
Symbolic and Numeric Kernel Division for
GPU-based FEA Assembly of Regular Meshes

with Modified Sparse Storage Formats

Subhajit Sanfui
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Assam, India
Email: s.sanfui@iitg.ac.in

Deepak Sharma
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Assam, India
Email: dsharma@iitg.ac.in

This paper presents an efficient strategy to perform the as-
sembly stage of finite element analysis (FEA) on general-
purpose graphics processing units (GPU). This strategy in-
volves dividing the assembly task by using symbolic and nu-
meric kernels, and thereby reducing the complexity of the
standard single-kernel assembly approach. Two sparse stor-
age formats based on the proposed strategy are also devel-
oped by modifying the existing sparse storage formats with
the intention of removing the degrees of freedom-based re-
dundancies in the global matrix. The inherent problem of
race condition is resolved through the implementation of col-
oring and atomics. The proposed strategy is compared with
the state-of-the-art GPU-based and CPU-based assembly
techniques. These comparisons reveal a significant number
of benefits in terms of reducing storage space requirements
and execution time and increasing performance (GFLOPS).
Moreover, using the proposed strategy, it is found that the
coloring method is more effective compared to the atomics-
based method for the existing as well as the modified storage
formats.

1 Introduction
Finite element method (FEM) ( [1]) is a numerical tech-

nique that is used for solving partial differential equations
(PDEs), which arise in various fields of science and engineer-
ing. Finite element analysis (FEA) is the process in which
real-world problems and physical phenomenon are simulated
using FEM or alike in order to obtain the response of the sys-
tems. Typically, an FEA consists of pre-processing, solver,
and post-processing stages. In the pre-processing stage, the
domain of a given problem is decomposed into finite ele-
ments for which their order and type are defined, along with

the material constants. Next, in the solver stage, the ele-
mental matrix for every finite element is calculated and as-
sembled to form the global stiffness matrix. This generates
a linear system of equations (Ax= b), which is solved af-
ter application of specified boundary conditions. Lastly, the
post-processing stage helps understand and visualize the out-
comes of the analysis.

FEA can be computationally expensive when dealing
with complex problem domains and very fine meshes; this
is also true for some applications such as topology optimiza-
tion ( [2, 3, 4]). In particular, among all the stages in FEA,
the solver stage is the most time-consuming one ( [5, 6, 7]).
The common remedy to this challenge is performing FEA
computation in parallel ( [5]). Among many available tech-
niques, GPU-based parallelization studies consist a signifi-
cant part of these FEA implementations in the literature, ow-
ing to the low cost to performance ratio of GPUs and the
success achieved by many researchers in GPU paralleliza-
tion of applications ranging from CFD simulations ( [8]) to
molecular dynamics ( [9]). The computation of elemental
stiffness matrices in FEA can be performed independently
and in parallel ( [10]). Thus, many researchers have found
the calculation of elemental stiffness matrices to be highly
suitable for parallel computing ( [11, 12, 13, 14]). Besides
this, the assembly stage is another area in FEA that can be
computationally expensive for a number of real-life appli-
cations ( [6, 10, 15, 16]). Furthermore, the position of the
non-zero entries in the assembled sparse global matrix can
often be highly irregular, which is another crucial factor in
the efficient parallel implementations of FEA on GPU.

Assembly of finite element matrices on CPU is a se-
quential process where all the elemental stiffness matrices



are assembled one-by-one. This approach, when applied on
the GPU in parallel is termed asaddto method ( [6, 17]).
The approach, although straightforward, involves complica-
tions such as race condition, the problem of handling large
amounts of data on GPU and more. These issues are allevi-
ated in another approach termed as the local matrix approach
(LMA) ( [18]) by obviating the need to explicitly assemble
the entire global stiffness matrix at any point of the analysis.
However, the advantages of LMA come at the additional cost
of redundant computations resulting from on-the-fly calcu-
lations. This, inadvertently increases the computation time
of the LMA and other matrix-free methods. Thus, a trade-
off can be noted between the inherent complications of the
addtomethod and the redundant computations of the LMA
method.

It is seen from the literature that assembling the global
stiffness matrix on the GPU poses several challenges. The
primary challenge in theaddto method is efficient han-
dling of the sparse data for the global stiffness matrix on
GPU. Here, handling the data involves efficient storage of
the non-zero entries using a sparse storage scheme and ef-
ficient access of the non-zero entries through kernel design
while taking care of the inherent race condition. This key
challenge is addressed in the present work by incorporating
a division-based assembly scheme along with a new sparse
storage system based on the state-of-the-art sparse formats.
Splitting the assembly operation into two different parts re-
duces the complexity of a single-kernel approach foraddto
method. Furthermore, the new formats facilitate efficient ac-
cess to the matrix data while significantly reducing the stor-
age requirements on the GPU by exploiting the structure of
a FE matrix to reduce the memory footprint of the resulting
matrix. The key contributions of this paper are summarized
as

Developing novel symbolic and numeric GPU kernels
for assembly.
Implementing three new sparse storage formats by mod-
ifying COO and ELL formats.
Comparative analysis of the modified sparse storage for-
mats with the standard formats using the proposed as-
sembly strategy.
Comparative analysis of coloring and atomics-based im-
plementations with the proposed kernel division strategy
and the new sparse formats.

The paper is organized in six sections. Section 2
presents the relevant literature survey of assembly on GPU.
Preliminaries to this paper are discussed in Section 3 in-
cluding details about GPU architecture and CUDA, FEM for
elasticity and sparse storage formats. In Section 4, the pro-
posed assembly strategy and its implementation details are
presented. The results are discussed in section 5 and the pa-
per is concluded in section 6.

2 Relevant Studies
Among the early studies on GPU-based assembly im-

plementations, some researchers have computed each non-

zero entry of the global matrix in parallel using mathematical
expressions ( [15, 16]). These were completely application-
specific implementations that helped reduce execution times.
As the GPU architecture and the programming APIs (CUDA,
OpenCL) kept evolving, more intricate applications began
emerging. For example, the study by Komatitsch et al. [10]
simulated the phenomenon of seismic wave propagation re-
sulting from earthquakes using NVIDIA GPUs for very high
order spectral elements. In this study, instead of using sim-
ple mathematical expressions for global stiffness entrieslike
in the early studies, the authors carried out the generation
of local matrices and assembly for all the elements in paral-
lel. Additionally, they handled the inherent problem of race
condition by assigning a color to each of the element and
performing the computation for each color sequentially; this
strategy ensured that no two elements with a shared DOF
were assembled simultaneously. A similar coloring strat-
egy for assembly on GPU was reported by Cecka et al. [6],
along with other assembly strategies, for unstructured 2D
meshes. The authors used different techniques for over-
coming the race condition (coloring, non-zero-wise compu-
tation), among which the coloring method incurred excessive
memory accesses, thereby reducing the performance.

Later, the study by Markall et al. [18] compared assem-
bly by using the local matrix approach (LMA) with the stan-
dard assembly. LMA is a matrix-free assembly technique
that was used to overcome challenges arising from GPU-
based assembly implementations. In another study by Kiss et
al. [19], the LMA method was used, for which the elemental
stiffness matrices were computed on the GPU, when neces-
sary. Using large datasets, it was found that the low-storage
compute-intensive implementation was suitable for many-
core systems. However, afterward, Fu et al. [11] demon-
strated that the LMA method on GPU for 3D grids is inferior
to the traditional assembly method in terms of performance.
In this work, an assembly method was proposed which is
based on patch-based division of the problem domain.

Authors in [17, 20] presented a reduction-based imple-
mentation for assembly on single and multi-GPU systems.
The global stiffness matrix was first assembled into coordi-
nate sparse storage format (COO) and afterward transformed
into compressed sparse row (CSR) storage format by per-
forming reduction in parallel. Carrion et al. [21] acceler-
ated a coupled BEM-FEM procedure on the GPU for a dy-
namic soil-structure interaction problem. The assembled
mass and stiffness matrices were parallelized on the GPU,
both row and column-wise, to perform linear algebra op-
erations. Among more recent works, Dinh and Marechal
[22] reported an FEM implementation for real-time appli-
cations that is similar to the approach taken by Dziekonski
et al. [17, 20]. After computing the elemental stiffness ma-
trices, the resultant non-zero entries were arranged in un-
sorted coordinate format with multiple non-zero entries for
the same stiffness matrix location. Following this, parallel
radix sort and a reduction algorithm is applied to the COO
arrays to produce the final global stiffness matrix. Sanfui
and Sharma [23] presented an implementation of assembly
where the key idea is to divide the workload into different



stages for performing only the assembly stage on GPU.
Later, the study by Zayer et al. [24] used the assembly

stage in the form of matrix-matrix multiplication. This ap-
proach enabled the authors to reduce the memory footprint
of the application as well as the amount of pre-processing
required for the assembly operation. A recent study by Ki-
ran et al. [25] implemented the warp-based assembly method
using eight-noded hexahedral elements with the aim of ef-
ficient utilization of on-chip memory resources. Coloring
method was used for race condition and speedups of up to
8× were achieved over standard assembly by element strat-
egy on GPU. The study by Gribanov et al. [26] implemented
an implicit finite element model with cohesive zones and col-
lision response on GPU. During assembly, the race condition
was handled using atomic operations of the CUDA toolkit.
An implementation of FEA that calculated and stored only
the symmetric half of the elemental and global stiffness ma-
trix was presented in the study by Sanfui and Sharma [27].
Local matrix computation and assembly were both acceler-
ated on GPU resulting in speedups of up to 2× over an im-
plementation that computed and stored the entire matrices.
The study by Kiran et al. [28] presented an implementation
of matrix-free finite element solver, where only the symmet-
ric half of the local stiffness matrices are used. By using
a novel data structure for storing the symmetric matrices,
speedups of up to 5× were achieved. In the study by Sanfui
and Sharma [29], a multi-stage GPU-based assembly method
was presented for unstructured meshes. This strategy used a
new data structure called theneighbor matrixto assemble the
global stiffness matrix. Furthermore, two approaches were
compared with each other where the elemental computation
and assembly were performed in the same as well as in sep-
arate kernels. Speedups of up to 6× were achieved for the
proposed strategy and the same kernel approach was found
to outperform the separate kernel approach for all the tested
problems.

Due to the large and sparse nature of the resulting global
stiffness matrix, specific sparse storage formats need to be
used when storing data on the GPU. A plethora of different
sparse storage formats have been used in the literature, in-
cluding the standard ones such as COO, CSR ( [17]), ELL
( [12]) and the ones that have been developed for specific
purposes and applications on the GPU such as ELL-WARP
( [30]), pJDS ( [31]). The idea behind the new sparse formats
is to modify the standard sparse storage formats by making
specific assumptions about the structure of the sparse ma-
trix. These modifications help by reducing the execution
time and/or the memory footprint of the application. Several
GPU-friendly sparse storage formats have also been devel-
oped in the literature ( [32]) and these make no assumptions
on the matrix structure or the type of application.

From the literature review presented, it can be seen that
the primary challenge to performingaddto assembly lies in
efficient storage and access of the global matrix. As a result,
the research effort in this area has been focused on kernel de-
sign of assembly and efficient sparse storage schemes based
on GPU. Furthermore, several remedies have been suggested
in the literature for handling the race condition. Although,

the LMA and others matrix-free methods do alleviate some
of the difficulties withaddto assembly, the benefits come
at a cost of increased computation.

3 Preliminaries
3.1 GPU architecture and CUDA

GPUs are many-core processors that were initially de-
veloped for rendering graphics in the early ’90s especially
for video games. Due to the inherent parallel structure,
GPUs are much more capable of handling large blocks of
data that can be processed in parallel than the general pur-
pose CPUs. The throughput-oriented nature of GPU also
makes it suitable for performing general purpose computa-
tion involving large amount of data. Being a many-core pro-
cessing unit, GPU architecture varies significantly from the
traditional CPU architecture, that are multi-core in nature.
The key difference between the two is that CPUs put the em-
phasis on low latency making sequential processing faster,
whereas GPUs put the emphasis on a high throughput that
makes highly parallel applications run efficiently.

The GPU used in this paper is from NVIDIA. Com-
pute Unified Device Architecture (CUDA) is a parallel pro-
gramming API from NVIDIA, which enables developers to
program GPUs for general purpose computing. CUDA is
designed to work with programming languages such as C,
C++, and Fortran. Using specific set of extensions to these
languages, a developer is able to write kernels that generate
very high number of threads to divide a workload for par-
allel processing. CUDA also provides the flexibility to the
developer to use the highly sophisticated memory hierarchy
of NVIDIA GPUs and a host of other features for writing
efficient parallel applications.

3.2 Details of FEM for Linear Elasticity
A linear elasticity problem is a boundary value problem

in which the governing PDEs include the strong form for lin-
ear elastic material, strain-displacement equations, andcon-
stitutive relations from Hooke’s law ( [1]), which are given
as

σi j , j +bi = ρüi, i, j = 1,2,3,
εi j =

1
2(u j ,i +ui, j),

σi j = Ci jkl εkl .

(1)

Here,bi andui are the body forces per unit volume and dis-
placement,σi j is the component of Cauchy stress tensor,εkl

is the strain,Ci jkl is the material elasticity tensor, andρ is the
density. It is noted that an isotropic and homogeneous mate-
rial is considered in this paper. This strong form is subjected
to the displacement and traction boundary conditions that are
given as

ui = ūi on Γu, ti = t̄i on Γt , (2)

whereūi is the boundary displacement specified on boundary
Γu andt̄i is the boundary traction specified on boundaryΓt .



FE formulation is made by converting the governing
PDEs into their weak form using the Galerkin weighted
residual approach and solved over a discretization of the
problem domain consisting of finite elements ( [1]).

The displacement within an element using shape func-
tions[N]e is approximated as

{u}e= [N]e ˜{u}
e
, (3)

where ˜{u} is the nodal displacement vector. in the three di-
rections. Substituting equation (3) into the weak form result-
ing from equation (1) and performing assembly over all the
elements, we get

∑
e
[[M]e{ü}e+[K]e{ũ}e−{ f}eext] = 0, (4)

where[M]e is the local mass matrix,[K]e is the local stiffness
matrix, and{ f}eext is the local force vector.

In this paper eight-noded hexahedral elements are used
for discretization. The eight shape functions for this element
are given as[Ni ]

e = 1
8(1+ ξξi)(1+ηηi)(1+ ζζi), whereξi ,

ηi andζi are the coordinates of theith node. The expression
for the elemental stiffness matrix[K]e in equation 4 is given
by

[K]e =

∫
V
[B]T [D][B] dxdydz

=

∫ +1

−1

∫ +1

−1

∫ +1

−1
B(ξ,η,ζ)TDB(ξ,η,ζ) | J(ξ,η,ζ) | dξdηdζ

=
2

∑
i=1

2

∑
j=1

2

∑
k=1

wξi
wη j wζk

B(ξi ,η j ,ζk)
TDB(ξi ,η j ,ζk) | J(ξi ,η j ,ζk) |

(5)

[B] is called the strain-displacement matrix and contains the
partial derivatives of the shape functions.D is constitutive
matrix andJ is the Jacobian matrix.wξi

,wη j andwζk
are the

Gauss Quadrature weights for numerical integration. The el-
emental stiffness matrix given in equation (5) is then assem-
bled using the connectivity of the mesh into a global[K]. The
details of assembly is given later in Section 4.

3.3 Sparse Storage Formats
The global stiffness matrix[K] is generally sparse. The

non-zero entries of the matrix are stored in the specialized
storage formats (For example, COO, CSR and ELL). These
formats reduce the storage requirement of keeping the non-
zero entries of[K], while solving a system of equations (
[6,17]).

COO is the simplest format for storing sparse matrices.
It is found to be an efficient format ( [17]) for GPU-based
assembly operations. The COO format is made up of two
arrays for the indices and one array for storing the values of
the non-zero entries, as shown in figure 1. Another format

1    7    2    8    5    3    9    6    4    Values

0    1    1    2    0    2    3    1    3    Column Indices

0    0    1    1    2    2    2    3    3    Row Indices1       7       0       0

0       2       8       0

5       0       3       9

0       6       0       4

Dense Format                                   Sparse Format

Fig. 1. COO sparse storage format.

0    1    1    2    0    2    3    1    3    Column Indices

1    7    2    8    5    3    9    6    4    Values

1       7       0       0

0       2       8       0

5       0       3       9

0       6       0       4

Dense Format                                   Sparse Format

0    2    4    7    9    Row Offsets

Fig. 2. CSR sparse storage format.

0       1      *

1       2      *

0       2      3

1       3      *

1       7       0       0

0       2       8       0

5       0       3       9

0       6       0       4

1       7      *

2       8      *

5       3      9

6       4      *

Dense Format                                   Sparse Format

Indices                  Values

Fig. 3. ELL sparse storage format.

similar to COO format is the CSR format. In this format, the
row offsets are saved instead of the row indices, as shown in
Figure 2. As a result, this format further reduces the storage
requirement. Another important format is the ELL format.
In this format, two 2D matrices are used that store the val-
ues and indices of the non-zero entries. Each of these two
matrices have as many rows as in[K] but only have as many
columns as the highest number of non-zero in any particular
row of [K]. Figure 3 shows the example of ELL format.

4 Assembly on GPU

For performing the assembly, the local stiffness matrix
Ke is calculated by using equation (5). In our parallel im-
plementation ofKe calculation, we adopt a similar approach
described by [33], wherein one thread is allocated to compute
each elemental stiffness matrix. The procedure is presented
in algorithm 1. In order to computeKe, the connectivity ma-
trix C, nodal coordinate matrixCd, constitutive matrixD are
required. Furthermore, we adopt the same strategy of pre-
computing the shape functions(Ni) and its derivatives(dNi)
as done by [33] to avoid repetitive calculations. Each CUDA
thread computesJ, | J | andJ−1, uses them to computeB and
subsequentlyKe, which is then stored in a one-dimensional
array containing the elemental matrices of all the elements.



Algorithm 1 Parallel numerical integration forKe calcula-
tion

1: Input : E: Number of elements;I : Total num-
ber of nodes;C: Connectivity matrix;Cd: Nodal co-
ordinate matrix;D: Constitutive matrix;

2: Output : Ke: Elemental stiffness matrix;
3: int blockSize = 512;
4: int gridSize =((E - 1) / blockSize) + 1;
5: global void numIt( Ke,C,Cd,D) ⊲ Kernel Definition
6: int tid = blockIdx.x× blockDim.x +threadIdx.x; ⊲

Unique thread ID
7: ReadNi anddNi ⊲ Pre-computed shape functions and

derivatives
8: if tid < E then
9: for j ← 8 do ⊲ Loop over Gauss points

10: ComputeJ, | J |,J−1;
11: ComputeB;
12: StoreKe in a column-major order;
13: end for
14: end if

4.1 Assembly

Algorithm 2 addto algorithm for assembly
1: Input : ndo f: DOFs per node; nnodes: nodes

per element;N: Total DOFs; E: Number of ele-
ments;C[E,nnodes× ndo f]: Connectivity matrix stor-
ing DOFs; Ke[nnodes× ndo f,nnodes× ndo f]: El-
emental stiffness matrix; f e[nnodes× ndo f]: Ele-
ment load vector;

2: Output : K: Global stiffness matrix;F : Global load vec-
tor

3: F[N] = 0; K[N,N] = 0; ⊲ Initialization
4: for e← 1 : E do ⊲ Outer loop over elements
5: ComputeKe; ⊲ Compute elemental stiffness matrix
6: Computef e; ⊲ Compute element force vector
7: for i← 1 : ndo f do ⊲ Inner loop over DOF
8: Compute row index (row ind);
9: F [C[e, row ind]]+ = f [i]; ⊲ Vector Assembly

10: for j ← 1 : ndo f do ⊲ Inner loop over DOF
11: Compute column index (col ind);
12: K[C[e, row ind],C[e,col ind]]+ = Ke[i][ j]; ⊲

Matrix Assembly
13: end for
14: end for
15: end for

For performing assembly operation, the elemental en-
tries are added to the global matrix based on the connectivity
information. For GPU implementations of FEA assembly,
different strategies have been used in the literature ( [6,18]).
The traditional method is theaddto method in which the
assembly of each element into the global stiffness matrix is
done sequentially. Theaddto method as shown in algo-
rithm 2 is massively data-parallel in nature. This is due to the

fact that the outer-loop over each element of the FE mesh can
be performed independently (refer step 4). However, when
it comes to GPU implementation, one major issue with the
addto method is the possibility of multiple simultaneous
threads trying to write to the same memory location. This is
well known as the race condition or data race in parallel com-
puting. This issue is handled in this paper by use of atomic
operations and element coloring methods.

In the traditional assembly operation for FEA applica-
tions, the values and locations of the non-zero entries of the
global matrix are filled in the sparse format ( [6]). We fol-
low a novel strategy in which the workload is divided into
two distinct parts, henceforth mentioned as thesymbolicand
the numericpart of the computation. Thesymbolic kernel
computes only the locations of the non-zero entries (row and
column indices) in the sparse storage format in parallel. Ow-
ing to the fact that this computation is dependent solely on
the mesh data, it can be executed independently. After cal-
culating the row and column indices, they are stored onto the
global memory in their respective locations. Thereafter, the
numeric kernelis launched to fill the values of the non-zero
entries based on the pre-filled sparse indices. This division
of the assembly task reduces the complexity of the algorithm
significantly and yields several benefits over the standard im-
plementation on GPU.

An important aspect in the GPU implementation of as-
sembly is to determine the exact number of non-zero entries
for the sparse storage formats at the start of the kernel. This
number is necessary for memory allocation and also for de-
termining kernel launch parameters. In the present work, we
derive an expression analytically using the elemental connec-
tivity of the mesh for this purpose. The expression in equa-
tion (6) gives the number of non-zero entries in the sparse
global stiffness matrix for a rectangular cuboid shaped struc-
tured mesh containing eight noded brick elements.

NZ= 108(nx+ny+nz)−162(nxny+nynz+nznx)+243nxnynz−72.
(6)

Herenx, ny andnz are the number of nodes in the three di-
rections of the cuboid mesh. For this expression, the number
of repeated write operations during assembly is subtracted
from the total writes performed. A similar expression can be
obtained for a different domain shape by following the same
principle. It is noted that such algebraic expression may be
cumbersome to derive for certain cases. In those cases, a
simple code can be written that takes the connectivity infor-
mation of the mesh as input and output the number of non-
zero entries for the given type of elements.

Before the launch of thesymbolicpart, memory is al-
located and the kernel launch parameters are fixed based on
the number of non-zero entries calculated using equation (6).
Thereafter, the matrices are assembled in the following two
steps.



4.1.1 The Symbolic Kernel: Node-by-Node Implemen-
tation

The purpose of the symbolic kernel is to compute the in-
dices of the non-zero entries in the sparse global stiffnessma-
trix. This kernel works on the principle that the exact count
of non-zeroes in any one row of the global matrix can be ob-
tained beforehand by multiplication of DOFs per node to the
no. of immediate neighbors to the node. If we take a node
havingnngnumber of neighbors, the rows corresponding to
that particular node in the global stiffness matrix will have
(DOF× (nng+1)) non-zero entries. It can be seen from fig-
ure 4 that a node can have different numbers of neighboring
nodes. For example in the figure, the number of neighbors
to a corner node, anedgenode, aface node and aninte-
rior node is 7, 11, 17, and 26, respectively. Total number
of threads in the grid is equal to the number of nodes in the
entire mesh, where each thread is responsible for computing
one node exactly.

Algorithm 3 outlines the symbolic kernel, where the row
and column indices are computed for all non-zero entry in
parallel.d j

i andSj denote the DOFs and neighbor nodes to all
the nodesj respectively. These are stored on the GPU global
memory in step 7. The kernel is called in step 8 and a grid
is launched on the GPU with number of threads equal to the
total number of nodes in the FE mesh. Two setsRj andC j are
declared for storing the row and column indices respectively
for each nodej. In step 12,Rj is filled by copying DOFd j

i
into it (nng×nd) times. From figure 5, it can be seen that
Rj is filled with DOFs of nodej, one after another. Hence,
(nng×nd2) entries are stored inRj for node j. After filling
Rj , they are appended to the set of row indicesR. As shown
in step 18,C j is filled with dk

i DOF of nodek ∈ Sj , set of
neighbor nodes. After filling the individualC j for node j,
they are appended (nd) times to the set of column indicesC.
Similar toR, (nng×nd2) entries are stored inC j for node j.
D j , Sj , Rj , C j , R, andC for node j are shown in figure 5 for
a 2D domain with 2 DOFs per node.

Face node:       17 neighbors

Interior node:  26 neighbors

Edge node:      11 neighbors

Corner node:     7 neighbors

Fig. 4. Neighbors of different nodes in the mesh based on location

4.1.2 The Numeric Kernel: Element-by-Element Imple-
mentation

After the locations of the non-zeroes in the global matrix
are determined using the symbolic kernel, the numeric kernel
is launched to store the values of the non-zero entries into the
sparse storage format based on the indices stored in(R,C).

j

j

j j jD  = (d  , d  )
1 2

dk−1

d j
1 d j d j d j

21

1

jS  =

d i+1
1

. . . . . .

. . . . . .

j

j

C  =

C  

R  =

R  

R  =

C  =

i i+1 j−1 j j+1 k−1 k k+1i−1

jj−1

k+1kk−1

i i+1i−1

j+1

2

dk−1
2 d j

1 d j
2 d i+1

2

Fig. 5. D j , Sj , Rj , C j , R, and C for node j are shown for a 2D

domain with 2 DOFs per node

Algorithm 3 Symbolic kernel for indices of non-zero entries
1: INPUT: N: total number of nodes;nd: DOFs per node;

d j
i : ith global DOF of nodej; Sj : Set containing neigh-

boring nodes of nodej; nng: Number of neighboring
nodes of a node j;n j

k: global node number of nodek;
2: OUTPUT: R : Set of row indices;C : Set of column in-

dices;
3: for j ← 1 : N do
4: D j = (d j

1, . . . ,d
j
nd); ⊲ Pre-processing

5: Sj = (n j
1, . . . ,n

j
j , . . . ,n

j
nng);

6: end for
7: CopyD j andSj to the global memory of GPU
8: for ∀ j ∈N do ⊲ Kernel launch with a grid of N number

of threads
9: Rj = /0, C j = /0;

10: for i← 1 : nd do
11: for k← 1 : (nng×nd) do
12: Rj = Rj ∪d j

i ; ⊲ Filling individual Rj in
parallel

13: end for
14: end for
15: R= R∪Rj ; ⊲ AppendingRj to the row index setR
16: for k← 1 : nngdo
17: for i← nd do
18: C j =C j ∪dk

i , k∈ Sj ; ⊲ Filling individualC j

in parallel
19: end for
20: end for
21: for i← nd do ⊲ Copyingnd times
22: C=C∪C j ; ⊲ AppendingC j to C
23: end for
24: end for



This kernel assembles the entries in an element-by-element
manner. Race condition becomes an issue here because of
the possibility of more than one threads reading or writing
the same memory location simultaneously. This is due to
sharing nodes among neighboring elements. Two different
implementations for countering this issue are presented in
Section 4.4.

Since assembly is done in an element-wise manner, ev-
ery 8-noded hexahedron element can have 82 = 64 node-to-
nodeconnections, which are shown in figure 6. We refer
to a link between any two node in an element asnode-to-
nodeconnection. A connection can be line-type or point-
type depending on whether two different nodes are chosen to
make the connection. For example, in figure 6, the connec-
tion (c−h) represents a line, whereas, the connection (a−a)
represent a point. Every node-to-node connection writes a
total of DOF2 number of non-zeroes into the sparse global
stiffness matrix.

In algorithm 4, the steps of computing the values of
non-zero entries are shown. The algorithm uses the row
(R) and column (C) indices from the symbolic kernel. Un-
like the symbolic kernel, the computation is performed in
an element-by-element manner as shown in step 3. In step
6, the target index (t) for the first DOF dk

1 is searched
within eachCi for every connection using connectivity of el-
ement j (connect[ j,ne]). Only the first DOF (dk

1) of node
k∈ connect[ j,nnodes] needs to be searched. Other DOF can
be determined from the storage sequence used for the sparse
format in algorithm 3. In step 11, non-zero entries of the
global stiffness matrix are written into the sparse format.In
the following sections, three existing formats in additionto
two proposed formats are analyzed by modifying their cor-
responding assembly strategies.

node−to−node connections:

(a−a) , (a−b) , . . . , (a−h)

(b−a) , (b−b) , . . . , (b−h)

e

h g

f

b

cd

a

(c−a) , (c−b) , . . . , (c−h)

(h−a) , (h−b) , . . . , (h−h)

. . . 

. . . 

. . . 

Fig. 6. Node-by-node assembly in the numeric kernel.

4.2 Assembly into Standard Sparse Storage Formats
The symbolic and numeric kernel are described in algo-

rithms 3 and 4 in a generic fashion. These can easily be used
with any sparse format with little modifications. In essence,
both of the algorithms are presented for the COO format.
Therefore, the set of row indices (R) and the set of column
indices (C) are the same length as the total no. of non-zero

Algorithm 4 Numeric kernel for values of non-zero entries
1: INPUT: Ne: total elements;nd: DOFs per node;ne:

nodes per element;connect[Ne,ne]: Connectivity Ma-
trix; R,C;

2: OUTPUT: Values of global stiffness matrixK
3: for ∀ j ∈Ne do ⊲ Each elementj gets one thread
4: for i←| connect[ j :] | do ⊲ connect[j:]: Set of all

nodes of elementj
5: for k←| connect[ j :] | do
6: Bisection search target index (t) for dk

1 in the
setCi ∈C ⊲ dk

1 is the first DOF of nodek
7: for m← nd do ⊲ For assemblingKe into K
8: r i = t +nd×nng× (m−1); ⊲ r i : row

index
9: for n← nd do

10: ci = t+nd×nng× (m−1)+(n−1);
⊲ ci : column index

11: K[R(r i),C(ci)]+ = Ke[m,n] ⊲

Assembly of non-zero entry viai-to- j connection
12: end for
13: end for
14: end for
15: end for
16: end for

entries in the final matrix. The pattern used for storage of
row and column indices in (R,C) remains the same as shown
in figure 1. Therefore, algorithm 3 is executed to get (R,C)
for storing row and column indices of COO. Next, algorithm
4 is executed to obtain theValue array of COO. Step 11 of
algo 4 is updated as

Value[ci ]+ = Ke[m,n]

Both algorithms 3 and 4 remain same for the CSR format as
shown for the COO format. However, at step 12 of algorithm
3, instead of storing row indices (R), row offsets are stored.
The storage of non-zero entries is identical to the COO for-
mat.

Since the ELL sparse format (referring figure 3) has a
column-major ordering, all accesses to the global memory
are coalesced. Due to the structured nature of this format,
the need for row indices set (R) is removed. Therefore, the
steps 10 through 15 of algorithm 3 are no longer required.
This results in a reduction of the shared memory and register
requirements by approximately 30%. Due to this reason, a
higher performance is observed later in Section 5.

As shown in figure 3, the ELL sparse storage format uses
one matrix to store the column indices and another matrix for
the values of the non-zeroes. Instead of two dimensional ma-
trix in the traditional form, one dimensional arrays are used
to store the indices and values on the GPU. The length ofC j

for every j in step 18 of algorithm 3 is equal to length of the
row of the global stiffness matrix having maximum number
of entries. The value of this length can be precomputed using
the connectivity matrix (connect[Ne,ne]) for the given prob-



lem. It can be noted in figure 3 that the rows, which have less
number of non-zero entries, are filled with ‘∗’. Similar ap-
proach is used forCi in which DOF of all neighboring nodes
are stored. Moreover, step 22 and the corresponding loop are
no longer required and can be removed.

In algorithm 4, the step 11 is updated for storing non-
zero entries as

Value[ci ]+ = Ke[m,n]

Rest of the algorithm 4 is the same for both ELL and COO.

4.3 Assembly using Modified Sparse Storage Formats
We present two new modified sparse storage formats.

The primary is to further reduce storage requirement by ex-
ploiting specific properties of the global stiffness matrix. As
mentioned before, in an element-by-element assembly, the
assembly is performed bynode-to-nodeconnections of each
element as shown in figure 4. Each of these connections
writes a 3×3 (DOF× DOF in the generalized case) dense
matrix into the global stiffness matrix. While all of these nine
non-zero entries need to be stored, all nine indices need not
to be stored explicitly. In other words, assembly is always
performed in blocks of DOF2 entries, which stay adjacent
to each other even after assembly. Only one index could be
stored for all the DOF2 non-zero entries. For further opera-
tions (for example SpMV) on these formats, either modified
strategies need to be devised, or these can be converted to any
standard sparse format for further processing. The proposed
assembly strategy is customized in the context of these two
formats. Details of these storage formats as well as the strat-
egy of assembling into them are discussed in the following
sections.

4.3.1 COO Modified (COOM) Sparse Storage Format
The proposed COOM format is made up of three one-

dimensional arrays same as the COO storage format. The
size for storing row indices in (Φ) set is now reduced by
keeping the first DOF of every nodei as shown in step 10
of algorithm 5. It means that steps 10 and 15 of algorithm 3
are removed for the COOM format. With this modification,
the overall size ofΦ for the COOM format is nowI , instead
of (θ×ndo f2× I ) for the COO format. For the column in-
dices, the first DOF for all neighboring nodes to nodei are
stored as shown at step 12 of algorithm 5. This also reduces
size ofΓ to (θ× I ), instead of (θ×ndo f2× I ) for the COO
format.

The Value array for the COOM format has the size
equal to the total number of non-zero entries. Algorithm 4
remains the same for the COOM format. It can be seen at
step 6 of the same algorithm that searching of index (p) is
reduced in the range of (θ) for Γi ∈ Γ. The assembly through
Value array remains the same as the COO format as de-
scribed in Section 4.2. In the present study, we did not in-
clude a modified CSR format separately, because it would
simply be identical to the COOM format. This is because the

CSR format already uses a similar concept of row offsets and
indices as in the COOM format.

Algorithm 5 Symbolic kernel for COOM format
1: INPUT: N: total number of nodes;nd: DOFs per node;

d j
i : ith global DOF of nodej; Sj : Set containing neigh-

boring nodes of nodej; nng: Number of neighboring
nodes of a node j;n j

k: global node number of nodek;
2: OUTPUT: R : Set of row indices;C : Set of column in-

dices;
3: for j ← 1 : N do
4: D j = (d j

1, . . . ,d
j
nd); ⊲ Pre-processing

5: Sj = (n j
1, . . . ,n

j
j , . . . ,n

j
nng);

6: end for
7: CopyD j andSj to the global memory of GPU
8: for ∀ j ∈N do ⊲ Kernel launch with a grid ofN number

of threads
9: Rj = /0, C j = /0;

10: Rj = Rj ∪d j
1; ⊲ Filling individual Rj in parallel

11: for k← 1 : nngdo
12: C j =C j ∪dk

1, k∈ Sj ; ⊲ Filling individualC j in
parallel

13: end for
14: C=C∪C j

15: end for

4.3.2 ELL Modified (ELLM) Sparse Storage Format
As described in Section 4.2 that the indices and non-zero

entries are stored in two matrices as per the format shown in
figure 3. However, we store the column indices in a one-
dimensional array (Γ) and non-zero entries in theValue ar-
ray, similar to the ELL format. Since the row indices are
not required, step 10 can be removed for the ELLM format
for the symbolic kernel in algorithm 5. TheΓ set remains
the same as shown in algorithm 5, which reduces its size for
the ELLM format to (θ× I ) as compared to (θ× ndo f× I )
with the ELL format. TheValue array for the ELLM for-
mat stores non-zero entries as explained in algorithm 4. For
the ELLM format also, searching range for index (p) is re-
duced at step 6 of the same algorithm. The assembly through
Value array remains the same as the ELL format described
in Section 4.2. In figures 7 and 8 the space required in
bytes to store the global stiffness matrix are plotted against
node numbers and DOF per node for different storage for-
mats. These storage requirements are calculated using ex-
pressions derived for both the standard and the modified stor-
age formats as presented in table 1. In the table,nx, ny and
nz represent the node numbers in thex, y andzdirections re-
spectively for a cuboid domain using hexahedron elements.
The figure shows similar storage requirements for the ELL
and CSR formats. Both the proposed formats (COOM and
ELLM) take significantly less amount of storage space com-
pared to the other three formats.



Table 1. Storage space requirement for different sparse formats.

Format Required Sapce in bytes

COO 1296(nx+ny+nz)−1944(nxny+nynz+nznx)

+2916nxnynz−864

CSR 864(nx+ny+nz)−1296(nxny+nynz+nznx)

+1956nxnynz−576

ELL 1944nxnynz

COOM 576(nx+ny+nz)−864(nxny+nynz+nznx)

+1300nxnynz−384

ELLM 1080nxnynz
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with increasing DOF/node.

4.4 Race Condition
A race condition or data race in computation occurs

when the output of a process becomes dependent on the se-
quence in which two simultaneous threads access a memory
location. The GPU-based implementation of FEA assembly
is susceptible to this issue when more than one threads write

to the same memory location. In the symbolic kernel, each
node being assigned to a single unique thread, the possibil-
ity of sharing of nodes among any thread is alleviated. This
nodal independence removes any chance of a race condition.
This, however, is not true for the numeric kernel, where each
element is assigned exactly to one thread. Due to the fact
that all the elements in the mesh have shared nodes, the pos-
sibility exists for two or more threads writing to the same
memory location at the same time. Therefore, we implement
atomic operations and element coloring methods to counter
the race condition.

When an atomic operation such asatomicAdd or
atomicSub is invoked, it locks the concerned memory lo-
cation and waits until the requested operation is completed
( [34]). This is usually avoided due to the serialization of
atomic threads hampering the overall performance. The cur-
rent work keeps the threads waiting for an atomic lock to a
bare minimum. For a dense enough mesh, the amount of se-
rialization caused by an atomic operation becomes smaller
and smaller and the performance degradation becomes neg-
ligible. In the second implementation, we color the mesh
elements with different colors in a way that an element is
only allowed to share nodes with elements of different col-
ors. The element coloring method is shown in figure 9 for a
structured mesh. After the coloring is done, separate kernels
for each of the colors are invoked in a serial manner as shown
in algorithm 6.

Algorithm 6 Assembly using Colors
1: n←Number o f colors
2: *E[n]← Set o f elements in a color
3: procedure KERNEL CALL USING COLORING

4: for i← 1 : n do
5: numThreads← size(*E[i]);
6: AssemblyKernel<<< numThreads>>> (n)
7: end for
8: end procedure

Layer 1

Layer 2

Layer 1

Layer 2

Threads : { t1, t2, t3, t4, t5, t6, t7, t8 }

(t1) (t2)

(t4)(t3)

(t5) (t6)

Fig. 9. Coloring Scheme for race condition



5 Results and Discussion
5.1 Test Problem and Hardware Details

The proposed assembly strategy of dividing the task
into symbolic and numeric kernels is now tested using the
standard problem of the cantilever beam. The beam is dis-
cretized with eight-noded hexahedron elements with an end
load, whose results are already known to us. The size of the
beam is decided by the number of nodes in x, y, and z direc-
tions. The material used is isotropic and homogeneous. For
performance analysis, the CPU version of the code is run on
an Intel Xeon ES1650 Sandy Bridge with 6 cores clocked at
3.2 GHz. The GPU code is run on a Tesla K40c with peak
memory bandwidth of 288 gigabytes per second. The GPU
has 12 gigabytes of global memory with 2880 cores.

5.2 Performance Analysis
For the performance analysis of the proposed assembly

strategies on GPU, it is compared with theSharedNZim-
plementation of study by Cecka et al. [6] on GPU and se-
rial implementation of algorithm 2 ofaddto method. The
SharedNZalgorithm is implemented using CUDA in which
the kernel and memory utilization remain the same as given
by Cecka et al. [6]. The serial code is implemented using the
C-programming language. Figure 10 shows the execution
time of the proposed assembly strategy using different stor-
age formats with the coloring method. The execution time
of theSharedNZimplementation is shown using the bar and
that of the others are shown using the curves. It can be seen
from the figure that all implementations using the proposed
assembly strategy require less execution time as compared
to the SharedNZimplementation. Moreover, the modified
storage formats with the proposed assembly strategy perform
significantly better than the standard counterparts. This re-
duced execution time can be attributed to the search-span re-
duction while assembly through efficient distribution of the
workload, reduced memory footprint and write operations.
Figure 11 shows the execution time of the proposed assem-
bly strategy using atomics with different sparse storage for-
mats. It can be seen from the figure that apart from the COO
and CSR formats, all the storage formats including the mod-
ified ones outperform theSharedNZimplementation. Also,
the modified formats outperform the standard formats using
atomics as well.

Figure 12 shows the speedup comparison of all the im-
plementations (five sparse storage formats, each for atomics
and coloring method) compared to thesharedNZimplemen-
tation. Clusters of histograms are plotted each for five differ-
ent mesh sizes. In each of these clusters, the colored bars rep-
resent the coloring-based implementations and the patterned
bars represent the atomics-based implementations. As can be
expected from figures 10 and 11, the speedup values for the
coloring-based implementations are significantly higher than
the atomics-based implementations. The highest speedup is
obtained for the ELLM and COOM formats for all mesh
sizes using the coloring method. For the coloring-based
modified formats (COOM-coloring and ELLM-coloring) a
downward trend in the speedup can be observed for larger
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mesh sizes. On the other hand, a constant trend can be ob-
served at higher mesh sizes for the atomic-based implemen-
tations. The reason behind this observation is that the num-
ber of available warps increases for larger mesh sizes. This
ensures that despite the number of threads waiting for a lock
created by an atomic operation to release, the GPU occu-
pancy does not go down. This, in turn, results in higher rela-
tive performance for larger mesh sizes for atomics-based im-
plementations. Figure 13 shows the speedups of all the im-
plementations in comparison to the serial implementation of
algorithm 2 on CPU. Unlike the trend shown in figure 12, the
modified (COOM and ELLM) and existing storage formats
show an increasing trend in the speedups when compared to
the CPU version. This is due to the fact that the CPU version
consumes increasing amounts of time for larger mesh sizes.

Figure 14 shows the GFLOP/s for all the implementa-
tions for two different mesh sizes. Similar to the previous
plots, the GFLOP/s values for the coloring-based implemen-
tations are significantly higher than the atomics-based imple-
mentations. This is because of the fact that although the total
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number of floating point operations is similar for the atom-
ics and coloring-based implementations, the GFLOP/s count
becomes low in comparison to the coloring-based implemen-
tations due to the total execution time being higher in case
of atomics-based implementations. The highest performance
is observed for the coloring-based implementations with the
COOM and ELLM formats. The COO and CSR formats are
seen to have lower values, especially for the atomics-based
implementations. Figure 15 shows the percentage of time re-
quired by different parts of the application. The COOM and
ELLM formats with element coloring outperform all other
implementations. For all implementations, the numeric ker-
nel is seen to be the most time consuming part of the entire
assembly operation, whereas the symbolic kernel takes only
a small fraction of the total time.

6 Conclusion
We presented a number of implementations for perform-

ing FEA assembly on GPUs. A strategy was developed
for efficient implementation of theaddto assembly algo-
rithm on GPU with three standard and two proposed sparse
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storage formats, while decomposing the task into two parts.
The strategy was found to perform significantly better when
compared to the optimized CPU and GPU implementations
for all the sparse storage formats. For countering the race
condition, the coloring method outperformed atomics-based
method for all sparse storage formats. Both the modified
sparse storage formats produced considerably better results
than their standard counterparts. Assembly into the ELLM
format required the least amount of time compared to other
formats. This can be attributed to low usage of registers and
shared memory by the kernels. Assembly into the COOM
format, on the other hand, required the smallest amount of
storage space compared to all other formats for the same
mesh size. Since, for structured meshes the neighbor infor-
mation is readily available using index mappings, efficient
ordering can be explored for handling race condition along
with the coloring and atomics-based methods presented in
this paper. Although only regular meshes have been used in
this paper, the modified sparse formats are independent of
the type of mesh and can be used with any type of meshes.
The kernel division strategy, however needs to be adopted for
implementation on an irregular mesh. Since the neighbor in-
formation is not readily available for unstructured grids,pre-
processing of the mesh connectivity can be performed and



the resulting neighbor information can be utilized for imple-
menting the same kernel division strategy. The GPU used
in this paper allowed us to solve a problem with a maxi-
mum node number of approximately 4 million. In case of
larger mesh sizes, we can use domain decomposition meth-
ods using a graph partitioning library such as METIS ( [35])
in future. Furthermore, testing of the proposed methodology
using a more modern GPU such as the V100 or A100 with
the increased number of cores and superior performance can
be performed for a more complete analysis.
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