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ABSTRACT
Single-loop methods for reliability-based design optimization are characterized by high com-
putational efficiency. However, the accuracy of these methods may be low for highly non-linear
probabilistic constraints. A new hybrid method called “SLShV-CG” is proposed for improving
the accuracy in which the single-loop method is coupled with the shifting vector approach of
the sequential optimization and reliability assessment method. This shifting vector approach
is incorporated with the probabilistic constraints without approximating them for reliability
analysis. The most probable points for the probabilistic constraints are found using the Karush-
Kuhn-Tucker conditions and the conjugate gradient search direction is used for determining
the approximate most probable point in every iteration. The proposed method is tested on four
mathematical and four engineering reliability-based design optimization problems, and the
accuracy of solutions is verified using Monte-Carlo simulations. Results demonstrate better
accuracy and computational efficiency of the proposed method over the six reliability-based
design optimization methods from the literature.

KEYWORDS
Reliability-based design optimization; First-order reliability method; Single-loop method;
Conjugate direction search

1. Introduction

Deterministic optimization is used for solving various constraint optimization problems in
which the optimal solution is generally located on the constraint boundary. However, the design
solution evolved by deterministic optimization can fail due to uncertainties from material
properties, geometry, operational environment, and manufacturing process. Reliability-based
design optimization (RBDO) is an efficient tool for solving such problems with desired target
reliability and thus improving the quality of the design solution. RBDO model (Fiessler,
Neumann, and Rackwitz 1979; Tu, Choi, and Park 1999; Aoues and Chateauneuf 2010)
is generally expressed as a minimization of the objective function, which is subjected to
probabilistic constraints or limit state functions. As a result, the design solution is safer and
conservative due to the consideration of the probabilistic model. However, a trade-off for
achieving the target reliable solution using the RBDO methods is the computational cost
and the accuracy. Therefore, the development of RBDO methods is focused on achieving the
desired reliability and computational efficiency.
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So far, various RBDO methods have been developed along with different types of reliability
assessment such as sampling method, i.e., importance sampling and Monte Carlo simulation
(MCS) (Lin et al. 1997), surrogate modeling (Dubourg, Sudret, and Bourinet 2011), the
approximate integration method, and the most probable point (MPP)-based method. Among
these methods, MCS is the most accurate method but it is computationally expensive. The MPP-
based methods, on the other hand, gained popularity due to their computational efficiency.
These methods can be further divided into three categories: single-loop, double-loop, and
decoupled-loop methods.

The conventional double-loop method comprises of a nested loop. The outer-loop is the
main optimization loop in the original design variable space within which it performs reliability
analysis for each limit-state function in series. However, each reliability analysis itself requires
an optimization loop in the standard normal space. In that case Rosenblatt transformation
(Rosenblatt 1952) is used to map random variables from their original space to the standard
normal space. Reliability analysis can either be performed by the reliability index approach
(RIA) (Yu, Chang, and Choi 1998; Reddy, Grandhi, and Hopkins 1994) or the performance
measurement approach (PMA) (Lee, Yang, and Ruy 2002; Tu, Choi, and Park 1999; Youn,
Choi, and Du 2005). According to the literature, PMA is more stable and efficient than RIA,
although both these approaches can use the first-order reliability method (FORM)(Rackwitz
and Flessler 1978; M. Hasofer and Lind 1974) and the second-order reliability method (SORM)
(Breitung 1984; Mansour and Olsson 2014). FORM linearizes the higher order non-linear
limit-state functions using the first-order Taylor series that can make the probability of failure
estimation erroneous. For this reason, SORM (Köylüoǧlu and Nielsen 1994; Kiureghian, Lin,
and Hwang 1987; Huang et al. 2018; Lee, Noh, and Yoo 2012) is developed, which has better
accuracy than FORM. An asymptotically exact formulation is developed by Breitung (1984)
using SORM that has been further modified by Tvedt (1983) using three-term approximation.
On the other hand, a point-fitting second-order reliability approximation is proposed by Zhao
and Ono (1999). An efficient SORM-based saddle point approximation is proposed by Hu
and Du (2019). A quadratic problem is solved by bypassing the concept of MPP by Mansour
and Olsson (2016). Further, an approximate Hessian analysis is proposed (Lim, Lee, and Lee
2014) to reduce the numerical efforts of SORM. A SORM-based RBDO with uncorrelated
non-Gaussian variables has been derived by Strömberg (2017). However, both FORM and
SORM need an iterative optimization procedure for reliability analysis which is combined
with the main optimization loop in a double-loop method resulting in high computational
cost.

In the single-loop methods, the equivalent deterministic constraints substitute the probabilis-
tic constraints. The reliability assessment is approximated and integrated into the deterministic
optimization loop. Karush-Kuhn-Tucker (KKT) optimality conditions are used to collapse the
nested optimization loop into the single-loop method (Liang, P. Mourelatos, and Tu 2008;
Madsen and Hansen 1992). A semi-single-loop method (Lim and Lee 2016) is also developed
in which an approximate MPP is calculated by a sensitivity analysis of reliability analysis.
Single-loop single vector (SLSV) method developed by Chen, Hasselman, and Neill (1997)
also exists in the literature in which a quantile approximation of the limit-state functions is
performed. The SLSV method is the first attempt in a truly single-loop method (Wang and
Kodiyalam 2002; Yang and Gu 2004). In this method, the random variables are first trans-
formed into the uncorrelated and standard normalized space and the MPP is found using the
steepest descent search direction. Due to slow convergence of the steepest descent search,
which is because of the orthogonality of the search directions, the conjugate gradient (CG)
search direction is adopted with SLSV (Ezzati, Mammadov, and Kulkarni 2015; Jeong and
Park 2016). The CG algorithm requires successive direction vectors of the previous iteration
to calculate the MPP. This adds a little more calculations but it improves the stability and
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accuracy of the solution.
The decoupled-loop method is also developed to reduce the computational cost of RBDO

methods. The formulation is developed by decoupling the optimization and reliability analysis
loops. The decoupled-loop method comprises of direct decoupling approach (DDA) (Zou and
Mahadevan 2006), sequential optimization and reliability assessment (SORA) (Du and Chen
2004), sequential approximate programming (SAP) (Cheng, Xu, and Jiang 2006). Further,
approximate SORA (ASORA) (Yi, Zhu, and Gong 2016) is developed based on the previous
information of approximate most probable target point (MPTP) and approximate performance
measure approach. SAP is further developed by using PMA-based RBDO method (Yi and
Cheng 2008). The adaptive decoupling approach (Chen et al. 2013) uses an update angle
strategy and novel feasibility checking method to improve the efficiency of RBDO methods.

From the above literature, it can be observed that the single-loop methods are computa-
tionally efficient and the decoupled-loop methods are accurate RBDO methods. Moreover,
FORM-based RBDO methods are generally simpler for practicing engineers compared to
SORM-based RBDO methods. Furthermore, most existing SORMs may yield unphysical
probabilities, such as negative or complex values. Motivated from the advantages of these
methods, a hybrid method is proposed. Following are the contributions of the paper.

• A FORM-based single-loop method is coupled with the shifting vector approach of
SORA in order to generate an accurate and computationally efficient solution. The
shifting vector is incorporated with all probabilistic constraints that gets updated at
every iteration.

• The KKT conditions are used to approximate the MPPs of these constraints and the
approximate MPP is determined using the CG search direction in the normal variable
space.

• The performance assessment of the proposed method, which is referred to as SLShV-
CG, is tested on four mathematical and four engineering RBDO problems from the
literature. SLShV-CG is also compared with other FORM-based RBDO methods such
as PMA-AMV (Tu, Choi, and Park 1999), PMA-CGA (Ezzati, Mammadov, and Kulkarni
2015), SLSV (Liang, P. Mourelatos, and Tu 2008), SLSV-CG (Jeong and Park 2016),
SORA (Du and Chen 2004) and ASORA (Yi, Zhu, and Gong 2016), and their results
are verified using Monte-Carlo simulations.

The paper is organized into five sections. A basic RBDO formulation is described in
Section 2 along with brief details of reliability assessment approaches and RBDO methods. In
Section 3, the details of the proposed method are presented with a flow chart and optimization
sequence. Results and discussion are presented in Section 4 and the paper is concluded in
Section 5 with the scope of future work.

2. Reliability-based Design Optimization Preliminaries and Methods

2.1. Basic formulation of RBDO

In general, a deterministic optimization formulation can be written as

min. f (d),
s.t.: gi(d) ≤ 0, i = 1, . . .,M,

dL ≤ d ≤ dU,

(1)
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where f (d) is the objective function, gi(d) is the i−th inequality constraints, d =

[d1,d2, . . .,dN ]T is the N-dimensional design vector, and dL and dU are the lower and up-
per limit of the design vector d, respectively.

In order to introduce uncertainty into the formulation, the design variable vector is replaced
by a vector of random variables. Therefore, the constraints are converted into the probabilistic
constraints. The formulation of RBDO (Tu, Choi, and Park 1999; Youn, Choi, and Park 2003)
is given in equation (2).

min. f (µx),
s.t.: p f = Pr[gi(X) ≤ 0] ≤ Φ(−βti ), i = 1, . . .,M,

µ
L
x ≤ µx ≤ µ

U
x ,

(2)

where X = [X1,X2, . . .,XN ]T is the N-dimensional random variable vector, µx is the vector
of mean values of random variable vector X, µL

x and µ
U
x are the lower limit and upper limit

of µx, respectively. βt
i

is the target reliability index of i−th limit state function gi(X), Pr[·]
is the probability operator of limit-state function, and Φ(·) represents the standard normal
cumulative distribution function. p f represents the failure probability which can be expressed
as a multidimensional integral (Madsen, Krenk, and Lind 1986) and is given in equation (3).

p f = Pr[gi(X) ≤ 0] = Fgi (0) =
∫

· · ·
∫

gi (x)≤0
fX(x)dX, (3)

where fX(x) is the joint probability distribution function of the random variable in the original
space X and Fgi (0) is the representation of the cumulative distribution function of gi(X).

An exact evaluation of equation (3) is difficult to obtain as multidimensional integral is
involved. Therefore, gi(X) is approximated by using the first-order or second-order Taylor
series. The MPP is then obtained either by using RIA or PMA. In the following subsections,
these approaches are described briefly.

2.2. Reliability index approach (RIA)

The probabilistic constraint of equation (2) can be transformed into a reliability index as given
in equation (4).

β̂i = −Φ−1(Fgi (0)) ≥ βti , (4)

where β̂i and βt
i

are the reliability index and target reliability index for i−th limit state
function, respectively. By replacing the probabilistic constraint of equation (2) by equation
(4), the RBDO formulation can be written as

min. f (µx),
s.t.: β̂i ≥ βti , i = 1, . . .,M,

µ
L
x ≤ µx ≤ µ

U
x .

(5)

RIA uses FORM to calculate the reliability index, β̂i. For this calculation, a random
variable vector X is transformed to the standard normal random variable vector U which can
be performed by Rosenblatt transformation (Rosenblatt 1952) or Nataf transformation (Liu
and Kiureghian 1986), U = T(X) or X = T−1(U). The transformation from the original design
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Figure 1. Transformation from the original design variable space to the standard normal space.

space to the standard normal space for two variables is shown in figure 1. The reliability index
β̂i is evaluated by solving an optimization problem (Rackwitz and Flessler 1978), which is
given in equation (6).

find U∗

min. ‖U‖ = βi,
s.t.: gi(U) = 0.

(6)

The optimum point U∗ is called as the most probable failure point (MPFP) in the standard
normal space. The flowchart of the reliability index approach is shown in figure 2. In RIA, at
every iteration the value of β is updated until the target reliability is achieved by the MPP for
the particular constraint.

2.3. Performance measure approach (PMA)

The probabilistic constraint of RBDO formulation given in equation (2) can also be transformed
using equation (7).

Gp

i
= F−1

gi
(Φ(−βti )) ≥ 0, (7)

where Gp

i
is the i−th probabilistic performance measure. Therefore, the RBDO method based

on PMA can be formulated as

min. f (µx),
s.t.: Gp

i
≥ 0, i = 1, . . .,M,

µ
L
x ≤ µx ≤ µ

U
x .

(8)

The value of the performance measure can be calculated by solving the optimization problem
given in equation (9).

find U∗

min. gi(U),
s.t.: ‖U‖ = βti ,

(9)

where the optimum point U∗ is known as the most probable target point (MPTP) with target
reliability βt

i
. The optimum value of gi(U∗) is used as a performance measure of Gp

i
in equation
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Figure 2. Flowchart of RIA

(8). The probabilistic performance measure can be calculated as

Gp

i
= gi(U∗) = Gi(X∗) = Gi(X(U∗)). (10)

By applying Lagrangian multiplier method in equation (9), the MPTP point (Wu, Millwater,
and Cruse 1990) can be calculated using equation (11).

Uk+1
= −βti ·

∇g(Uk)
‖∇g(Uk)‖

, (11)

where ∇ is the gradient of function with respect to U and Uk is the MPTP at k−th iteration.
The flowchart for PMA is shown in figure 3. In PMA, the value of target reliability β is given
and unew is updated based on the gradient of the constraint. The PMA-based method gets
terminated when the target reliability is achieved.

2.4. Single-loop single vector (SLSV) method

Liang, P. Mourelatos, and Tu (2008) proposed SLSV in which the MPP is updated by the
approximate PMA-based reliability analysis. The loop of reliability analysis is eliminated and
the approximate MPP is estimated by using KKT conditions. The formulation of SLSV is
given in equation (12).
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Figure 3. Flowchart for PMA

min. f (µx),
s.t.: gi(X) ≤ 0, i = 1, . . .,M,

where X(k)
= µ

(k)
x + β

t
iσα

(k−1)
i
,

α
(k−1)
i

=

σ ∇gi(X)(Xk−1)
‖σ ∇gi(X)(Xk−1)‖

,

(12)

where X(k) represents the vector of random variable at k−th iteration, µ(k)
x is the mean value

vector of X(k), σ represents the vector of standard deviation of random variable X(k), βt
i

is the

target reliability of i−th constraint and α
(k)
i

is the steepest descent direction vector for i−th
constraint.

2.5. Sequential optimization and reliability assessment (SORA) method

Du and Chen (2004) proposed a decoupled-loop method in which the optimization and the
reliability assessment are performed sequentially. The MPP is estimated by PMA for each
probabilistic constraint. The shifting vector (sk+1

i
) is used to push the violated deterministic

constraint, i.e., having reliability less than the specified target toward the feasible direction.
The shift vector is calculated as

s
(k+1)
i

= µ
(k)
X

−X
(k)
MPP, (13)

where µ
(k)
X

is the mean value of random variable X at k−th iteration and X
(k)
MPP is the MPP
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for i−th constraint. Deterministic optimization is performed with the shifted constraints until
the convergence is achieved. This method uses the reliability information from the previous
iteration to shift the violated constraint. This idea of shifting vector is used to reduce the
computational requirement of SORA for generating a reliable solution.

3. Single-Loop Shifting Vector Method with Conjugate Gradient Search (SLShV-CG)

In single-loop method, the reliability analysis is performed by approximating the MPP using
KKT conditions. Since the update of the MPP requires gradient informations, SLSV shows
inefficiency and inaccuracy for RBDO problems with highly non-linear constraints. On the
other hand, SORA decouples optimization and reliability analysis and thus, improves compu-
tational efficiency while solving RBDO problems with any type of constraints. In this paper,
SLSV is coupled with the shifting vector approach of SORA in which the constraints with
less reliability is shifted toward the feasible direction. In this method, the constraints are not
required to be approximated using Taylor series. The proposed method is explained in the
following subsections.

3.1. Conjugate gradient method

In this paper, the conjugate gradient (CG) (Reeves and Fletcher 1964) method is used to
calculate the approximate MPP as it improves the stability as well as efficiency. The basic idea
of the CG method is to move in a non-intersecting direction, unlike the steepest descent method.
Initially, the CG method uses the steepest descent direction, i.e., negative of the gradient of
the performance function. The algorithm for unconstrained deterministic optimization is as
follows.

Step 1 Set the initial guess µ0, k = 1 and termination parameters ǫ .
Step 2 Calculate direction vector S

S0
= −∇ f (µ0)

Step 3 Calculate λ0, such that f (µ0
+λ0S0) is minimum. Update µk

= µ
0
+λS0. Also calculate

∇ f (µk).
Step 4 Set conjugate direction

Sk
= −∇ f (µk)+ ‖∇ f (µk)‖2

‖∇ f (µk−1)‖2
·Sk−1

Step 5 Find λk , such that f (µk
+λkSk) is minimum. Set µk+1

= µ
k
+λkSk .

Step 6 If ‖µk+1−µk ‖
‖µk ‖ ≤ ǫ or ‖∇ f (µk+1‖) ≤ ǫ holds true, then terminate, else set k = k + 1 and

goto step 4.
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3.2. Details of SLShV-CG method

Since the shift vector approach of SORA is coupled with SLSV, the RBDO formulation is
modified as

min. f (µx),
s.t.: gi(µ(k)

x − s
(k)
i
) ≤ 0, i = 1,2, . . .,M,

s
(k)
i
= µ

(k)
x −X

(k)
(MPP).

(14)

The shifting vector s
(k)
i

gets updated in every iteration using the approximate MPP, which is
given as

X
(k)
(MPP) = µ

(k)
x + β

t
iσxα

(k−1)
i
, (15)

where X
(k)
(MPP) represents the approximate MPP vector. Note that the vector σx is multiplied

with the constraint direction vector α(k−1)
i

. This multiplication is performed by multiplying

each component of vectorσx with the corresponding component of vector α(k−1)
i

. The direction

α
(k−1)
i

is found using the conjugate gradient direction, which is given as

α
(k−1)
i

=

D
(k−1)
i

‖D(k−1)
i

‖
,

D
(k−1)
i

= σx∇g(k−1)
i
+

(σx∇g(k−1)
i

)T (σx∇g(k−1)
i

)
(σx∇g(k−2)

i
)T (σx∇g(k−2)

i
)
·D(k−2)

i
,

(16)

where D
(k)
i

signifies the direction vector of i−th constraint at the k−iteration. Since the
conjugate gradient direction is used to update the MPP of the proposed hybrid single-loop
method with the shifting vector approach of SORA method, it is referred to as SLShV-CG.
Following are the steps of SLShV-CG.

Step 1 Set k = 0, initial design variables X0
= µ

0
x, X

(0)
MPP

= µ
0
x and the given standard deviation

σx and target reliability index βt .
Step 2 Calculate the shifting vector of the i−th constraint as

s
(k)
i
= µ

(k)
x −X

(k)
(MPP), (17)

The initial shifting vector will be zero as X
(0)
(MPP) = µ

0
x. Therefore, the first optimization

will be a deterministic evaluation of optimal solution.
Step 3 Perform deterministic optimization of the design problem with the shifted constraints.

min f (µx),
s.t.: gi(µ(k)

x − s
(k)
i
) ≤ 0, i = 1,2, . . .,M,

s
(k)
i
= µ

(k)
x −X

(k)
(MPP).

(18)
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Step 4 Calculate the conjugate direction vector

α
(k)
i
=




σx∇gi
‖σx∇gi ‖

���
µ

0
x

, if k = 0,

Di

‖Di ‖

���
X
(k)
(MPP)

otherwise,
(19)

where

D
(k)
i
=





σx∇gi, k ≤ 1

σx∇g(k)i
+

(σx∇g(k)i
)T (σx∇g(k)i

)
(σx∇g(k−1)

i
)T (σx∇g(k−1)

i
)
·D(k−1)

i
, otherwise.

Step 5 Set k = k +1 and update X
(k)
MPP

in the original space as

X
(k)
(MPP) = σ

(k)
x + β

t
σ
T
x α

(k−1)
i
. (20)

Step 6 If the convergence criterion
‖ f (µk+1

x )− f (µk
x )‖/‖ f (µk

x )‖ ≤ 0.001
or ‖µk+1

x − µ
k
x ‖ ≤ 0.001 is satisfied, terminate. Otherwise go to Step 2.

The flowchart of SLShV-CG is shown in figure 4 in which all the steps are shown. It can
be observed that SLShV-CG does not require a transformation of the original variable space
to the standard normal variable space.

4. Results and Discussion

In this section, four mathematical and four engineering RBDO examples are solved to demon-
strate the accuracy and computational efficiency of SLShV-CG method. The accuracy of the
obtained solutions is evaluated through Monte Carlo simulation (MCS) with one million sam-
ple size and the target reliability index for each probabilistic constraint is determined. The
computational efficiency is measured through the number of function calls (NFC) in which fFC

is the measure of objective function calls and gFC is the measure of probabilistic function calls.
Iter is used to denote the total number of iterations required by the optimization algorithm
for convergence. The performance of SLShV-CG is also compared with PMA-AMV (Tu,
Choi, and Park 1999), PMA-CGA (Ezzati, Mammadov, and Kulkarni 2015), SLSV (Liang,
P. Mourelatos, and Tu 2008), SLSV-CG (Jeong and Park 2016), SORA (Du and Chen 2004),
and ASORA (Yi, Zhu, and Gong 2016). It is noted that all methods are initialized with the
same initial point and get terminated using the same termination conditions given at Step 6 of
SLShV-CG algorithm. For optimization, the tool fmincon is used as an optimizer.

4.1. Mathematical example 1

The first example given in equation (21) is a non-linear mathematical problem (Jeong and
Park 2016; Yi, Zhu, and Gong 2016), which has linear objective function and three non-linear
constraints. Constraints g1(X) and g3(X) are convex functions and g2(X) is slightly concave
in nature. Random variables x1 and x2 are normally distributed and statistically independent.
Both these design variables have the lower and upper bound set on their mean values to 0 and
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MPP
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0
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sk
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= µ

(k)
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MPP

Optimization

min : f (µ(k)
x )

s.t. : gi(µ(k)
x − s

(k)
i
) ≤ 0

α
(k)
=

{ σx∇gi
‖σx∇gi ‖

���
µ

0
x

,k = 0

D

‖D‖

���
X
(k)
MPP

otherwise

where

D(k)
=




σx∇gi, k ≤ 1

σx∇g(k)i
+

(σx∇g(k)i
)T (σx∇g(k)i

)
(σx∇g(k−1)

i
)T (σx∇g(k−1)

i
)
·D(k−1), otherwise
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t
σ
T
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µ
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Figure 4. Flowchart of SLShV-CG
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Table 1. RBDO results for Example 1 with βt = 3.0
Methods f ∗ µ

∗
x NFC βt

MCS
Iter

fFC gFC g1 g2 g3
DO 5.172 (3.111, 2.061) - - - - - -
PMA-AMV 6.7219 (3.4363, 3.2855) 27 5193 3.0045 3.0307 Inf 8
PMA-CGA 6.7256 (3.4391, 3.2865) 25 6157 2.9698 3.0068 Inf 8
SLSV 6.7199 (3.4419, 3.2779) 67 191 2.9402 2.9719 Inf 3
SLSV-CG 6.7253 (3.4393, 3.2861) 76 225 2.9576 3.0459 Inf 4
SORA 6.7226 (3.4369, 3.2857) 76 1137 2.9989 3.0617 Inf 4
ASORA 6.7256 (3.4391, 3.2865) 96 312 2.9698 3.0068 Inf 6
SLShV-CG 6.7224 (3.4371, 3.2853) 124 402 3.0258 3.0332 Inf 9

10, respectively with standard deviation of 0.3. The initial point of this problem is taken as,
µ
(0)
x = [5.0,5.0]T and the target reliability index βt

i
for all constraints is set to 3.0.

Find: [µx1,µx2]T

min: µx1 + µx2,

s.t.: Pr

[

g1(X) = 1−
x2

1 x2

20
> 0

]

≤ φ(−βt1),

Pr

[
g2(X) = 1− (x1 + x2 −5)2

30
− (x1 − x2−12)2

120
> 0

]

≤ φ(−βt2),

Pr

[

g3(X) = 1− 80

(x2
1 +8x2+5)

> 0

]

≤ φ(−βt3),

0 ≤ µxi ≤ 10, xi ∼ N(µxi,0.3
2) for = 1,2,

βtj = 3.0, µ(0)
x = [5.0,5.0]T , j = 1,2,3.

(21)

Table 1 presents the optimal solutions obtained from the methods. The target reliability
achieved by the solutions for each probabilistic constraint is shown from the sixth column
to the eighth column, which is evaluated through MCS. The constraint function calls gFC
denote the total number of times the constraint function is called by “fmincon” (gf mincon),
plus the number of times it is called for its gradient calculation (gr f ). Meaning, gFC is equal
to gf mincon + gr f × nc × nv × 2, where nc and nv represent the number of constraints and
number of variables, respectively and the numeric 2 is multiplied as the central difference
method is used for gradient calculation. Similarly, the number of the cost function calls ( fFC)
is calculated by determining the number of function called by “fmincon”.

Regarding efficiency, SLShV-CG is found to be computationally efficient than PMA-AMV
when comparing their fFC and gFC in the fourth and the fifth columns of the table. Comparing
the methods based on NFC, SLSV, SLSV-CG and ASORA are found to be efficient than
SLShV-CG. However, SLShV-CG generates the reliable solution by compromising with NFC.

Regarding accuracy, it can be seen from βt
MCS

columns of Table 1 that only SLShV-CG
and PMA-AMV methods evolve the optimal solutions with the desired target reliability. Other
methods like DLM-CGA, SLSV-CG, SORA and ASORA are unable to achieve the target
reliability for g1(X). It can also be seen that SLSV is unable to achieve the target reliability
for both g1(X) and g2(X). It is noted that the constraint g3(X) is found to be inactive and thus,
its target reliability is infinite for the solutions obtained by all methods. Figure 5 shows the
convergence plots for all methods with respect to the number of iterations. The maximum
number of iterations required to evolve the optimal solution is also mention in the last column

12
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Figure 5. Convergence plot of example 1.
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Figure 6. Contour plot of example 1.

of table 1. A smooth convergenceof SLShV-CG can be observed with respect to other methods.
The progress of the solution obtained through SLShV-CG in two-variable space is shown

in figure 6. The β circles for constraints g1(X) and g2(X) are shown, whereas for constraint
g3(X) is not shown because the target reliability index is infinity. Graphically, it can be seen
that SLShV-CG evolved the optimal solution with the desired target reliability.

4.2. Mathematical example 2

The second mathematical problem (Jeong and Park 2016) as shown in equation (22) contains
a non-linear objective function and a highly concave constraint. This problem is considered in
order to check the robustness of the proposed method for concave function. The initial point
is taken as µ(0)

x = [5.0,5.0]T and the standard deviation of the problem is σ = [0.6,0.6]T . The
lower and upper bound of mean values of the random variables are 0.0 and 10.0, respectively.
Table 2 presents the optimal solutions obtained from all methods.

Find: [µx1, µx2]T

min.: (µx1 +2)2+ (µx2 +2)2 −2µx1µx2,

s.t.: Pr

[
e(0.8x1−1.2)

+ e(0.7x2−0.6) −5

10
> 0

]
≤ φ(−βt1),

0 ≤ µxi ≤ 10, xi ∼ N(µxi,0.6
2) for i = 1,2,

βt1 = 3.0, µ(0)
x = [5.0,5.0]T .

(22)

Regarding efficiency, SLShV-CG is found better than other methods, except for SLSV
when comparing their NFC. However, SLSV has evolved the worst reliable solution among
all methods. The convergence of all methods with respect to the number of iterations is shown
in figure 7. A smooth convergence is not observed with any method. It is due to the non-linear
concave probabilistic constraint.

The accuracy of all these methods can be investigated by observing βt
MCS

columns of Table
2. It can be seen that SLShV-CG and PMA-CGA are the only methods which can evolve the
solution with the desired target reliability. This is because PMA-CGA and SLShV-CG both
utilize the conjugate gradient update to locate the MPP. On the other hand, PMA-AMV, SLSV,

13



Table 2. RBDO results for Example 2 with βt = 3.0
Methods f ∗ µ

∗
x NFC βt

MCS
Iter

fFC gFC g1
DO 27.0180 (3.1595, 3.8920) − − − −
PMA-AMV 36.7425 (3.1595, 3.8920) 53 10431 2.8538 12
PMA-CGA 37.3957 (3.5760, 3.7641) 33 993 3.0701 10
SLSV 32.3925 (1.8332, 3.5382) 116 127 1.3619 3
SLSV-CG 37.0741 (3.0822, 3.9833) 1248 1336 2.9517 42
SORA 36.7965 (2.9152, 3.9933) 190 2176 2.8109 8
ASORA − − − − − −
SLShV-CG 37.3956 (3.5715, 3.7677) 278 310 3.0729 10

SORA and ASORA use the steepest descent update for MPP calculation. Steepest descent
works well for convex function but found unstable for concave function. Therefore, these
methods shows poor convergence.
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Figure 7. Convergence plot of problem 2.

4.3. Mathematical example 3

The third example (Jiang et al. 2017) as given in equation (23) is a highly non-linear mathemat-
ical example as illustrated in figure 9. The constraint g2(X) is concave in nature while g1(X)
and g3(X) are convex in nature. The initial point is taken as µ(0)

x = [5.0,5.0]T and the reliability
for each constraint is increased to βt

i
= 3.5. Table 3 summarizes the obtained solutions from

all methods.
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Table 3. RBDO results for Example 3 with βt = 3.5
Methods f ∗ µ

∗
x NFC βt

MCS
Iter

fFC gFC g1 g2 g3
DO −2.292 (5.197, 0.741) − − − − − −
PMA-AMV − − − − − − − −
PMA-CGA −1.6409 (4.5273, 2.1587) 51 16490 3.4808 3.6522 Inf 11
SLSV −1.7289 (4.9177, 1.9488) 56 185 3.4808 2.3279 Inf 3
SLSV-CG −1.6595 (4.5965, 2.1131) 92 290 3.4601 3.4227 Inf 4
SORA − − − − − − − −
ASORA − − − − − − − −
SLShV-CG −1.6432 (4.5225, 2.1537) 198 699 3.5401 3.6949 Inf 13

Find: [µx1, µx2]T

min: −
(µx1 + µx2 −10)2

30
−
(µx1 − µx2 +10)2

120

s.t.: Pr

[

g1(X) = 1−
x2

1 x2

20
> 0

]

≤ φ(−βt1),

Pr[g2(X) = −1+ (Y −6)2+ (Y −6)3

−0.6(Y −6)4+ Z > 0
]
≤ φ(−βt2),

Pr

[

g3(X) = 1− 80

(x2
1 +8x2+5)

> 0

]

≤ φ(−βt3),

Y = 0.9063x1 +0.4226x2,

Z = 0.4226x1 −0.9063x2,

0 ≤ µxi ≤ 10, xi ∼ N(µxi,0.3
2) for i = 1,2,

βtj = 3.5, µ(0)
x = [5.0,5.0]T j = 1,2,3.

(23)

Regarding efficiency, SLShV-CG consumes more function evaluations than SLSV and
SLSV-CG in order to generate a reliable optimum solution. This is because the conjugate
gradient shows slow convergence for the convex function g1(X). PMA-CGA generates a better
solution than SLSV and SLSV-CG but with the expense of gFC.

Regarding accuracy, it can be seen from βt
MCS

columns of Table 3 that SLShV-CG again
emerges as the only method that can evolve the optimal solution with the desired target
reliability. Other methods like SLSV and SLSV-CG are unable to generate the reliable optimal
solutions. On the other hand, PMA-CGA is able to generate a solution that satisfies target
reliability for constraint g2(X). PMA-AMV, SORA and ASORA are unable to converge for
this example because the MPP is updated by the steepest descent, which fails for concave
functions.

The convergence of the solutions with respect to the number of iterations is shown in figure
8. It can be seen that SLShV-CG requires more iterations in order to generate a reliable optimal
solution. The progress of solutions obtained through SLShV-CG is shown in figure 9, which
indicates target reliability achieved by the optimal solution.

4.4. Mathematical example 4

The last mathematical example shown in equation (24) is the problem no. 113 of Hock and
Schittkowski (1981). The original problem is a deterministic problem, thus this RBDO problem
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Figure 9. Contour plot of example 3.

is adopted from Lee and Lee (2005). There are 10 statistically independent random variables
with normal distribution and eight probabilistic constraints with the desired reliability index
of 3.0. The optimal solution obtained from deterministic optimization is selected as the initial
design point.

Results obtained from all methods are summarized in table 4. It can be observed that all
methods converge to a similar solution with an objective function value of 27.7466.

The efficiency of all methods is investigated by comparing their NFC. It can be seen that
SLShV-CG has similar efficiency as SLSV and SLSV-CG and is better than other methods.
It can also be observed that PMA-AMV and PMA-CGA require many NFC. This is because
of the nested optimization in which the inner loop calls the constraint function several times
at every iteration in order to calculate the gradient. However, SLShV-CG is the single-loop
method thus requiring the minimum number of constraint function calls.

The accuracy of these methods is investigated from βt
MCS

columns of Table 4. It can be
seen that none of the methods are able to generate the optimal solution with the desired target
reliability for all probabilistic constraints. SLShV-CG, SLSV, SLSV-CG, and ASORA evolve
the same optimal solution having the desired target reliability index closer to 3.0 for g1(X).
Other methods like PMA-AMV, PMA-CGA and SORA are unable to achieve the desired
target reliability for both g3(X) and g4(X). Figure 10 shows the convergence of all methods
with respect to the number of iterations which are found to be smooth for all methods.
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Find: [µx1, µx2, µx3, µx4, µx5, µx6, µx7, µx8, µx9, µx10]T

min.: µ2
x1
+ µ2

x2
+ µx1µx2 −14µx1 −16µx2 + (µx3 −10)2

+4(µx4 −5)2+ (µx5 −3)2 +2(µx6 −1)2+5µ2
x7

+7(µx8 −11)2 +2(µx9 −10)2 + (µx10 −7)2 +45

s.t.: Pr
[
gj(X) > 0

]
≤ φ(−βtj), βtj = 3.0, for j = 1, . . .,8,

g1(X) = 4x1 +5x2 −3x7+9x8

105
−1 > 0,

g2(X) = 10x1 −8x2 −17x7+2x8 > 0,

g3(X) = −8x1 +2x2+5x9 −2x10

12
−1 > 0,

g4(X) =
3(x1 −2)2+4(x2 −3)2+2x2

3 −7x4

120
−1 > 0,

g5(X) =
5x2

1 +8x2+ (x3 −6)2 −2x4

40
−1 > 0,

g6(X) =
0.5(x1 −8)2+2(x2 −4)2+3x2

5 − x6

30
−1 > 0,

g7(X) = x2
1 +2(x2 −2)2 − x1x2+14x5 −6x6 > 0,

g8(X) = −3x1 +6x2+12(x9 −8)2 −7x10 > 0,

0 ≤ µxi ≤ 10, xi ∼ N(µxi,0.022), for i = 1,2, . . .,10,

µ
(0)
x = [2.17,2.36,8.77,5.10,0.99,1.43,

1.32,9.83,8.28,8.38]T .

(24)
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Figure 10. Convergence plot of example 4

4.5. Speed Reducer

A speed reducer problem (Lee and Lee 2005; Rao 2009), as illustrated in figure 11, is taken
as the first engineering RBDO example. The design objective is to minimize the weight of the

17



Table 4. RBDO results for Example 4 with βt = 3.0
Methods f ∗ µ

∗
x NFC βt

MCS
Iter

fFC gFC gi
DO 24.3062 (2.1720, 2.3637, 8.7739, 5.0960, − − − −

0.9907, 1.4306, 1.3216, 9.8287,
8.2801, 8.3759)

PMA-AMV 27.7466 (2.1350, 2.3309, 8.7094, 5.1021, 184 666272 3.0280, 3.0045, 2.9781, 14
0.9225, 1.4452, 1.3885, 9.8094, 2.9824, 3.0000,inf,

8.1556, 8.4755) 3.0332, inf
PMA-CGA 27.7466 (2.1350, 2.3309, 8.7094, 5.1021, 205 541500 3.0280, 3.0045, 2.9781, 16

0.9225, 1.4452, 1.3885, 9.8094, 2.9824, 3.0000,inf,
8.1556, 8.4755) 3.0332, inf

SLSV 27.7466 (2.1350, 2.3308, 8.7106, 5.1026, 287 1449 2.9957, 3.0332, 3.0013,, 2
0.9238, 1.4449, 1.3847, 9.8185, 3.0307, 3.0185, inf,

8.1501, 8.4799) 3.0407, inf
SLSV-CG 27.7466 (2.1350, 2.3308, 8.7094, 5.1021, 289 1449 2.9957, 3.0332, 3.0013, 2

0.9225, 1.4452, 1.3885, 9.8094, 3.0307, 3.0185, inf,
8.1556, 8.4755) 3.0407, inf

SORA 27.7466 (2.1350, 2.3309, 8.7094, 5.1021, 496 17031 3.0280, 3.0045, 2.9781, 3
0.9225, 1.4452, 1.3885, 9.8094, 2.9824, 3.0000,inf,

8.1556, 8.4755) 3.0332, inf
ASORA 27.7466 (2.1350, 2.3309, 8.7094, 5.1021, 376 2159 2.9957, 3.0332, 3.0013,, 2

0.9225, 1.4452, 1.3885, 9.8094, 3.0307, 3.0185, inf,
8.1556, 8.4755) 3.0407, inf

SLShV-CG 27.7466 (2.1350, 2.3308, 8.7094, 5.1021, 289 1439 2.9957, 3.0332, 3.0013, 2
0.9225, 1.4452, 1.3885, 9.8094, 3.0307, 3.0185, inf,

8.1556, 8.4755) 3.0407, inf

speed reducer which is subjected to the constraints on bending stress, contact stress, longitudi-
nal displacement stress, stress of the shaft, transverse deflection, and geometric conditions. It
contains seven independent random normal variables each with standard deviation σ = 0.005
and 11 probabilistic constraints with target reliability index of 3.0. The design variables are
gear teeth (x1), teeth module (x2), number of teeth in pinion (x3), the distance between two
bearings (x4, x5), and axis diameter (x6, x7). The problem formulation is given in equation
(25). Table 5 presents the optimal solutions obtained by the methods.

The efficiency of all methods is investigated by comparing their NFC. SLShV-CG is found
to be better than other methods. Among all, PMA-AMV seems to be the least efficient. On the
other hand, PMA-CGA is twice efficient than PMA-AMV. Methods like SLSV and SLSV-CG
show similar computational efficiency.

The accuracy is investigated from βt
MCS

columns of Table 5. It can be seen that the
constraints g5(x),g6(x),g8(x) and g11(x) are active and rest of them are inactive at the optimal

4

Shaft 2

Shaft 1

Gear Pinion

x5

x7 x6

x

Figure 11. A Speed Reducer example
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Figure 12. Convergence plot of Speed Reducer
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solution. For this example, all RBDO methods are converged to the same optimal solution
with the desired target reliability.

Figure 12 shows the convergence of all method with respect to the number of iterations. It
can be noted that SLShV-CG requires only two iterations for convergence.

Find: [µx1, µx2, µx3, µx4, µx5, µx6, µx7]T

min.: 0.7854µx1 µ
2
x2
(3.3333µ2

x3
+14.9334µx3 −43.0934)−

1.508µx1 (µ2
x6
+ µ2

x7
)+7.477(µ3

x6
+ µ3

x7
)

+0.7854(µx4 µ
2
x6
+ µx5µ

2
x7
),

s.t.: Pr
[
gj(X) > 0

]
≤ φ(−βtj),

g1(X) = 27

x1x2
2 x3

−1 > 0, g2(X) = 397.5

x1x2
2 x2

3

−1 > 0,

g3(X) =
1.93x3

4

x2x3x4
6

−1 > 0, g4(X) =
1.93x3

5

x2x3x4
7

−1 > 0,

g5(X) =

√
(745x4
x2x3

)2+16.9×106

0.1x3
6

−1100 > 0,

g6(X) =

√
(745x5
x2x3

)2+157.5×106

0.1x3
7

−850 > 0,

g7(X) = x2x3 −40 > 0, g8(X) = 5− x1

x2
> 0,

g9(X) = x1

x2
−12 > 0, g10(X) = 1.5x6 +1.9

x4
−1 > 0,

g11(X) = 1.1x7 +1.9

x5
−1 > 0,

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,

5 ≤ x7 ≤ 5.5,

xi ∼ N(µxi,0.0052), for i = 1,2, . . .,7,

βtj = 3.0, j = 1,2, . . .,11,

µ
(0)
x = [3.5,0.7,17,7.3,7.72,3.35,5.29]T .

(25)

4.6. Tension/Compression spring

A tension/compression spring (Meng and Keshtegar 2019) is illustrated in figure 13 and the
RBDO formulation is described in equation (26). The objective of the problem is to minimize
the spring weight. This problem has three statistically independent random variables with
normal distribution, namely mean coil diameter (x1), the wire diameter (x2), and the number
of coils (x3) and four probabilistic constraints. The target reliability is fixed to 3.0 for all
constraints. The initial design point is selected as µ(0)x = [0.05,0.5,10]T . Table 6 summarizes
the results obtained from all methods.
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Table 5. RBDO results for speed reducer problem with βt = 3.0
Methods f ∗ µ

∗
x NFC βt

MCS
Iter

fFC gFC gi
PMA-AMV 3038.612 (3.5765, 0.7000, 17.0000, 7.3000, 48 229680 Inf,Inf,Inf,Inf,3.0307, 3.3082, 5

7.7541, 3.3652, 5.3017) Inf,3.0000,Inf,Inf,3.0068
PMA-CGA 3038.612 (3.5765, 0.7000, 17.0000, 7.3000, 48 120240 Inf,Inf,Inf,Inf,3.0307, 3.3082, 5

7.7541, 3.3652, 5.3017) Inf,3.0000,Inf,Inf,3.0068
SLSV 3038.612 (3.5765, 0.7000, 17.0000, 7.3000, 77 1038 Inf,Inf,Inf,Inf,3.0307, 3.3082, 2

7.7541, 3.3652, 5.3017) Inf,3.0000,Inf,Inf,3.0068
SLSV-CG 3038.612 (3.5765, 0.7000, 17.0000, 7.3000, 77 1038 Inf,Inf,Inf,Inf,3.0307, 3.3082, 2

7.7541, 3.3652, 5.3017) Inf,3.0000,Inf,Inf,3.0068
SORA 3038.612 (3.5765, 0.7000, 17.0000, 7.3000, 77 14874 Inf,Inf,Inf,Inf,3.0307, 3.3082, 3

7.7541, 3.3652, 5.3017) Inf,3.0000,Inf,Inf,3.0068
ASORA 3038.612 (3.5765, 0.7000, 17.0000, 7.3000, 112 1520 Inf,Inf,Inf,Inf,3.0307, 3.3082, 4

7.7541, 3.3652, 5.3017) Inf,3.0000,Inf,Inf,3.0068
SLShV-CG 3038.612 (3.5765, 0.7000, 17.0000, 7.3000, 76 1014 Inf,Inf,Inf,Inf,3.0307, 3.3082, 2

7.7541, 3.3652, 5.3017) Inf,3.0000,Inf,Inf,3.0068

x2

x1

Figure 13. A Spring tension/compression example
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Figure 14. Convergence plot of spring tension/compression
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Table 6. RBDO results for spring tension/compression problem with βt = 3.0
Methods f ∗ µ

∗
x NFC βt

MCS
Iter

fFC gFC gi
PMA-AMV 0.02314298 (0.0589, 0.4620, 72 24480 2.9803, 3.0091 17

12.4319) Inf,Inf
PMA-CGA 0.02314203 (0.0589, 0.4621, ) 72 28744 2.9760, 3.0000 17

12.4286) Inf,Inf
SLSV 0.02313374 (0.0586, 0.4545, 202 653 3.0000, 2.9576, 3

12.7981) Inf,Inf
SLSV-CG 0.02314299 (0.0589, 0.4607, 344 1281 2.9867, 3.0433, 7

12.4970) Inf,Inf
SORA 0.02312068 (0.0593, 0.4730, 210 1979 2.9781, 3.0091, 3

11.9008) Inf,Inf
ASORA 0.02314015 (0.0590, 0.4654, 321 1155 2.9824, 3.0045, 6

12.2680) Inf,Inf
SLShV-CG 0.02314287 (0.0590, 0.4649, 256 919 3.0068, 3.0282, 5

12.2908) Inf,Inf

Find: [µx1, µx2, µx3]T

min.: (µx3 +2)µx2µ
2
x1
,

s.t.: Pr
[
gj(X) > 0

]
≤ φ(−βtj ), j = 1,2,3,4,

g1(X) =
x3

2 x3

71785x4
1

−1 > 0,

g2(X) = 1−
4x2

2 − x1x2

12566(x2 x3
1 − x4

1)
− 1

5108x2
1

> 0,

g3(X) = 140.45x1

x2
2 x3

−1 > 0,

g4(X) = 1− x1 + x2

1.5
> 0,

0.01 ≤ µx1 ≤ 0.1, 0.1 ≤ µx2 ≤ 1.0, 5.0 ≤ µx3 ≤ 15.0,

x1 ∼ N(µx1,0.0012), x2 ∼ N(µx2,0.012),
x3 ∼ N(µx3,0.8

2), βtj = 3.0, µ(0)
x = [0.05,0.5,10]T .

(26)

The efficiency of all methods is investigated by comparing their NFC. SLShV-CG is found
to be better than all methods, except for SLSV. However, SLSV is unable to generate a reliable
solution. Methods like SLSV-CG and ASORA have comparable efficiency. PMA-AMV and
PMA-CGA are the least efficient method because of the double loop structure.

Regarding accuracy, it can be seen from βt
MCS

columns of Table 6 that only SLShV-CG
converges to the optimal solution with the desired target reliability and other methods fail to
generate a reliable solution. Methods like SLSV and SORA converge to a solution with a poor
reliability as compared to other methods.

Figure 14 shows the convergence plot of all methods. It can be seen from the figure that
SLShV-CG converges to the optimal solution within five iterations.

4.7. Welded beam design

A welded beam (Cho and Lee 2011; Lee and Lee 2005) as shown in figure 15 is taken as
the next engineering RBDO example. The objective function is to minimize the welding cost.
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Table 7. Fixed parameters for the welded beam problem
z1 : 2.6688×104 (N)
z2 : 3.556×102 (mm)
z3 : 2.0685×105 (MPa)
z4 : 8.274×104 (MPa)
z5 : 6.35 (mm)
z6 : 9.377×10 (MPa)
z7 : 2.0685×102 (MPa)
c1 : 6.74135×10−5 ($/mm3)
c2 : 2.93585×10−6 ($/mm3)

There are five probabilistic constraints related to the physical quantities such as shear stress,
bending stress, bucking, and tip deflection. Design variables such as depth (x1) and length (x2)
of the welding, and height (x3) and thickness (x4) of the beam are statistically independent
random variables with normal distribution. The RBDO model of the welded beam is given in
the equation (27). The fixed system parameters of equation (27) are listed in table 7. Table 8
presents the results obtained from all methods.

Regarding efficiency, it can be seen from the fifth column of the table that among all the
methods, SLShV-CG is the most efficient method. Other methods like SLSV, SLSV-CG and
ASORA show better efficiency than PMA-AMV and PMA-CGA.

Comparing the accuracy for this engineering RBDO example from βt
MCS

columns of Table
8, all methods converge to the same optimal solution with the desired target reliability. It can
be noted from the sixth column of the table that g4(X) is an inactive constraint.

The convergence plot is shown in figure 16 which indicates a smooth convergence of all
methods, except for PMA-AMV and PMA-CGA.
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Find: [µx1, µx2, µx3, µx4]T

min.: c1µ
2
x1
µx2 + c2µx3µx4(z2 + µx2),

s.t.: Pr

[
g1(X) = τ(X,z)

z6
−1 > 0

]
≤ φ(−βt1),

Pr

[
g2(X) = σ(X,z)

z7
−1 > 0

]
≤ φ(−βt2),

Pr

[
g3(X) = x1

x4
−1 > 0

]
≤ φ(−βt3),

Pr

[
g4(X) = δ(X,z)

z5
−1 > 0

]
≤ φ(−βt4),

Pr

[
g5(X) = 1− Pc(X,z)

z1
> 0

]
≤ φ(−βt5),

3.175 ≤ x1 ≤ 50.8, 0 ≤ x2 ≤ 254, 0 ≤ x3 ≤ 254,

0 ≤ x4 ≤ 50.8,

x1,2 ∼ N(µx1,2,0.16932), x3,4 ∼ N(µx3,4,0.01072),
βtj = 3.0, j = 1,2, . . .,5,

µ
(0)
x = [6.208,157.82,210.62,6.208]T ,

t(X,z) = z1√
2x1x2

, tt(X,z) = M(X,z)R(X,z)
J(X,z) ,

M(X,z) = z1

(
z2+

x2

2

)
, R(X,z) =

√
x2

2 + (x1 + x3)2

2
,

J(X,z) =
√

2x1x2

{
x2

2

12
+

(x1+ x3)2
4

}

,

σ(X,z) = 6z1z2

x2
3 x4
, δ(X,z) =

4z1z3
2

z3x3
3 x4
,

Pc(X,z) =
4.013x3 x3

4

√
z3z4

6z2
2

(
1− x3

4z2

√
z3

z4

)
,

τ(X,z) =
{
t(X,z)2+2t(X,z)tt(X,z)

(
x2

2R(X,z)

)
+ tt(X,z)2

}1/2
.

(27)

4.8. Cantilever beam problem

A cantilever beam problem (Liang, P. Mourelatos, and Tu 2008) adopted in this example is
shown in figure 17. The problem formulation is given in equation (28). The beam is loaded
with two point loads, lateral load pz and vertical load py at the tip. The width and thickness of
the beam are ‘w’ and ‘t’ respectively and the length L of the beam is equal to 100 inches. The
objective of the problem is to minimize the weight of the beam. The first constraint represents
that the maximum stress at the fixed end should be less than the yield strength Sy . The second
constraint represents the displacement that should not exceed the allowable value of D0. The
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Figure 15. A welded beam structure example
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Figure 16. Convergence plot of welded beam

Table 8. RBDO results for Welded beam design with βt = 3.0
Methods f ∗ µ

∗
x NFC βt

MCS
Iter

fFC gFC gi
PMA-AMV 2.5913 (5.7300, 200.8982, 115 57750 3.0233, 3.0233 21

210.5977, 6.2389) 3.0091,Inf,3.0091
PMA-CGA 2.5913 (5.7300, 200.8981, 110 37290 3.0233, 3.0233 21

210.5977, 6.2389) 3.0091,Inf,3.0091
SLSV 2.5913 (5.7300, 200.8982, 177 847 3.0233, 3.0233 3

210.5977, 6.2389) 3.0091,Inf,3.0091
SLSV-CG 2.5913 (5.7300, 200.8982, 177 847 3.0233, 3.0233 3

210.5977, 6.2389) 3.0091,Inf,3.0091
SORA 2.5913 (5.7300, 200.8982, 160 2155 3.0233, 3.0233 3

210.5977, 6.2389) 3.0091,Inf,3.0091
ASORA 2.5913 (5.7300, 200.8982, 193 905 3.0233, 3.0233 4

210.5977, 6.2389) 3.0091,Inf,3.0091
SLShV-CG 2.5913 (5.7300, 200.8982, 164 740 3.0233, 3.0233 3

210.5977, 6.2389) 3.0091,Inf,3.0091

w
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Figure 17. A cantilever beam example
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Figure 18. Convergence plot of cantilever beam
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Table 9. RBDO results for cantilever beam with βt = 3.0
Methods f ∗ µ

∗ NFE βt
MCS

Iter
fFE gFE g1 g2

PMA-AMV 9.5253 (2.4538, 3.8819) 77 13930 3.0025, 3.0320 10
PMA-CGA 9.5253 (2.4531, 3.8829) 77 26936 3.0357, 3.0045 10
SLSV 9.5253 (2.4538, 3.8819) 175 370 3.0025, 3.0320 3
SLSV-CG 9.5253 (2.4538, 3.8819) 182 384 3.0025, 3.0320 3
SORA 9.2840 (2.5802, 3.5981) 325 2498 2.5696, 3.0000 3
ASORA 9.5253 (2.4538, 3.8819) 260 570 3.0022, 3.0357 5
SLShV-CG 9.5252 (2.4538, 3.8819) 443 1122 3.0185, 3.0433 13

desired reliability index of βt
i
= 3.0 is kept for both the constraints. The results for this example

are summarized in table 9.

Find: µw, µt
min: w× t,

s.t.: Pr
[
gj(X) > 0

]
≤ φ(−βtj), j = 1,2,

g1(Sy, py, pz, t) = Sy −
(
600

wt2
py +

600

wt2
pz

)
> 0,

g2(E,w, t, py, pz) = D0 −
4L3

Ewt

√√√(
py
t2

)2

+

(
pz
w2

)2

> 0,

0 ≤ w ≤ 5, 0 ≤ t ≤ 5, 500 ≤ pz ≤ 800,

1000 ≤ py ≤ 1500, 35000 ≤ Sy ≤ 45000,

25×106 ≤ E ≤ 30×106,

w ∼ N(µw,0.012), t ∼ N(µt,0.012),
pz ∼ N(µpz

,1002),
py ∼ N(µpy

,1002), Sy ∼ N(µSy
,20002),

E ∼ N(µE, (1.45×106)2),
βtj = 3.0, µ(0)

= [2,2,500,1000,40000,29×106]T .

(28)

Regarding efficiency, SLShV-CG is found to be better than PMA-AMV, PMA-CGA and
SORA when comparing their NFC. However, SLShV-CG needs improvement over SLSV,
SLSV-CG and ASORA, which are computationally efficient.

Regarding accuracy, all methods evolve the same reliable solution for this problem, except
SORA. The convergence plot for all methods is shown in figure 18. It can be seen that
SLShV-CG requires more iterations than SLSV, SLSV-CG, ASORA, and SORA.

5. Conclusion

An accurate and computationally efficient hybrid RBDO method has been proposed in this
paper. The method was developed by coupling the single-loop method with the shifting vector
approach of SORA. The approximate MPP was updated using the conjugate gradient search
direction in each iteration. Based on the results obtained after solving four mathematical and
four engineering RBDO problems, it can be concluded that SLShV-CG is able to generate the
optimal solution with the desired target reliability. Mathematical examples 2 and 3 demon-
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strated that SLShV-CG converged to the desired reliable solution irrespective of the convex
or concave nature of the limit state functions, whereas other methods failed to converge. Also,
SLShV-CG was found to be computationally efficient than those methods which were able
to generate the reliable optimal solution. In future work, SLShV-CG can be tested on other
RBDO problems in which the variables follow non-normal distribution. Moreover, it can be
tested on large scale RBDO problems.
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