chip memory resources. Coloringyeloped for rendering graphics in the early '90s especially
method was used for race condition and speedups of upf@ video games. Due to the inherent parallel structure,
8x were achieved over standard assembly by element stf@PUs are much more capable of handling large blocks of
egy on GPU. The study by Gribanov et al.]26] implementedata that can be processed in parallel than the general pur-
an implicit finite element model with cohesive zones and capose CPUs. The throughput-oriented nature of GPU also
lision response on GPU. During assembly, the race conditigtakes it suitable for performing general purpose computa-
was handled using atomic operations of the CUDA toolkition involving large amount of data. Being a many-core pro-
An implementation of FEA that calculated and stored onlgessing unit, GPU architecture varies significantly from th
the symmetric half of the elemental and global stiffness mgaditional CPU architecture, that are multi-core in natur
trix was presented in the study by Sanfui and Shafmha [27]he key difference between the two is that CPUs put the em-
Local matrix computation and assembly were both accelgrhasis on low latency making sequential processing faster,
ated on GPU resulting in speedups of up to @ver an im- Whereas GPUs put the emphasis on a high throughput that
plementation that computed and stored the entire matricg¥kes highly parallel applications run efficiently.
The study by Kiran et al[]28] presented an implementation The GPU used in this paper is from NVIDIA. Com-
of matrix-free finite element solver, where only the symmepute Unified Device Architecture (CUDA) is a parallel pro-
ric half of the local stiffness matrices are used. By usingramming API from NVIDIA, which enables developers to
a novel data structure for storing the symmetric matriceBrogram GPUs for general purpose computing. CUDA is
speedups of up tos6 were achieved. In the study by Sanfuidesigned to work with programming languages such as C,
and Sharma[29], a multi-stage GPU-based assembly metKgttt, and Fortran. Using specific set of extensions to these
was presented for unstructured meshes. This strategy uséanguages, a developer is able to write kernels that gemerat
new data structure called theighbor matrixo assemble the very high number of threads to divide a workload for par-
global stiffness matrix. Furthermore, two approaches weddlel processing. CUDA also provides the flexibility to the
compared with each other where the elemental computatid@veloper to use the highly sophisticated memory hierarchy
and assembly were performed in the same as well as in s@pNVIDIA GPUs and a host of other features for writing
arate kernels. Speedups of up te @vere achieved for the efficient parallel applications.
proposed strategy and the same kernel approach was found
to outperform the separate kernel approach for all thedestg 5 petails of FEM for Linear Elasticity

problems. A linear elasticity problem is a boundary value problem

_ Dueto the large and sparse nature of the resulting glohglyhich the governing PDEs include the strong form for lin-
stiffness matrix, specific sparse storage formats need to bg ¢|astic material, strain-displacement equationscand

used when storing data on the GPU. A plethora of differegfiytive relations from Hooke’s law [1]), which are given
sparse storage formats have been used in the literature, jg-

cluding the standard ones such as COO, CSRI([17]), ELL
([12]) and the ones that have been developed for specific

> Gij,j + bi = pui, 1,j=1,23,
purposes and applications on the GPU such as ELL-WARP T = L(uj;+uij) (1)
([30]), pJDS ([31]). The idea behind the new sparse formats 0;; _ CZ?ijmJ;H. i)

is to modify the standard sparse storage formats by making
specific assumptions about the structure of the sparse ma- _ . .
trix. These modifications help by reducing the executi(;E%re’b' andy; are the body forces per unit volume and dis-
time and/or the memory footprint of the application. Seler® the strainC . is th terial elasticity t ds th
GPU-friendly sparse storage formats have also been deVal- € strainij IS the material elasticity tensor, ap €

oped in the literature ([32]) and these make no assumptio _%n_sny. It IS noteq tha_t an |sotrop|_c and homoge_neous_ mate-
on the matrix structure or the type of application. rial is considered in this paper. This strong form is sulgdct

From the literature review presented, it can be seen tﬁgtthe displacement and traction boundary conditions tfeat a

the primary challenge to performirgldt o assembly lies in given as

efficient storage and access of the global matrix. As a result _ _

the research effort in this area has been focused on kernel de Ui = Ui only, i=tonly, (2)

sign of assembly and efficient sparse storage schemes based

on GPU. Furthermore, several remedies have been suggestbdrey; is the boundary displacement specified on boundary
in the literature for handling the race condition. Although, andt; is the boundary traction specified on boundayy

©)
()

PDEs into their weak form using the Galerkin weighte —
residual approach and solved over a discretization of th @©@((2 0 2 3 1 [3 Columnindice
:ijjé 5 3 9 6 |4 Values

problem domain consisting of finite elementsi([1]).
Dense Format Sparse Format

FE formulation is made by converting the governing@@ 0 9 [@X(AT 2 2 2 3 |3 Row ndices
e
5

The displacement within an element using shape funco | 6 | 0| 4
tions[N]€ is approximated as

{u}e _ [N]e{a}e’ (3) Fig. 1. COO sparse storage format.

(D) o Row Offets
0 @ (oX(X2 0o 2 3 1 [3 Column Indice

5 0 3 9
:ijjé 5 3 9 6 |4 Values

Dense Format Sparse Format

o

where{a} is the nodal displacement vector. in the three di
rections. Substituting equatidd (3) into the weak form ltesu
ing from equation[{{l) and performing assembly over all th
elements, we get 0| 6| 0 4

o

D

¥ [IM]E{ai}® + [K]*{a}° — { f}ex] =0, (4)

e Fi

g.2. CSR sparse storage format.

Indices Values
where[M|€is the local mass matrifK]¢ is the local stiffness

matrix, and{ f }<,; is the local force vector. @@ 0| O @@ @@ *
In this paper eight-noded hexahedral elements are useg @ o @@ . @ .
for discretization. The eight shape functions for this edain
2 5
3 6

are given asNi]® = (1+&&)(1+nn;)(1+2g), where&, |5 | 0| 3 9 0 3| 9
ni andy; are the coordinates of th& node. The expression
for the elemental stiffness matriK|® in equatiori ¥ is given

by

0 6 0 4 1 4\ *

Dense Format Sparse Format

Fig. 3. ELL sparse storage format.

KI*~ / (B [DI[B] dxdydz

similar to COO format is the CSR format. In this format, the
T r ffsets are saved instead of the row indices, as shown in

We, W, We, B(&inj, Ck) " DB(Ei.Nj, Q) |J(Ei’n£§ar . As a result, this format further reduces the s®rag

(5) requirement. Another important format is the ELL format.
In this format, two 2D matrices are used that store the val-
ues and indices of the non-zero entries. Each of these two

[B] is called the strain-displacement matrix and contains thgatrices have as many rows agkq but only have as many

partial derivatives of the shape functionB.is constitutive columns as the highest number of non-zero in any particular

matrix andJ is the Jacobian matrixvg, ,Wy; andwg, are the row of [K]. Figure[3 shows the example of ELL format.

Gauss Quadrature weights for numerical integration. The el

emental stiffness matrix given in equati¢f (5) is then assem

bled using the connectivity of the mesh into a glogdl The

details of assembly is given later in Sectidn 4. 4 Assembly on GPU

+1 p+1 p+1
///1 B(,n,2)"DB(,n,2) | J(&,n,) | d&dnd?
2

For performing the assembly, the local stiffness matrix

3.3 Sparse Storage Formats K¢ is calculated by using equationl (5). In our parallel im-

The global stiffness matri)] is generally sparse. The plementation oK calculation, we adopt a similar approach
non-zero entries of the matrix are stored in the specialize@scribed by [33], wherein one thread is allocated to comput
storage formats (For example, COO, CSR and ELL). Thesach elemental stiffness matrix. The procedure is predente
formats reduce the storage requirement of keeping the namalgorithn1. In order to comput€®, the connectivity ma-
zero entries of K], while solving a system of equations (trix C, nodal coordinate matri€q, constitutive matrixD are
[6L27]). required. Furthermore, we adopt the same strategy of pre-

COO is the simplest format for storing sparse matricesomputing the shape functiofisi) and its derivative$dN)
It is found to be an efficient format [([17]) for GPU-baseds done by([33] to avoid repetitive calculations. Each CUDA
assembly operations. The COO format is made up of twbread compute3, | J| andJ—2, uses them to compuReand
arrays for the indices and one array for storing the values sdibsequentl)K&, which is then stored in a one-dimensional
the non-zero entries, as shown in figlite 1. Another formatray containing the elemental matrices of all the elements

Algorithm 1 Parallel numerical integration fd€® calcula-

tion

1:

Input: E: Number of elements;l: Total num-
ber of nodesC: Connectivity matrix;Cq: Nodal co-
ordinate matrixD: Constitutive matrix;

Output: K& Elemental stiffness matrix;

int blockSize = 512;

int gridSize =((E - 1) / blockSize) + 1;

__global__ void numlt(K®,C,Cqy, D) > Kernel Definition
int tid = blockldx.x x blockDim.x +threadldx.x; >
Unique thread ID
ReadN;, anddN
derivatives

8: if tid < Ethen

9: for j «+ 8do
10: Computel,| J|,J7%;
11 ComputeB;
12: StoreK®in a column-major order;
13: end for
14: end if
4.1 Assembly

Algorithm 2 addt o algorithm for assembly

1:

10:
11:
12:

13:
14:
15:

© X N R®

Input: ndof: DOFs per node;nnodes nodes
per element;N: Total DOFs; E: Number of ele-
ments;C[E,nnodesx ndof]: Connectivity matrix stor-
ing DOFs; K€[nnodesx ndof,nnodesx ndof]: El-
emental stiffness matrix;f€[nnodesx ndof]: Ele-
ment load vector;

fact that the outer-loop over each element of the FE mesh can
be performed independently (refer siép 4). However, when
it comes to GPU implementation, one major issue with the
addt o method is the possibility of multiple simultaneous
threads trying to write to the same memory location. This is
well known as the race condition or data race in parallel com-
puting. This issue is handled in this paper by use of atomic
operations and element coloring methods.

In the traditional assembly operation for FEA applica-
tions, the values and locations of the non-zero entriesef th

> Pre-computed shape functions andlobal matrix are filled in the sparse formaf { [6]). We fol-

low a novel strategy in which the workload is divided into
two distinct parts, henceforth mentioned asskmbolicand

> Loop over Gauss points the numericpart of the computation. Theymbolic kernel

computes only the locations of the non-zero entries (row and
columnindices) in the sparse storage format in parallel: Ow
ing to the fact that this computation is dependent solely on
the mesh data, it can be executed independently. After cal-
culating the row and column indices, they are stored onto the
global memory in their respective locations. Thereaftes, t
numeric kernels launched to fill the values of the non-zero
entries based on the pre-filled sparse indices. This divisio
of the assembly task reduces the complexity of the algorithm
significantly and yields several benefits over the standard i
plementation on GPU.

An important aspect in the GPU implementation of as-
sembly is to determine the exact number of non-zero entries
for the sparse storage formats at the start of the kernes Thi
number is necessary for memory allocation and also for de-
termining kernel launch parameters. In the present work, we
derive an expression analytically using the elemental eonn
tivity of the mesh for this purpose. The expression in equa-
tion (6) gives the number of non-zero entries in the sparse

> Outer loop over elements global stiffness matrix for a rectangular cuboid shapeatstr

ComputeK®, > Compute elemental stiffness matrixtured mesh containing eight noded brick elements.

different strategies have been used in the literature @B, 1

NZ = 108(ny+ ny+n;) — 162(nyny + nyn, +nzny) 4+ 243n,nyn, — 72,
(6)

Hereny, ny andn;, are the number of nodes in the three di-
rections of the cuboid mesh. For this expression, the number
of repeated write operations during assembly is subtracted
from the total writes performed. A similar expression can be
obtained for a different domain shape by following the same
principle. It is noted that such algebraic expression may be
cumbersome to derive for certain cases. In those cases, a
simple code can be written that takes the connectivity infor

: Output: K: Global stiffness matrix-: Global load vec-
tor
: FIN] =0; K[N,N] =0; > Initialization
. fore«~1:Edo
Computef€; > Compute element force vector
fori«+ 1:ndofdo > Inner loop over DOF
Compute row indexrpw_ind);
F[Clerow.ind]]+ = f[i]; > Vector Assembly
for j « 1:ndofdo > Inner loop over DOF
Compute column indexcpl_ind);
K[Cl[e,row_ind],Cl[e, col_ind]]+ = KE[i][j]; >
Matrix Assembly
end for
end for
end for

For performing assembly operation, the elemental emation of the mesh as input and output the number of non-
tries are added to the global matrix based on the connectivitero entries for the given type of elements.
information. For GPU implementations of FEA assembly,

Before the launch of theymbolicpart, memory is al-

The traditional method is thaddt o method in which the located and the kernel launch parameters are fixed based on
assembly of each element into the global stiffness matrix tise number of non-zero entries calculated using equdi)on (6
done sequentially. Thaddt o method as shown in algo- Thereafter, the matrices are assembled in the following two
rithm[2 is massively data-parallel in nature. This is duédnto t steps.

4.1.1 The Symbolic Kernel: Node-by-Node Implemen-
tation

The purpose of the symbolic kernel is to compute the in-
dices of the non-zero entries in the sparse global stiffmess
trix. This kernel works on the principle that the exact count
of non-zeroes in any one row of the global matrix can be ob-
tained beforehand by multiplication of DOFs per node to the 1|k kel
no. of immediate neighbors to the node. If we take a node
havingnngnumber of neighbors, the rows corresponding to
that particular node in the global stiffness matrix will kav
(DOFx (nng+ 1)) non-zero entries. It can be seen from fig-
ure[4 that a node can have different numbers of neighboring
nodes. For example in the figure, the number of neighbors
to acorner node, anedgenode, aface node and arinte- R'= [d] Lo [a] [a]
rior node is 7, 11, 17, and 26, respectively. Total number

p'=(d,,d,)

§' = [Pl [ra i [el]

T= | d ast di | db dit | dyt
of threads in the grid is equal to the number of nodes in the o' Leles Rl‘ = e
entire mesh, where each thread is responsible for computing W
one node exactly. R= | |
Algorithm[3 outlines the symbolic kernel, where the row” - | |
and column indices are computed for all non-zero entry in c’

parallel.dij andS' denote the DOFs and neighbor nodes to al, 5 DI S R Ci R andC for node j are shown for a 2D
the nodeg respectively. These are stored on the GPU glob A< o
memory in stefpl7. The kernel is called in siép 8 and a grid
is launched on the GPU with number of threads equal to the
total number of nodes in the FE mesh. Two $&tandC’ are Ajgorithm 3 Symbolic kernel for indices of non-zero entries
declared for storing the row and column indices respegtivet 1- INPUT. N: total number of nodesid: DOFs per node;
for e_ach nodg. In_ ster[IPR! is_filled by_copying DOFd dl: ith global DOF of nodgj; S/: Set containing neigh'—
into it (nngx nd) times. From figur¢l5, it can be seen that bloring nodes of nod¢; nng Number of neighboring
R! is filled with DOFs of nodg, one after another. Hence, i

> . A . - nodes of a node jj,: global node number of node
(nngx nd?) entries are stored iR! for nodej. After filling » OUTPUT: R: Set ‘(<)f row indicesC : Set of column in-
R/, they are appended to the set of row indiBe#\s shown ‘ U '

main with 2 DOFs per node

in step[I8,C! is filled with d€ DOF of nodek € S, set of N ?clfefsj_ 1N do
neighbor nodes. After filling the individu&’ for node j, 4: IJDj = aj a): Pre-processin
they are appendedd) times to the set of column indic€s ’ o (jl""’ j“d)’ P > P 9
Similar toR, (nngx nd?) entries are stored i@! for nodej. 5: S=(ny,..., njs-- >Mhng);
DI, S, Ri, C, R, andC for nodej are shown in figurgls for 6 end for. .
a 2D domain with 2 DOFs per node. 7: CopyD’ and$S' to the global memory of GPU
8: for Vj € N do > Kernel launch with a grid of N number
of threads
: t ®» Face node: 17 neighbors o R : 0’ Cl = 0;

‘ =4 10: fori<+ 1:nddo

; - 1 Edve rode: 11 meiah 11: for k«+ 1:(nngx nd) do

ol el ')/T" genoder SRnEmOE . RI=RiUd; o Filling individual Rl in

P Interior node: 26 neighbors parallel

: ‘ . T Corner node: 7 neighbors 13: end for
e el 14: end for

15 R=RURI; > AppendingR! to the row index seR

16: for k<« 1:nngdo
Fig. 4. Neighbors of different nodes in the mesh based on location 17: for i — nddo

18: Cl =Cludk ke 9; v Filling individual C!
in parallel
19: end for
4.1.2 The Numeric Kernel: Element-by-Element Imple- 20: end for
mentation 21 for i < nd do > Copyingnd times
After the locations of the non-zeroes in the global matri®2: C=CucC/; > AppendingC! to C

are determined using the symbolic kernel, the numeric kernes: end for
is launched to store the values of the non-zero entriestieto t24: end for
sparse storage format based on the indices stor¢®, D).

This kernel assembles the entries in an element-by-elem@tgorithm 4 Numeric kernel for values of non-zero entries
manner. Race condition becomes an issue here becausefINPUT: N.: total elementsnd: DOFs per nodene
the possibility of more than one threads reading or writing nodes per elementonneciNe, ng: Connectivity Ma-
the same memory location simultaneously. This is due to trix; R C;

sharing nodes among neighboring elements. Two differerd: OUTPUT: Values of global stiffness matrix

implementations for countering this issue are presented iB: for Vj € Ne do > Each elemenj gets one thread

Sectiorf4.4. 4. fori«|connectj:]|do > connectfj]: Setofall
Since assembly is done in an element-wise manner, ev- nodes of elemenit

ery 8-noded hexahedron element can have- 4 node-to- s: for k <—| connecij ;] | do

nodeconnections, which are shown in figure 6. We refere: Bisection search target inde) for d‘1< in the

to a link between any two node in an elementnasle-to- setC' e C > d¥ is the first DOF of nodé

nodeconnection. A connection can be line-type or point-7: for m« nddo © For assembling®into K

type depending on whether two different nodes are chosen tg ri=t+ndxnngx (m—1); ©>ri:row

make the connection. For example, in figlie 6, the connec- index

tion (c— h) represents a line, whereas, the connectioh &) 9: for n«< nddo

represent a point. Every node-to-node connection writes1a: ¢i=t+ndxnngx (m—1)+ (n—1);

total of DOF? number of non-zeroes into the sparse global ¢Gi: column index

stiffness matrix. 11 K[R(ri),C(ci)]+ = K[m,n] >
In algorithm[4, the steps of computing the values of Assembly of non-zero entry viato- j connection

non-zero entries are shown. The algorithm uses the row: end for

(R) and column €) indices from the symbolic kernel. Un- 13: end for

like the symbolic kernel, the computation is performed in4: end for

an element-by-element manner as shown in [step 3. In step end for
[6, the target indext) for the first DOF d‘{ is searched 16: end for
within eachC' for every connection using connectivity of el-
ement j tonnectj,ng). Only the first DOF ¢%) of node

k € connectj,nnode$sneeds to be searched. Other DOF caentries in the final matrix. The pattern used for storage of
be determined from the storage sequence used for the spaoseand column indices irR;C) remains the same as shown
format in algorithn{B. In stefp_11, non-zero entries of thim figure[d. Therefore, algorithid 3 is executed to Q)
global stiffness matrix are written into the sparse fornhat. for storing row and column indices of COO. Next, algorithm
the following sections, three existing formats in additton [is executed to obtain théal ue array of COO. Step 11 of
two proposed formats are analyzed by modifying their coalgo[4 is updated as

responding assembly strategies.

Val ue[ci]+ = K¢[m,n]

b
p node-to-node connections: BOth algorithm$ B andl4 remain same for the CSR format as
) : [Ga. b, ... () hpwn for the C0.0 formqt. However, at step 12 of algorithm
! e (b=a), (b-b) ..., b-n) [3, instead of storing row indice®), row offsets are stored.
; -a).(c-b)...[.) The storage of non-zero entries is identical to the COO for-
mat.
Since the ELL sparse format (referring figlide 3) has a

column-major ordering, all accesses to the global memory
are coalesced. Due to the structured nature of this format,
the need for row indices seR) is removed. Therefore, the
stepd_ID through15 of algorithioh 3 are no longer required.
This results in a reduction of the shared memory and register
requirements by approximately 30%. Due to this reason, a
higher performance is observed later in Sedfion 5.

As shown in figur€l3, the ELL sparse storage format uses
one matrix to store the column indices and another matrix for
4.2 Assembly into Standard Sparse Storage Formats the values of the non-zeroes. Instead of two dimensional ma-

The symbolic and numeric kernel are described in algtrix in the traditional form, one dimensional arrays aredise
rithms[3 and¥ in a generic fashion. These can easily be ugedstore the indices and values on the GPU. The leng@ of
with any sparse format with little modifications. In essencdor everyj in sted 18 of algorithril3 is equal to length of the
both of the algorithms are presented for the COO formabw of the global stiffness matrix having maximum number
Therefore, the set of row indiceRY and the set of column of entries. The value of this length can be precomputed using
indices C) are the same length as the total no. of non-zetbe connectivity matrix¢onneciNe, n€)) for the given prob-

(h-a), (h-b) ..., (h-h)

Fig. 6. Node-by-node assembly in the numeric kernel.

lem. It can be noted in figufé 3 that the rows, which have le§€SR format already uses a similar concept of row offsets and
number of non-zero entries, are filled with." Similar ap- indices as in the COOM format.
proach is used fa€' in which DOF of all neighboring nodes
are stored. Moreover, stepl22 and the corresponding loop are
no longer required and can be removed. Algorithm 5 Symbolic kernel for COOM format

In algorithm[4, the step 11 is updated for storing non-; INPUT: N: total number of nodesid: DOFs per node;
zero entries as d!: ith global DOF of nodgj; S': Set containing neigh-

boring nodes of nod¢; nng Number of neighboring

Val ue[g]+ = K[m,n| nodes of a node nlj(global node number of node
2: OUTPUT: R: Set of row indicesC : Set of column in-
dices;
Rest of the algorithril4 is the same for both ELL and COO. s forj«1:Ndo
4 Di=(dj,....dyg); > Pre-processing
4.3 Assembly using Modified Sparse Storage Formats 5. S/ = (n},...,n},...,Nhng);

We present two new modified sparse storage formats: end for
The primary is to further reduce storage requirement by ex7: CopyD! andS' to the global memory of GPU
ploiting specific properties of the global stiffness matés 8: for Vj € N do > Kernel launch with a grid oN number
mentioned before, in an element-by-element assembly, the of threads

assembly is performed byode-to-nodeonnections of each o: R =0,Cl =0;

element as shown in figufd 4. Each of these connections: R =Rud}; > Filling individual Rl in parallel
writes a 3x 3 (DOF x DOF in the generalized case) dense1: for k<« 1:nngdo

matrix into the global stiffness matrix. While all of these@ 12: Cil=clud,ked; »FillingindividualCl in

non-zero entries need to be stored, all nine indices need not parallel

to be stored explicitly. In other words, assembly is alwayss: end for
performed in blocks of DO¥entries, which stay adjacent 14: C=CucCl
to each other even after assembly. Only one index could hs: end for
stored for all the DOF non-zero entries. For further opera-
tions (for example SpMV) on these formats, either modified
strategies need to be devised, or these can be convertegto an
standard sparse format for further processing. The prapose

assembly strqtegy is customized in the context of these t‘ﬂ%.z ELL Modified (ELLM) Sparse Storage Format
formats. Details of these storage formats as well as the stra
L . ; . As described in Sectidn 4.2 that the indices and non-zero
egy of assembling into them are discussed in the followmeqntries are stored in two matrices as per the format Shown i
sections. . P - ! wn in
figure[3. However, we store the column indices in a one-
dimensional arrayl{) and non-zero entries in théal ue ar-
4.3.1 COO Modified (COOM) Sparse Storage Format ray, similar to the ELL format. Since the row indices are
The proposed COOM format is made up of three on@&ot required, step_10 can be removed for the ELLM format
dimensional arrays same as the COO storage format. Tioe the symbolic kernel in algorithiin] 5. THe set remains
size for storing row indices ind) set is now reduced by the same as shown in algoritfit 5, which reduces its size for
keeping the first DOF of every nodeas shown in step 10 the ELLM format to @ x |) as compared to(x ndof x 1)
of algorithm[B. It means that steps| 10 15 of algorithmith the ELL format. Theval ue array for the ELLM for-
are removed for the COOM format. With this modificationmat stores non-zero entries as explained in algofithm 4. For
the overall size ofp for the COOM format is now, instead the ELLM format also, searching range for inde® (s re-
of (8 x ndof x 1) for the COO format. For the column in- duced at stefpl6 of the same algorithm. The assembly through
dices, the first DOF for all neighboring nodes to noédee Val ue array remains the same as the ELL format described
stored as shown at step|12 of algorithim 5. This also redudasSectionl4.2. In figurels] 7 arid 8 the space required in
size ofl to (B x 1), instead of @ x ndof? x |) for the COO bytes to store the global stiffness matrix are plotted agjain
format. node numbers and DOF per node for different storage for-
The Val ue array for the COOM format has the sizemats. These storage requirements are calculated using ex-
equal to the total number of non-zero entries. Algorifim gressions derived for both the standard and the modified stor
remains the same for the COOM format. It can be seenage formats as presented in table 1. In the tafden, and
step[® of the same algorithm that searching of indaxi§ n, represent the node numbers in #hg andz directions re-
reduced in the range od) for I'' € I'. The assembly through spectively for a cuboid domain using hexahedron elements.
Val ue array remains the same as the COO format as dEhe figure shows similar storage requirements for the ELL
scribed in Sectiofi 412. In the present study, we did not imnd CSR formats. Both the proposed formats (COOM and
clude a modified CSR format separately, because it would L M) take significantly less amount of storage space com-
simply be identical to the COOM format. This is because thgared to the other three formats.

Table 1. Storage space requirement for different sparse formats.

Format | Required Sapce in bytes

COO 129€(ny + ny + nz) — 1944nyny + nynz + NNy
+2916ynyn, — 864

CSR 864(ny + ny+ nz) — 1296 nyny + nyNn; + NNy
+1956wnyn, — 576

ELL | 1944ynyn,

COOM | 576(ny+ ny+) — 864(Nnyny + nynz + nzny)
+1300nynyn, — 384

ELLM 1080wnyn,

3x10°

2.5x10°

2x10°

1.5x10°

Size in bytes

1x10°

5x10°

40 50 60 70 80 90 100
Nodes in each direction

Fig. 7. Storage requirement for different sparse storage formats
with increasing number of nodes.

100000

' COO ——
CSR ——

90000 ELL

COOM ——
80000 | ELLM —s— |
70000 |-
60000 |-

50000

Size in bytes

40000

30000

20000 |

10000 |-

0]))))))
0 0.5 1 15 2 25 3 35 4

Degrees of freedom per node

Fig. 8. Storage requirement for different sparse storage formats
with increasing DOF/node.

4.4 Race Condition

A race condition or data race in computation occurs

to the same memory location. In the symbolic kernel, each
node being assigned to a single unique thread, the possibil-
ity of sharing of nodes among any thread is alleviated. This
nodal independence removes any chance of a race condition.
This, however, is not true for the numeric kernel, where each
element is assigned exactly to one thread. Due to the fact
that all the elements in the mesh have shared nodes, the pos-
sibility exists for two or more threads writing to the same
memory location at the same time. Therefore, we implement
atomic operations and element coloring methods to counter
the race condition.

When an atomic operation such as om cAdd or
at omi cSub is invoked, it locks the concerned memory lo-
cation and waits until the requested operation is completed
([34]). This is usually avoided due to the serialization of
atomic threads hampering the overall performance. The cur-
rent work keeps the threads waiting for an atomic lock to a
bare minimum. For a dense enough mesh, the amount of se-
rialization caused by an atomic operation becomes smaller
and smaller and the performance degradation becomes neg-
ligible. In the second implementation, we color the mesh
elements with different colors in a way that an element is
only allowed to share nodes with elements of different col-
ors. The element coloring method is shown in figdre 9 for a
structured mesh. After the coloring is done, separate kerne
for each of the colors are invoked in a serial manner as shown
in algorithm(®.

Algorithm 6 Assembly using Colors
1: n<+ Number of colors
2: *E[n] + Set of elements in a color
3: procedure KERNEL CALL USING COLORING
4: fori<1:ndo
5: numT hreads— size€*E[i]);
6: AssemblyKernek << numT hreads>>> (n)
7
8:

end for
end procedure

Layer 2
Layer 1
Layer 2

Layer 1 Threads : {1, t2, t3, t4, t5, t6, t7, t8 }

alf

when the output of a process becomes dependent on the se- Fig. 9. Coloring Scheme for race condition
guence in which two simultaneous threads access a memory

location. The GPU-based implementation of FEA assembly

is susceptible to this issue when more than one threads write

5 Results and Discussion 35 —
H S NZ B
5.1 Test Problem and Hardware Details COO—(?c:ﬁ)ring ——

The proposed assembly strategy of dividing the task [GFonng — S |
i i i i i COOM-coloring —=—
into symbolic and numeric kernels is now tested using thg | EL LM coloring 1

standard problem of the cantilever beam. The beam is di$
cretized with eight-noded hexahedron elements with an end
load, whose results are already known to us. The size of the
beam is decided by the number of nodes in x, y, and z direc%
tions. The material used is isotropic and homogeneous. F&r
performance analysis, the CPU version of the code is run of
an Intel Xeon ES1650 Sandy Bridge with 6 cores clocked at

3.2 GHz. The GPU code is run on a Tesla K40c with peak

memory bandwidth of 288 gigabytes per second. The GPU

. . 6 6 6 6
has 12 gigabytes of global memory with 2880 cores. 0 500000 1x10° 15x10° 2x10° 2.5x10
Number of nodes in the mesh

298
5K
3RS

<
o2

IR
BRI 3
’:‘:’:’ 0':’:’ :“:
s sesse
SRS

o

e

3
5
s
R
0%

2

o
o

oo
QK

%S

%%
S
o5
o298
%

K
35

R
B

S0sresees
0K
QLK

Fig. 10. Comparison of execution time with different meshes hav-

5.2 Performance Analysis o it ber of nodes for coloring-based impl .
For the performance analysis of the proposed assemply @ferent number of nodes for coloring-based implementations.

strategies on GPU, it is compared with tBharedNzZim-

4 T T 1 T T 1
plementation of study by Cecka et &l! [6] on GPU and se- Coghatredl,\lz sl
rial implementation of algorithiil2 cdiddt o method. The 35 CSRatomics —x— T

ELL-atomics —&—
3 | COOM-atomics —=—
ELLM-atomics

SharedNZzalgorithm is implemented using CUDA in which _
the kernel and memory utilization remain the same as givel
by Cecka et al[[6]. The serial code is implemented using thg 25
C-programming language. Figurel10 shows the executioTE'
time of the proposed assembly strategy using different stor
age formats with the coloring method. The execution timez: 15
of the SharedNZmplementation is shown using the bar andg
that of the others are shown using the curves. It can be seén
from the figure that all implementations using the proposed o5
assembly strategy require less execution time as compared
to the SharedNZimplementation. Moreover, the modified ® = 00000 moﬁ 15x10° 2x10° 2.5x10°
storage formats with the proposed assembly strategy merfor Number of nodes in the mesh
significantly better than the standard counterparts. TéHs r
duced execution time can be attributed to the search-spanfré@. 11. Comparison of execution time with different meshes hav-
duction while assembly through efficient distribution oé th ing different number of nodes for atomics-based implementations.
workload, reduced memory footprint and write operations.
Figure[11 shows the execution time of the proposed assem-
bly strategy using atomics with different sparse storage fanesh sizes. On the other hand, a constant trend can be ob-
mats. It can be seen from the figure that apart from the CCs@rved at higher mesh sizes for the atomic-based implemen-
and CSR formats, all the storage formats including the mot#tions. The reason behind this observation is that the num-
ified ones outperform th8haredNZimplementation. Also, ber of available warps increases for larger mesh sizes. This
the modified formats outperform the standard formats usiegisures that despite the number of threads waiting for a lock
atomics as well. created by an atomic operation to release, the GPU occu-
Figure[12 shows the speedup comparison of all the irgancy does not go down. This, in turn, results in higher rela-
plementations (five sparse storage formats, each for asomiiye performance for larger mesh sizes for atomics-based im
and coloring method) compared to tiiearedNZimplemen- plementations. Figule 13 shows the speedups of all the im-
tation. Clusters of histograms are plotted each for fiveediff plementations in comparison to the serial implementatfon o
entmesh sizes. In each of these clusters, the colored Ipars @gorithni2 on CPU. Unlike the trend shown in figlre 12, the
resent the coloring-based implementations and the patierinodified (COOM and ELLM) and existing storage formats
bars represent the atomics-based implementations. Asscarshow an increasing trend in the speedups when compared to
expected from figurds 10 afd]11, the speedup values for the CPU version. This is due to the fact that the CPU version
coloring-based implementations are significantly highant consumes increasing amounts of time for larger mesh sizes.
the atomics-based implementations. The highest speedup is Figure[I4 shows the GFLOP/s for all the implementa-
obtained for the ELLM and COOM formats for all meshtions for two different mesh sizes. Similar to the previous
sizes using the coloring method. For the coloring-basgibts, the GFLOP/s values for the coloring-based implemen-
modified formats (COOM-coloring and ELLM-coloring) atations are significantly higher than the atomics-baseddamp
downward trend in the speedup can be observed for largeentations. This is because of the fact that although tla¢ tot

COO-coloring mmmmm ELLM-coloring —= ELL-atomics ExXxx1 400

CSR-coloring SharedNZ mmmmm COOM-atomics EZzz=1 - ing —
ELL-coloring === COO-atomics E==3 ELLM-atomics =0 chg.ggigﬂﬂg [
COOM-coloring === CSR-atomics ezl = ELL-coloring | s— |

6 . T T T 350 |- - COOM-coloring === |

ELLM-coloring ——
SharedNZ

5 f n 300 | COO-atomics ==—3
M CSR-atomics RXXZXJ

ELL-atomics ==
COOM-atomics ===
250 | ELLM-atomics T]

GFLOP/s

Speedup
w

50 = =

0
97119 519849 978021 1450449 1894464 2486484 ’100’0 907‘9
i) (>
Nodes in the mesh (%3 %
Nodes in the mesh
Fig. 12. Obtained speedup for all formats in comparison to
SharedNZ implementation on GPU. Fig. 14. Obtained GFLOPS for all implementations.
COO-coloring ELLM-coloring —— ELL-atomics EXxx1
CSR-coloring s SharedNZ mmmmm COOM-atomics rz=21
ELL-coloring === COO-atomics E==<1 ELLM-atomics = 100%
COOM-coloring === CSR-atomics &z
100 T — 90%
% n 80%
. N 70%
80 | i 60%
70 J S 5%
o il o
g 60 . E 40%
3 % ! 7 | 30%
& j 20%
40 f 10%
30 0%
| o 7 CSR(A) COOM(A) Co0(C) ELL(C) ELLM(C)
20 i COO(A) ELL(A) ELLM(A) CSR(C) COOM(C)
10 | mKemnel 1 mKemel 2 © Others

97119 519849 978021 1450449 1894464 2486484

Nodes in the mesh Fig. 15. Execution time percentage of symbolic and numeric ker-

nels with different sparse formats
Fig. 13. Obtained speedup for all storage formats in comparison to
CPU implementation.

storage formats, while decomposing the task into two parts.

The strategy was found to perform significantly better when
number of floating point operations is similar for the atoMeompared to the optimized CPU and GPU implementations
ics and coloring-based implementations, the GFLOP/s coyt a| the sparse storage formats. For countering the race
becomes low in comparison to the coloring-based implemegyndition, the coloring method outperformed atomics-Hase
tations due to the total execution time being higher in caggethod for all sparse storage formats. Both the modified
of atomics-based implementations. The highest performang,arse storage formats produced considerably bettetsesul
is observed for the coloring-based implementations wiéh thnan their standard counterparts. Assembly into the ELLM
COOM and ELLM formats. The COO and CSR formats argyymat required the least amount of time compared to other
seen to have lower values, especially for the atomics-basggnats. This can be attributed to low usage of registers and
implementations. Figufe 15 shows the percentage of time kgy5red memory by the kernels. Assembly into the COOM
quired by different parts of the application. The COOM anghymat, on the other hand, required the smallest amount of
ELLM formats with element coloring outperform all Otherstorage space compared to all other formats for the same
implementations. For all implementations, the numerie kepesh size. Since, for structured meshes the neighbor infor-
nel is seen to be the most time consuming part of the entigation is readily available using index mappings, efficient
assembly operation, whereas the symbolic kernel takes oghyering can be explored for handling race condition along
a small fraction of the total time. with the coloring and atomics-based methods presented in

this paper. Although only regular meshes have been used in

this paper, the modified sparse formats are independent of
6 Conclusion the type of mesh and can be used with any type of meshes.

We presented a number of implementations for perforrithe kernel division strategy, however needs to be adopted fo

ing FEA assembly on GPUs. A strategy was developéchplementation on an irregular mesh. Since the neighbor in-
for efficient implementation of thaddt o assembly algo- formation is not readily available for unstructured gripliss-
rithm on GPU with three standard and two proposed spamgecessing of the mesh connectivity can be performed and

the resulting neighbor information can be utilized for imypl
menting the same kernel division strategy. The GPU used
in this paper allowed us to solve a problem with a maxjL0]
mum node number of approximately 4 million. In case of
larger mesh sizes, we can use domain decomposition meth-
ods using a graph partitioning library such as METIS ([35])

in future. Furthermore, testing of the proposed methodpolog
using a more modern GPU such as the V100 or A100 wifti1]
the increased number of cores and superior performance can
be performed for a more complete analysis.

[12]

Acknowledgment

This work was supported by SERB, Department

of Science and Technology (DST), India (grant number
SB/FTP/ETA-28/2013) and IIT Guwahati (grant numbefl3]
SG/ME/DS/P/01). We would like to express our gratitude
to NVIDIA for donating Tesla K40c GPU used in this work.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

[14]
Zienkiewicz, O. C., Taylor, R. L., and Lee, R., 1977.
The finite element methpdlol. 3. McGraw hill Lon- [15]
don.

Ram, L., and Sharma, D., 2017. “Evolutionary and gpu
computing for topology optimization of structures”.
Swarm and Evolutionary Computatiadg, pp. 1-13. [16]
Ratnakar, S. K., Sanfui, S., and Sharma, D., 2020.
“Gpu based topology optimization using matrix-free
conjugate gradient finite element solver with cus-
tomized nodal connectivity storage”. In 2nd Interna-
tional Conference on Future Learning Aspects of Md17]
chanical Engineering (FLAME - 2020), Amity Univer-
sity.

Ratnakar, S. K., Sanfui, S., and Sharma, D., 2020.
“Simp-based structural topology optimization using18]
unstructured mesh on gpu”. In 2nd International Con-
ference on Future Learning Aspects of Mechanical En-
gineering (FLAME - 2020), Amity University.

Georgescu, S., Chow, P., and Okuda, H., 2013.
“GPU acceleration for FEM-based structural analysis{19]
Archives of Computational Methods in Engineering,
20(2), pp. 111-121.

Cecka, C., Lew, A. J., and Darve, E., 2011. “Assem-
bly of finite element methods on graphics processorg20]
International Journal for Numerical Methods in Engi-
neering,85(5), pp. 640—669.

Maciol, P., Plaszewski, P., and Banas, K., 2010. “3D
finite element numerical integration on GPU®oce-

dia Computer Sciencéd,(1), pp. 1093 — 1100. ICCS [21]
2010.

Lei, J., Li, D.-l., Zhou, Y.-l., and Liu, W., 2019. “Op-
timization and acceleration of flow simulations for cfd

on cpu/gpu architectureJournal of the Brazilian So-
ciety of Mechanical Sciences and Engineeridgy,7),
p. 290.

Liu, W., Schmidt, B., Voss, G., and Muller-Wittig, W.,
2008. “Accelerating molecular dynamics simulation§23]

[22]

using graphics processing units with CUDA'Com-
puter Physics Communicatioris{99), pp. 634 — 641.
Komatitsch, D., Michéa, D., and Erlebacher, G., 2009.
“Porting a high-order finite-element earthquake mod-
eling application to NVIDIA graphics cards using
CUDA". Journal of Parallel and Distributed Comput-
ing, 695), pp. 451 — 460.

Fu, Z., Lewis, T. J., Kirby, R. M., and Whitaker, R. T.,
2014. “Architecting the finite element method pipeline
for the gpu”. Journal of Computational and Applied
Mathematics257, pp. 195 — 211.

Reguly, I. Z., and Giles, M. B., 2015. “Finite element
algorithms and data structures on graphical processing
units”. International Journal of Parallel Programming,
43(2), pp. 203-239.

Banas, K., Kruzel, F., and Bielanhski, J., 2016. “Fni
element numerical integration for first order approxi-
mations on multi- and many-core architectureStm-
puter Methods in Applied Mechanics and Engineering,
305, pp. 827 — 848.

Knepley, M. G., and Terrel, A. R., 2011. “Finite ele-
ment integration on gpus'CoRR abs/1103.0066

Bolz, J., Farmer, |., Grinspun, E., and Schrooder, P.,
2003. “Sparse matrix solvers on the GPU: conjugate
gradients and multigrid”.ACM Trans. Graph.22(3),
July, pp. 917-924.

Rodriguez-Navarro, J., and Susin Sanchez, A., 2006
“Non structured meshes for Cloth GPU simulation us-
ing FEM”. In Vriphys: 3rd Workshop in Virtual Reali-
tiy, Interactions, and Physical Simulation, C. Mendoza
and |. Navazo, eds., The Eurographics Association.
Dziekonski, A., Sypek, P., Lamecki, A., and Mro-
zowski, M., 2012. “Finite element matrix generation
on a GPU". Progress In Electromagnetics Research,
128 pp. 249-265.

Markall, G., Slemmer, A., Ham, D., Kelly, P., Cantwell,
C., and Sherwin, S., 2013. “Finite element assembly
strategies on multi-core and many-core architectures”.
International Journal for Numerical Methods in Fluids,
71(1), pp. 80-97.

Kiss, I., Gyimothy, S., Badics, Z., and Pavo, J., 2012.
“Parallel realization of the element-by-element FEM
technique by CUDA".IEEE Transactions on Magnet-
ics,48(2), Feb, pp. 507-510.

Dziekonski, A., Sypek, P., Lamecki, A., and Mro-
zowski, M., 2013. “Generation of large finite-element
matrices on multiple graphics processorslnterna-
tional Journal for Numerical Methods in Engineering,
94(2), pp. 204—-220.

Carrion, R., Mesquita, E., and Ansoni, J. L., 2015. “Dy-
namic response of a frame-foundation-soil system: a
coupled bem—fem procedure and a gpu implementa-
tion”. Journal of the Brazilian Society of Mechanical
Sciences and Engineeringj(4), pp. 1055-1063.

Dinh, Q., and Marechal, VY., 2016. “Toward real-time
finite-element simulation on gpulEEE Transactions
on Magneticsb2(3), March, pp. 1-4.

Sanfui, S., and Sharma, D., 2017. “A two-kernel based

strategy for performing assembly in fea on the grapli35] Karypis, G., and Kumar, V., 1998. *“A fast and
ics processing unit”. In 2017 International Confer- high quality multilevel scheme for partitioning irreg-
ence on Advances in Mechanical, Industrial, Automa- ular graphs”. SIAM Journal on Scientific Computing,
tion and Management Systems (AMIAMS), AMIAMS, 20(1), Dec., pp. 359-392.

ed., pp. 1-9.

[24] Zayer, R., Steinberger, M., and Seidel, H., 2017.
“Sparse matrix assembly on the gpu through multi-
plication patterns”. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC), HPEC, ed.,
pp. 1-8.

[25] Kiran, U., Sharma, D., and Gautam, S. S., 2018. “Gpu-
warp based finite element matrices generation and as-
sembly using coloring method"Journal of Computa-
tional Design and Engineering

[26] Gribanov, I., Taylor, R., and Sarracino, R., 2018.
“Parallel implementation of implicit finite element
model with cohesive zones and collision response using
cuda”. International Journal for Numerical Methods in
Engineering1157), pp. 771-790.

[27] Sanfui, S., and Sharma, D., 2019. “Exploiting sym-
metry in elemental computation and assembly stage
of gpu-accelerated fea”. In Proceedings at the 10th
International Conference on Computational Methods
(ICCM2019), G. X. G. R. Liu, Fangsen Cui, ed., Vol. 6,
ScienTech Publisher, pp. 641-651.

[28] Kiran, U., Gautam, S. S., and Sharma, D., 2020.
“Gpu-based matrix-free finite element solver exploit-
ing symmetry of elemental matrices€Computing,102,

p. 19411965.

[29] Sanfui, S., and Sharma, D., 2020. “A three-stage graph-
ics processing unit-based finite element analyses matrix
generation strategy for unstructured meshésterna-
tional Journal for Numerical Methods in Engineering,
121(17), p. 38243848.

[30] Wong, J., Kuhl, E., and Darve, E., 2015. “A new sparse
matrix vector multiplication graphics processing unit
algorithm designed for finite element problemsiter-
national Journal for Numerical Methods in Engineer-
ing, 102(12), pp. 1784-1814.

[31] Kreutzer, M., Hager, G., Wellein, G., Fehske, H.,
Basermann, A., and Bishop, A. R., 2012. “Sparse
matrix-vector multiplication on gpgpu clusters: A new
storage format and a scalable implementation”. In 2012
IEEE 26th International Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum, M. Li,
ed., pp. 1696-1702.

[32] Choi, J. W., Singh, A., and Vuduc, R. W., 2010.
“Model-driven autotuning of sparse matrix-vector mul-
tiply on gpus”. In ACM sigplan notices, ACM, ed.,
\ol. 45, pp. 115-126.

[33] Ramrez-Gil, F. J., Silva, E. C. N., and Montealegre-
Rubio, W., 2016. “Topology optimization design of 3d
electrothermomechanical actuators by using gpu as a
co-processor"Computer Methods in Applied Mechan-
ics and Engineering302, pp. 44 — 69.

[34] Kirk, D. B., and Wen-mei, W. H., 2012Programming
massively parallel processors: a hands-on approach
Newnes.

	Introduction
	Relevant Studies
	Preliminaries
	GPU architecture and CUDA
	Details of FEM for Linear Elasticity
	Sparse Storage Formats

	Assembly on GPU
	Assembly
	The Symbolic Kernel: Node-by-Node Implementation
	The Numeric Kernel: Element-by-Element Implementation

	Assembly into Standard Sparse Storage Formats
	Assembly using Modified Sparse Storage Formats
	COO Modified (COOM) Sparse Storage Format
	ELL Modified (ELLM) Sparse Storage Format

	Race Condition

	Results and Discussion
	Test Problem and Hardware Details
	Performance Analysis

	Conclusion

